SEARCH ENGINE INSIDE OUT

From Technical Views

萧碧隆 r86526020 蕭文宏 r88526016
巫有欽 r88526028 蕭新明 b85506013
黃毓曄 b85506010

April 11, 2000

Outline

- Why Search Engine so important
- Search Engine Architecture
 - Crawling Subsystem
 - Indexing Subsystem
 - Search Interface
- Future Trends
- Discussion
Statistics

• 1 in every 28 page views on the Web is a search result pages. (June 1, 1999, Alexa Insider)

• The most widely traveled path on the web in March 1999 was from home.microsoft.com to www.altavista.com. (March 1999, Alexa Insider)

• The average work user spends 73 minutes per month at search engines, second only to 97 minutes at news, info and entertainment sites. (Feb, 1999, Internet World)

• Almost 50% of online users turn to search sites for their online news needs. (Dec. 1998, Jupiter)

Statistics

How Internet Users Find New Websites

<table>
<thead>
<tr>
<th>Method</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search engines</td>
<td>45.8%</td>
</tr>
<tr>
<td>Word of mouth</td>
<td>20.3%</td>
</tr>
<tr>
<td>Random surfing</td>
<td>19.9%</td>
</tr>
<tr>
<td>4.4% Magazines</td>
<td></td>
</tr>
<tr>
<td>2.1% By accident</td>
<td></td>
</tr>
<tr>
<td>1.4% Newspapers</td>
<td></td>
</tr>
<tr>
<td>1.2% Television</td>
<td></td>
</tr>
<tr>
<td>1.0% Web banner</td>
<td></td>
</tr>
<tr>
<td>0.7% Don’t know</td>
<td></td>
</tr>
<tr>
<td>0.4% Radio</td>
<td></td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th></th>
<th>Unit: millions/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Many Searches are performed</td>
<td></td>
</tr>
<tr>
<td>Total Search estimated</td>
<td>94</td>
</tr>
<tr>
<td>Inktomi (Jan. 2000)</td>
<td>38</td>
</tr>
<tr>
<td>Google (Apr. 2000)</td>
<td>12</td>
</tr>
<tr>
<td>4 AskJeeves (Mar. 2000)</td>
<td></td>
</tr>
<tr>
<td>1.2 Voila (Jan. 2000)</td>
<td></td>
</tr>
</tbody>
</table>

Take Inktomi for example, it should accept 440 queries each second.

Taxonomy

- **General-purpose Search Engine**
 - Altavista, Excite, Infoseek, Lycos, HotBot, ...
- **Hierarchical Directory**
 - Yahoo, Open Directory, LookSmart, ...
- **Meta Search Engine**
 - MetaCrawler, DogPile, SavvySearch, ...
- **Question-Answering**
 - AskJeeves
- **Specialized Search Engines**
 - HomePage Finder, Shopping robots, RealName, ...
- ...
Components

- **Spider**
 Spiders crawl the web, collect the documents through what they have found.

- **Indexer**
 Process and make a logical view of the data.

- **Search Interface**
 Accept user queries and search through the index database. Also, rank the result listing and represent to the user.
Crawling Subsystem

Spider (URL)
{
 # Use the HTTP protocol get method to acquire the web page
 Set HttpConnection = HTTPGet(URL);
 # Verify that information is accurate and not a 404 error
 Set Content = CheckInformation(HttpConnection);
 # Place the information into a database for later processing
 StoreInformation(Content);
}

Measurement of Indexed Pages

<table>
<thead>
<tr>
<th></th>
<th>FAST</th>
<th>AltaVista</th>
<th>Excite</th>
<th>Northern Light</th>
<th>Google</th>
<th>Inktomi</th>
<th>Go</th>
<th>Infosouche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>250</td>
<td>214</td>
<td>211</td>
<td>254</td>
<td>138</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>Unit: Million</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report Date: Feb.3,2000
Coverage of the Web

Report Date: Feb. 3, 2000

Issues for Crawling (1/3)

• Web Exploration with Priority
 – Decisions about which site/page is explored first
 – Ensuring document quality and coverage
 – Use Random, BFS, DFS (+depth limits) with priority

• Duplications
 – Host-wise duplications
 • Near 30% of the web are syntactically duplicated
 • ?? are semantically duplicated.
 – Single Host duplications
 • The same website with different host name
 • Symbolic links will cause some infinite routes in the web graph
 – Use Fingerprint, limited-depth exploration

• Dynamic Documents
 – Whether retrieve dynamic documents or not?
 – Single dynamic document with different parameters ?!
Issues for Crawling (2/3)

- **Load Balance**
 - **Internal**
 - Response time, size of answers are unpredictable
 - There are additional system constraints (# threads, # open connections, etc)
 - **External**
 - Never overload websites or network links (A well-connected crawler can saturate the entire outside bandwidth of some small country)
 - Support robot standard for politeness.

