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Abstract

The ubiquitous computing community has focused
considerable attention on enabling resource-poor
mobile computers such as cell-phones and hand-
helds to execute demanding applications such as
speech recognition and virtual desktops. One pro-
posed solution, cyber foraging, uses remote comput-
ers located at wireless hotspots to execute applica-
tion services on behalf of mobile computers. In this
paper, we explore how portable storage can improve
the performance of a cyber foraging infrastructure.
Our approach uses portable storage to store snap-
shots of service state along with logs that are used
for deterministic replay. We show that this approach
reduces the time to instantiate new services at wire-
less hotspots by up to 85% when used with the Sling-
shot cyber foraging infrastructure.

1 Introduction

Creating applications that execute on small, mobile
computers is a challenging task. On one hand, the
size and weight constraints of handheld and simi-
lar computers limit their processing power, battery
capacity, and memory size. On the other hand,
users’ appetites are driven by the applications that
run on their desktops; these often require more re-
sources than a handheld can provide. A solution to
this dilemma is remote execution using wireless net-
works to access compute servers; this combines the
mobility of handhelds with the processing power of
desktops. However, a mobile user that accesses a
distant, well-known compute server from a wireless
hotspot often finds that the latency and bandwidth
limitations of the backhaul connection between the
hotspot and the Internet substantially degrade the
performance of interactive applications.

The ubiquitous computing research community has
addressed this limitation through the development
of cyber foraging infrastructure that allows mobile
clients to leverage third-party surrogate computers
located at wireless hotspots [2, 5, 6, 7, 12]. Since
these surrogates are accessible via high-bandwidth
(54 Mb/s for 802.11g), low-latency wireless net-
works, interactive response time is much improved.

Unfortunately, in our experience with the Slingshot
cyber foraging infrastructure (described in the next
section), we have found that the same backhaul lim-
itations that motivate the need for cyber foraging
can also substantially delay the instantiation of new
services on surrogate computers. While the wire-
less bandwidth at the hotspot is plentiful, the state
needed to instantiate a surrogate must be shipped
over a backhaul connection shared among many
users. In this paper, we examine how portable stor-
age devices can substantially reduce that delay by
shipping this state locally over the wireless network
instead.

Specifically, we address the following questions:

• What data should be stored on portable stor-
age to best support cyber foraging?

• How can stateful services such as remote
desktops be handled efficiently?

• How much can portable storage reduce the
time to instantiate new services?

• What are the storage requirements for some
typical mobile services?

We begin in the next section with an overview of
Slingshot. Section 3 lays out the design and imple-
mentation of our portable storage support, and Sec-
tion 4 evaluates its effectiveness. We conclude with
a discussion of related and future work.

1



Service Database

Home Server

Remote Service

Client Proxy

Client

Local Component

Service Cache

Surrogate

Remote Service

Request
Request

High Latency

Figure 1. Slingshot architecture

2 Slingshot Overview

Figure 1 shows an overview of the Slingshot cyber
foraging infrastructure [10]. Each Slingshot appli-
cation is partitioned into two components: a local
component that runs on the mobile client and a re-
mote service that is replicated on the home server
and surrogates. Ideally, we partition the application
so that resource-intensive functionality executes as
part of the remote service—the local component
typically contains only the user interface. This parti-
tioning enables demanding applications to be run on
mobile computers that are highly portable but also
extremely resource-impoverished.

A first-class replica of each remote service executes
on the home server and second-class replicas exe-
cute on nearby surrogates. The home server is a
known, well-maintained server under the adminis-
trative control of the user. For instance, the home
server might be the user’s desktop or a shared server
maintained by an IT department. In contrast, sur-
rogates are co-located with wireless access points.
They are administered by third parties and are not
assumed to be reliable.

Slingshot broadcasts application requests to all
replicas and returns the first response it receives
to the local application component. Second-class
replicas at wireless hotspots improve interactive
performance because their responses are received
faster than those from the distant home server. The
first-class replicas provide a well-maintained repos-
itory for application state that persists even if all sur-
rogates fail.

Each replica executes within its own VMware [13]
virtual machine. Replica state consists of two com-
ponents: the persistent state, or disk image of the
virtual machine, and the volatile state, including the
memory image and registers of the virtual machine.
To handle the persistent state, we use the Fauxide
and Vulpes modules developed by Intel Research’s
Internet Suspend/ Resume project [7]. These mod-
ules intercept VMware disk I/O requests. On the
home server, we redirect these requests to a service
database that stores the disk blocks of every remote
service. On a surrogate, VMware reads are first di-
rected to a service cache — if the block is not found
in the cache, it is fetched from the service database
on the home server.

