Focused Crawler for Topic Specific Portal Construction

Ruey-Lung, Hsiao
25 Oct, 2000

Road Map

Focused Crawling: A New Approach to Topic-Specific Web Resource Discovery (WWW8)
- System Architecture
- Classification
- Distillation
- Evaluation

Using Reinforcement Learning to Spider the Web Efficiently (ICML '98)
- Reinforcement Learning
- Q-learning
- Classification
- Evaluation
Focused Crawling: A New Approach to Topic-Specific Web Resource Discovery

System Architecture

Three major components - Classifier, Distiller, Crawler

Classification (1)
- Bernoulli Document Generation Model

• Generation Model
 • A document \(d\) is generated by first picking a class
 • Each class \(c\) has an associated multi-faced coin
 • Each face represents a term \(t\) and has some success probability \(f(c,t)\), that is the occurrence rate of \(t\) in \(c\).

• Document Generation
 • Terms in \(d\) are generated by flipping the coin a given number of times.

\[
\begin{align*}
n(c, t) &= \left\{ \begin{array}{ll}
\times & \text{if } t \in c[1, L(c)] \\
0 & \text{otherwise}
\end{array} \right. \\
n(c) &= \sum_{t} n(c, t) \\
f(c, t) &= \frac{n(c, t)}{n(c) + L(c)} \\
\text{P}(d|c) &= \left(\frac{n(d,1)}{n(d)} \right) \times f(c, t)^{n(d,1)} \\
\text{P}(d) &= \sum_{c} \text{P}(d|c)
\end{align*}
\]
Classification (2)

- Notation
 - \(C \): concept ontology
 - \(D(c) \): example documents in \(c \)
 - \(C^* \): interested topics
 - \(R_{C}(q) \): relevance measurement given a web page \(q \)

- \(R_{\text{root}}(q) = 1 \) if \(q \) is the root.
- If \(\{C_i\} \) are children of \(C_0 \), \(R_{C_i}(q) = R_{C_0}(q) \)

\[
P(c|d) = P(\text{parent}(c)|d) \cdot P(c|\text{parent}(c))
\]

\[
P(c|d, \text{parent}(c)) = \frac{P(c|\text{parent}(c)) \cdot P(d|c)}{P(d|\text{parent}(c))}
\]

Distillation & Evaluation

- System Goal
 - Find \(V \in D(C^*) \) where \(V \) is reachable from \(D(C^*) \) such that \(V \subseteq R(V)/|V| \) is maximized.
 - Achieve topic distillation mechanism by hub/authority score.

![Graphs showing performance metrics](image)
Reinforcement Learning (1)

• Goal
 - Autonomous agents learn to choose optimal actions to achieve its goal.
 - Learn a control strategy, or policy, for choosing actions.

• Model

 Environment

 Agent

 \[S_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots \]

 Goal: learn to choose actions that maximize discounted cumulated reward
 \[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \], where \(0 \leq \gamma < 1 \)

Reinforcement Learning (2)

• Interaction between agent and environment
 - Set \(S \): a distinct states of environment, and set \(A \): a distinct actions that agent can perform
 - Environment responds by a reward function \(r_t = r(s_t, a_t) \)
 - Environment produces the succeeding state \(s_{t+1} = \delta(s_t, a_t) \)

• Markov decision process (MDP)
 - The functions \(r(s_t, a_t) \), \(\delta(s_t, a_t) \) depend only on the current state and action.

• Formulate policy
 - Agent learns \(\pi: S \rightarrow A \), selecting next action \(a_t \) based on state \(s_t \)
 - Policy should lead to maximize cumulative value \(V^\pi(s_t) \).
 \[
 V^\pi(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots = \sum_{i=0}^{\infty} \gamma^i r_{t+i}
 \]
 \[\pi^* = \text{argmax} V^\pi(s) \text{ for all } s \]
Q-Learning

- It's difficult to learn π^* : \(S \rightarrow A \) directly, because training data does not provide examples of the form \(<s,a>\)
- Agent prefer state \(s_1 \) over \(s_2 \) whenever \(V^*(s_1) > V^*(s_2) \)
- The optimal action in state \(s \) is the action \(a \) that maximizes the sum of the immediate reward \(r(s,a) \) plus the value \(V^* \) of the immediate successor state, discounted by \(\gamma \)
 \[\pi^* = \text{argmax} \left[r(s,a) + \gamma V^*(\delta(s,a)) \right] \]
- Corelated measurement \(Q \)
 \[Q(s,a) = r(s,a) + \gamma V^*(\delta(s,a)) \Rightarrow \pi^* = \text{argmax}_a Q(s,a) \]
- Relation between \(Q \) and \(V^* \)
 \[V^*(s) = \max_a Q(s,a') \]
- Estimate \(Q \)-value iteratively
 \[Q'(s,a) \leftarrow r + \gamma \max_a Q'(s,a') \]

Classification & Evaluation

- Mapping Text to \(Q \)-value
 - Given we have calculated \(Q \)-values for hyperlinks in training data
 - Discretize the discounted sum of reward values into bins, place the text in the neighborhood of the hyperlinks into the bin corresponding to their \(Q \)-values
 - Train a naïve Bayes text classifier using those text
 - For each hyperlink, calculate the probabilistic class membership of each bin, the estimated \(Q \)-value of that hyperlink is the weighted average of each bins’ value.

- Evaluation
 - Measurement : \# of hyperlinks followed before 75% target found.
 - Reinforcement Learning : 16% of the hyperlinks
 - Breadth-first : 48% of the hyperlinks