- **Storage Management**
 - Huge amount of url/document data

- **Freshness**
 - Many web sites (pages) changes oftenly, others nearly remains unchanged
 - Revisit different website with different periods.

Issues for Crawling (3/3)

- **The Hidden Web**
 - Some websites are not popular but valuable
 - Use Fast DNS search for possible explorations.

- **Sample Architecture of Crawling System** (Adapted from a topic-specific crawler)
Indexer Subsystem

Index(content, URL) {
 # Search each needed HTML structure
 Set Head = GetHtmlHead(content);
 Set Title = GetHtmlTitle(content);
 Set Keywords = GetHtmlKeyword(content);
 # Get needed keywords
 Loop {
 Set Object = CreateObject(Keywords, Title, Head, URL);
 # Store the keyword, and make internal representation
 StoreKeyword(Object, keyword);
 }
}

Diagram Description

- **User Interface**
- **Text Operations**
 - **Text**
 - **Logical View**
 - **Query Operations**
 - **Query**
 - **Searching**
 - **Retrieved Docs**
 - **Ranked Docs**
 - **Indexing**
 - **Inverted File**
 - **Index**
 - **DB Manager Module**
 - **User Feedback**
 - **User Need**
Logic View of Docs and Queries from Vector Space Model

- **Documents and Queries are treated as a t-dimension vectors**
 - t is the dimension of the whole index term space.
 - Each vector component is the weight for relevance factor for a specific index term.

- **Typical measurement for relevance**

 \[\text{sim}(d_j, q) = \frac{d_j \cdot q}{||d_j|| \times ||q||} \]

- **Typical weighting scheme – TFxIDF**

 \[W_{i,j} = f_{i,j} \times \log \frac{N}{n_i} \]

 - \(f_{i,j} \): term’s frequency in document,
 - \(N \): total number of documents
 - \(n_i \): total number of occurrence in different documents

- **Typical Effectiveness Measurement – Recall/Precision**

 - **Recall** = the fraction of the relevant documents which has been retrieved
 - **Precision** = the fraction of the retrieved documents which is relevant
Inverted Index

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th>Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>algorithms</td>
<td>(2,23)…</td>
</tr>
<tr>
<td>full</td>
<td>(2,6)…</td>
</tr>
<tr>
<td>heavily</td>
<td>(2,43)…</td>
</tr>
<tr>
<td>index</td>
<td>(2,60)…</td>
</tr>
<tr>
<td>letters</td>
<td>(1,60)…</td>
</tr>
<tr>
<td>made</td>
<td>(1,50)…</td>
</tr>
<tr>
<td>many</td>
<td>(1,28),(2,1)…</td>
</tr>
<tr>
<td>relies</td>
<td>(2,34)…</td>
</tr>
<tr>
<td>search</td>
<td>(2,16)…</td>
</tr>
<tr>
<td>text</td>
<td>(1,11),(1,19),(2,11)…</td>
</tr>
<tr>
<td>words</td>
<td>(1,33),(1,40)…</td>
</tr>
<tr>
<td>weighted</td>
<td>(2,51)…</td>
</tr>
</tbody>
</table>

Many full text search algorithms relies on heavily-weighted index.

Document ID = 1

This is a text. A text has many words. Words are made from letters.

Document ID = 2

Many full text search algorithms relies on heavily-weighted index.

Document 2

Text

This is a text. A text has many words. Words are made from letters.
This is a text. A text has many words. Words are made from letters.