When a mobile computer connects to a new hotspot
and Slingshot detects a nearby surrogate, it will in-
stantiate a new second-class replica on that surro-
gate. Slingshot checkpoints the first-class replica
on the home server and sends the volatile state asso-
ciated with the checkpoint to the surrogate. This
is a lengthy process, during which the user may
continue to execute the application using existing
replicas (albeit with potentially poor response time).
Slingshot logs all operation activity that occurs dur-
ing this time period. Once it has retrieved the
volatile state and started a second-class replica on
the nearby surrogate, it replays these logged oper-
ations to bring the state of the replica up-to-date.
Slingshot applications provide wrappers that en-
force determinism at the application level (similar
to Rodrigues’ BASE [8]), guaranteeing that repli-
cas remain consistent. As the replica executes fur-
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ther operations, blocks associated with its persistent
state are fetched on demand and cached.

3 Design and implementation

3.1 Overview

For a typical service, the volatile state is 145 MB in
size and the persistent state is 4 GB. Using compres-
sion and Waldspurger’s ballooning technique [14],
the volatile state can be reduced to 30–40 MB. This
takes approximately 30 minutes to transfer from the
home server to the surrogate if the home server is
connected to the Internet by a 256 Kb/s DSL link.

In this section, we describe how we can substan-
tially reduce the time to instantiate a service on a
nearby surrogate by storing its state on a portable
storage device such as a mobile disk drive or flash
card. Specifically, for each service, we store the fol-
lowing types of state:

• Volatile state. After ballooning and com-
pression are applied, the entire remaining
volatile state is needed to instantiate a new
replica. Typically, the volatile state of two
different virtual machines are almost com-
pletely different from one another. There-
fore, we store the volatile state of each ser-
vice as a file on the portable storage device.

• Persistent state. In contrast to the volatile
state, only a relatively small portion of the
persistent disk image may actually be read
by a replica while it executes on a surrogate.
Further, two different services may share
many disk blocks in common, especially if
they were created from the same base op-
erating system. Given these observations,
we use content-addressable storage, as de-
scribed in Section 3.2 to store the persistent
state.

• Operation log. This stores all remote op-
erations performed by an application. For a
stateful application such as a remote desk-
top, the operation log can be used by the
mobile client to bring a new replica up-to-
date with the existing state.

When a user returns to her home server, she cre-
ates new checkpoints for her existing Slingshot ap-

plications. Each checkpoint consists of a snapshot
of the volatile and persistent state of the remote ser-
vice running on the home server. Because the user
is co-located with the home server at this point, the
snapshots can be quickly and efficiently uploaded to
the portable storage device.

When the user creates a new snapshot of a service,
the operation log is empty. When she uses the appli-
cation on the road, Slingshot appends each applica-
tion operation to the log. This enables Slingshot to
instantiate a new replica of a stateful service by first
restoring the checkpoint represented by the volatile
state, and then deterministically replaying the op-
eration log. As an optimization, services may be
specified as being stateless—in this case, Slingshot
neither records nor replays the operation log.

3.2 The persistent state

Previous research in virtual machine migration by
Sapuntzakis [9] and Tolia [11] has shown that
content-addressable storage is highly effective in
reducing the storage and transfer costs of persis-
tent state. We adopt their approach by dividing the
virtual disk into 4 KB chunks and indexing each
chunk by its SHA-1 hash value. As shown in Fig-
ure 2, the portable storage stores a chunk table for
each service and a chunk database that contains
the 4 KB disk blocks. The chunk table maps log-
ical block numbers to the SHA-1 hash of the data
stored at each location. A hash table maps the SHA-
1 value to the location of the data in the chunk
database. Since SHA-1 has been shown to be ex-
tremely collision-resistant, the probability of any
two blocks with different data hashing to the same
value is infinitesimal.

When a new replica is instantiated on a nearby sur-
rogate, the mobile computer tries to find the service
state for that replica on any available portable stor-
age device. If the state is found, the volatile state,
chunk table, and hash table are transmitted to the
surrogate over the hotspot’s wireless network. Since
the local network typically offers much higher band-
width than the backhaul connection, retrieving the
data from a local portable storage device is much
quicker than retrieving it from the home server. One
reason that we transmit the chunk table and the hash
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Figure 2. Reading persistent state

table to the surrogate is that the surrogate can usu-
ally maintain this information in memory, whereas
a resource-constrained mobile computer cannot. By
placing this information on the surrogate, Slingshot
improves the latency of accessing persistent state.

3.3 The operation log

The operation log is needed only for stateful ser-
vices. The result of a remote operation for a state-
ful service depends upon the operations that it has
previously executed. Slingshot ensures that appli-
cations are deterministic; i.e. given two replicas in
the same initial state, an identical sequence of oper-
ations sent to each replica produces identical results.

When a stateful service is instantiated from portable
storage, its volatile state will not match the stored
state after it executes any remote operation. Further,
the execution of an operation will often change the
persistent state causing dirty blocks to be written to
the service cache on the surrogate. Thus, if a user
were to leave a hotspot at which she had executed
some operations, and then instantiate a new replica
from the state on portable storage at another hotspot,
the new replica would not contain any of the modi-
fications she had made at the previous hotspot. This
is clearly unacceptable.

