Session Initiation Protocol (SIP)
Introduction

- A powerful alternative to H.323
- More flexible, simpler
- Easier to implement
 - Advanced features
- Better suited to the support of intelligent user devices
- A part of IETF multimedia data and control architecture
 - SDP, RTSP (Real-Time Streaming Protocol), SAP (Session Announcement Protocol)
The Popularity of SIP

- Originally Developed in the MMUSIC (Multiparty Multimedia Session Control)
 - A separate SIP working group
 - RFC 2543
 - Many developers
 - The latest version: RFC 3261 (June 2002)

- SIP + MGCP/MEGACO
 - The VoIP signaling in the future

- “bake-offs” or SIP Interoperability Tests
 - The development of SIP and its implementation by system developers has involved a number of events.
 - Various vendors come together and test their products against each other
 - to ensure that they have implemented the specification correctly
 - to ensure compatibility with other implementations
SIP Architecture

- A signaling protocol
 - The setup, modification, and tear-down of multimedia sessions
- SIP + SDP
 - Describe the session characteristics to potential session participants
- Separate signaling and media streams
 - Signaling may pass via one or more proxy or redirect servers
 - Media stream takes a more direct path.
SIP Network Entities [1/4]

- Clients
 - User agent clients
 - Application programs sending SIP requests

- Servers
 - Responds to clients’ requests

- Clients and servers may be in the same platform.
 - Proxy acts as both clients and servers
SIP Network Entities [2/4]

- Four types of servers
 - Proxy servers
 - Act in a similar way to a proxy server used for web access
 - Handle requests or forward requests to other servers after some translation
 - Can be used for call forwarding, time-of-day routing, or follow-me services

```
1. Request
   Collins@work.com

2. Request
   Collins@home.net

4. Response
   Caller@work.com

SIP Proxy

3. Response
   Collins@home.net
```
SIP Network Entities [3/4]

- **Redirect servers**
 - Accept SIP requests
 - Map the destination address to zero or more new addresses
 - Return the new address(es) to the originator of the request

1. Request
 Collins@work.com

2. Moved temporarily
 Contact: Collins@home.net

3. ACK

4. Request
 Collins@home.net

5. Response
SIP Network Entities [4/4]

- A user agent server
 - Accepts SIP requests and contacts the user
 - The user responds with an SIP response
 - A SIP device
 - E.g., a SIP-enabled telephone

- A registrar (location server)
 - Accepts SIP REGISTER requests
 - Indicating that the user is at a particular address
 - Personal mobility
 - Typically combined with a proxy or redirect server
SIP Call Establishment

- A SIP call establishment is simple.
- A number of interim responses may be made to the INVITE prior to the called party accepting the call.
SIP Advantages

- Attempt to keep the signaling as simple as possible
- Offer a great deal of flexibility
 - Does not care what type of media is to be exchanged during a session or the type of transport to be used for the media
- Various pieces of information can be included within the messages
 - Including non-standard information
 - Text-based encoding
 - Enable the users to make intelligent decisions
 - The control of the intelligent features is placed in the hands of the customer, not the network operator.
 - E.g., SUBJECT header
Call Completion to Busy Subscriber Service

INVITE

Busy (Try at 4pm)

ACK

INVITE

Ringing

ACK

Conversation

BYE

OK

OK
Overview of SIP Messaging Syntax

- **Text-based**
 - Similar to HTTP
 - Disadvantage – more bandwidth consumption

- **SIP messages**
 - message = start-line
 - *message-header CRLF
 - [message-body]
 - start-line = request-line | status-line

- Request-line specifies the type of request
- The response line indicates the success or failure of a given request.
Message headers

- Additional information of the request or response
- E.g.,
 - The originator and recipient
 - Retry-after header
 - Subject header

Message body

- Describe the type of session
- The most common structure for the message body is SDP (Session Description Protocol).
- Could include an ISDN User Part message
- Examined only at the two ends
SIP Requests [1/2]

- **Method** SP Request-URI SP SIP-version CRLF

- **Request-URI**
 - The SIP address of the destination

- **Methods**
 - INVITE, ACK, OPTIONS, BYE, CANCEL, REGISTER
 - INVITE
 - Initiate a session
 - Information of the calling and called parties
 - The type of media
 - ~ IAM (initial address message) of ISUP
 - ACK only when receiving the final response
SIP Requests [2/2]

- **BYE**
 - Terminate a session
 - Can be issued by either the calling or called party

- **OPTIONS**
 - Query a server as to its capabilities
 - To support a particular type of media

- **CANCEL**
 - Terminate a pending request
 - Pending Request: an INVITE did not receive a final response

- **REGISTER**
 - Log in and register the address with a SIP server
 - “all SIP servers” – multicast address (224.0.1.175)
 - Can register with multiple servers
 - Can have several registrations with one server
“One Number” Service

User at Address 2 User at Address 1 Registrar/Proxy Caller

Register (address 2) Register (address 1) OK

OK

INVITE

INVITE

INVITE

Trying

CANCEL

OK (for CANCEL)

OK (for INVITE)

ACK

ACK

Conversation

IP Telephony 16
SIP INFO Method

- Specified in RFC 2976
 - For transferring information during an ongoing session
- The transfer of DTMF digits
- The transfer of account balance information
 - Pre-paid service
- The transfer of mid-call signaling information
SIP Responses

- SIP Version SP Status Code SP Reason-Phrase CRLF

- Reason-Phrase
 - A textual description of the outcome
 - Could be presented to the user

- Status code
 - A three-digit number
 - 1XX Informational
 - 2XX Success (only code 200 is defined)
 - 3XX Redirection
 - 4XX Request Failure
 - 5XX Server Failure
 - 6XX Global Failure
 - All responses, except for 1XX, are considered final
 - Should be ACKed
SIP Addressing

- SIP URLs (Uniform Resource Locators)
 - user@host
 - sip:collins@home.net
 - sip:3344556789@telco.net
Message Headers

- Provide further information about the message
- E.g.,
 - To: header in an INVITE
 - The called party
 - From: header
 - The calling party
- Four main categories
 - General, Request, Response, and Entity headers
General Headers

- Used in both requests and responses
- Basic information
 - E.g., To:, From:, Call-ID: (uniquely identifies a specific invitation to a session), ...
- Contact:
 - Provides a URL for use in future communication regarding a particular session
 - **Examples 1**: In a SIP INVITE, the Contact header might be different from the From header.
 - An third-party administrator initiates a multiparty session.
 - **Example 2**: Used in response, it is useful for directing further requests directly to the called user.
 - **Example 3**: It is used to indicate a more appropriate address if an INVITE issued to a given URI failed to reach the user.
- Request Headers
 - Apply only to SIP requests
 - Addition information about the request or the client
 - E.g.,
 - Subject:
 - Priority: urgency of the request (emergency, urgent, normal, or non-urgent)

- Response Headers
 - Further information about the response that cannot be included in the status line
 - E.g.,
 - Unsupported
 - Retry-After
Entity Headers

- Indicate the type and format of information included in the message body
- Content-Length: the length of the message body
- Content-Type: the media type of the message body
 - E.g., application/sdp
- Content-Encoding: for message compression
- Content Disposition: how a message part should be interpreted
 - session, alert, render …