<table>
<thead>
<tr>
<th>Word</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>001 000 110 010</td>
</tr>
<tr>
<td>many</td>
<td>000 010 101 001</td>
</tr>
</tbody>
</table>

| Block Signature | 001 010 111 011 |

Parameter

- D: logical block
- F: signature size in bits
- m: number of bits per word
- F_d: false drop probability

Issues for Indexing (1/2)

- **Language Identification**
 - Documents with different languages should be unified into a meta-representation.
 - Code conversion without concept lose.
 - How to identify language type
 - use meta data (`charset, content-encoding`) if available.
 - statistical approaches to identify language type

- **Storage Management**
 - Huge amount of indexes can not be loaded in the memory totally
 - Use cache mechanism, fast secondary storage access…
 - Efficient database structures
 - Using Compression?! Speed and Storage tradeoff
Issues for Indexing (2/2)

• Text Operations
 – Full text or controlled vocabulary
 – Stop list, Stemming, Phrase-level indexing, Thesaurus...
 – Concept discovery, Directory establishment, Categorization
 – Support search with fault tolerances ?!
 – ...

• Query-independent ranking
 – Weighting scheme for query-independent ranking
 – Web graph representation manipulations

• Structure information reservation
 – Document author, creation time, title, keywords, ...

Search Subsystem

```plaintext
Report (query) {
    # Get all relevant URLs in the internal database
    Set Candidates = GetRelevantDocuments(query);
    # Rank the lists according to its relevance scores
    Set Answer = Rank(Candidates);
    # Format the result
    DisplayResults();
}
```
What makes Web Users So Different

• Make poor queries
 – Short queries (2.35 terms for English, 3.4 characters for Chinese)
 – Imprecise terms
 – Sub-optimal syntax (80% queries without operator)

• Wide variance in
 – Needs (Some are looking for proper noun only)
 – Expectations
 – Knowledge
 – Bandwidth

• Specific behavior
 – 85% look over one result screen only
 – 78% of queries are not modified
 – Follow links

Ranking

• Goal
 order the answer set to a query in decreasing order of value

• Types
 – Query-independent : assign an intrinsic value to a document, regardless of the actual query
 – Query-dependent : value is determined only with respect to a particular query
 – Mixed : combination of both valuations

• Examples
 – Query-independent : length, vocabulary, publication data, number of citations(indegree), etc
 – Query-dependent : cosine measurement
Some ranking criteria

- **Content-based techniques**
 Variant of term vector model or probabilistic model

- **Ad-hoc factors**
 Anti-porn heuristics, publication/location data

- **Human annotations**

- **Connectivity-based techniques**
 - Query-independent
 - PageRank \[PBMW '98, BP '98\], indegree [CK'97] …
 - Query-dependent
 - HITS [K’98] …

Connectivity-Based Ranking

- **PageRank**
 - Consider a random Web surfer
 - Jumps to random page with probability \(\alpha \)
 - With probability \(1 - \alpha \), follows a random hyperlink
 - Transition probability matrix is
 \[
 \alpha U + (1 - \alpha) A
 \]
 where \(U \) is the uniform distribution and \(A \) is adjacency matrix
 - Query-independent rank = stationary probability for this Markov chain
 \[
 PR(a) = \alpha + (1 - \alpha) \frac{PR(P_i)}{C(P_i)}
 \]
 - Crawling the Web using this ordering has been shown to be better than other crawling schemes.
Practical Systems
- Altavista

• Altavista configuration ’98
 – Crawler - Scooter
 • 1.5 GB memory
 • 30 GB RAID disk
 • 4x533 MHz AlphaServer
 • 1 GB/s I/O bandwidth
 – Indexing Engine – Vista
 • 2 GB memory
 • 180 GB RAID disk
 • 2x533 MHz AlphaServer
 – Search Engine – Altavista
 • 20 multi-processor machines
 • 130 GB memory
 • 500 GB RAID disk

Don’t be surprised about it!!
• Inktomi uses a cluster of hundreds of Sun Sparc
 workstation with 75 GB RAM, over 1 TB disk.
• It crawls 10 millions pages a day.

How Well does it Perform?
• Index about 0.8TB text
• No stop words
• 37 million queries on weekdays
• Mean response time = 0.6 sec

Practical Systems
- Google

• The power of PageRank
Future Trends

- **Multi-lingual/Cross-Lingual Information Retrieval**
 - Another way toward concept-oriented searching

- **Web Mining**
 - Web content mining: customer behavior analysis, advertisement
 - Web usage mining: web query log analysis

- **Personalized Search Agents**
 - Information filtering, information routing
 - More accurate user concept hierarchy mapping

- **Topic-specific knowledge base creation**

- **Question-Answering system**
 - Intelligent e-Service
 - User modeling research