0.11

Find the error in the following proof that all horses are the same color.

CLAIM: In any set of \(h \) horses, all horses are the same color.

PROOF: By induction on \(h \).

Basis: For \(h = 1 \). In any set containing just one horse, all horses clearly are the same color.

Induction step: For \(k \geq 1 \) assume that the claim is true for \(h = k \) and prove that it is true for \(h = k + 1 \). Take any set \(H \) of \(k + 1 \) horses. We show that all the horses in the set are the same color. Remove one horse from this set to obtain the set \(H_1 \) with just \(k \) horses. By the induction hypothesis, all the horses in \(H_1 \) are the same color. Now replace the removed horse and remove a different one to obtain the set \(H_2 \). By the same argument, all the horses in \(H_2 \) are the same color. Therefore all the horses in \(H \) must be the same color, and the proof is complete.

1.5

Each of the following language is the complement of a simpler language. In each part, construct a DFA for the simpler language, then use it to give the state diagram of a DFA for the language given. In all parts \(\Sigma = \{a, b\} \).

\(g. \ {w | w \text{ is any string that doesn’t contain exactly two } a\text{’s}} \).

\(h. \ {w | w \text{ is any string except } a \text{ and } b} \).

1.6

Give state diagrams of DFAs recognizing the following languages. In all parts \(\Sigma = \{0, 1\} \).

\(i. \ {w | \text{every odd position of } w \text{ is } 1} \).