One solution to this problem would be to download
the volatile state and modifications to the persistent
state from a surrogate before leaving a hotspot. Un-
fortunately, this requires explicit notification that a
mobile computer will be leaving its present loca-
tion. Further, even if such notification is given, suf-
ficient notice must be given so that the state can
be downloaded before the movement occurs. This
would typically require several minutes of advance
notice. When such notice is unavailable, the mobile
computer would be required to retrieve the modified

state over a limited Internet backhaul connection,
leaving a half-hour or more until another replica can
be instantiated. Given these considerations, we re-
jected this alternative as infeasible.

Our approach to supporting stateful services is to
store a log of all remote operations on the portable
storage device. Since Slingshot ensures determin-
ism, a replica can be brought up-to-date by restoring
the checkpoint represented by the volatile and per-
sistent state and then replaying all operations that
have occurred since that checkpoint was taken at the
home server. When a remote operation is performed
while the user is on the road, that operation is ap-
pended to the log. Thus, the size of the operation
log continues to increase until the user returns home
and a new checkpoint can be stored on the portable
storage device. At this point, the previous operation
log can be deleted. As operations accumulate, so
does the time to bring a new second-class replica up
to date. This means that there exists a break-even
point where it takes less time to simply create a new
checkpoint from the first-class replica on the home
server and download it over the Internet than it takes
to instantiate a replica from portable storage.

4 Evaluation

In this section, we quantify the benefits of portable
storage. We compare the time to instantiate a
second-class replica on a new surrogate with and
without portable storage. We also examine the stor-
age requirements of some typical services.

4.1 Methodology

The client platform in our evaluation is an iPAQ
3970 handheld running the Linux 2.4.19-rmk3 ker-
nel. The handheld has an XScale-PXA250 pro-
cessor, 64 MB of DRAM. It uses a 11 Mb/s Cisco
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Figure 3. The logical topology for the experiment

350 802.11b card for network communication and
a 4 GB Hitachi microdrive as portable storage. The
home server is a Dell Precision 350 with a 3.06 GHz
Pentium 4 processor running Red Hat 8 Linux.
The nearby surrogate is a Dell Optiplex 370 with
a 2.8 GHz Pentium 4 processor running Red Hat
9 Linux. The distant surrogate is an IBM X31
Thinkpad with a 1.6 GHz Pentium M processor.

The network topology between the home server, the
distant surrogate, and the nearby surrogate is shown
in Figure 3. We emulate this topology by routing
packets through a computer running the NISTnet
network emulator [3]. We assume surrogates are lo-
cated in wireless hotspots with upstream and down-
stream bandwidth of 1.5 Mb/s. The home server is
connected through a DSL link with upstream band-
width of 256 Kb/s.

We show results for two services: speech recogni-
tion using IBM ViaVoice and the VNC remote desk-
top. The first is stateless and the second is stateful.
We ran a repeating, fixed workload for each appli-
cation. For speech, we recognized a pre-recorded
phrase and then paused 5 seconds before the next it-
eration. For VNC, a program emulated a user open-
ing a Word document, inserting text at the begin-
ning, saving, and closing the document. The think
time between each iteration was 10 seconds.

Both applications ran inside a VMware virtual
machine configured with 4 GB of hard disk and

128 MB of memory. We installed both applications
from a vanilla Windows XP image.

In our experiments, we examined how portable stor-
age improves the instantiation of new replicas. The
Hitachi 4 GB hard drive is inserted into the iPAQ
throughout these experiments. As each experiment
begins, the handheld user moves from the middle
hotspot to the one located on the left in Figure 3.
Thus, the user has a first-class replica running on the
home server and a second-class replica running on
the distant surrogate at the start of the experiment.
After some time, Slingshot detects the existence of
the nearby surrogate at the new hotspot and instan-
tiates a replica on it.

4.2 Stateless service: speech recognition

Figure 4 shows application response time during the
instantiation of a new replica of the stateless speech
service with and without portable storage. Note that
the instantiation of a replica at the nearby wireless
hotspot reduces application response time by 48%
in both cases. In each case, Slingshot starts instan-
tiating the replica after iteration 80. The time to
instantiate a second-class replica without portable
storage is 26:30 minutes. Portable storage reduces
this time to 3:07 minutes, an 85% improvement.
This means that the user enjoys improved response
time for her application much sooner.

In Figure 4, between iterations 81 and 130 on the
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Figure 4. Speech recognition service

solid portable storage line, there is a spike in re-
sponse time. During this period, the new surrogate
is fetching the volatile state from portable storage.
This creates substantial network traffic that delays
the transmission of remote requests to existing repli-
cas, as well as the receipt of their replies. In the
future, we plan to eliminate this behavior by priori-
tizing foreground application activity; however, this
may slightly delay the instantiation of new replicas.

Figure 4 also shows a subtle benefit of portable stor-
age. Without portable storage, application response
time shows a spike before iteration 400. During this
period, the newly instantiated replica on the nearby
surrogate offers poor response time because it must
fetch a considerable amount of its persistent state
from the distant home server. Only after this state is
fetched can it offer improved response time. How-
ever, if the new replica is able to fetch its persistent
state from portable storage, then this data can be re-
trieved quicker, leading to better response time.

4.3 Stateful application: remote desktop

We next ran the same experiment for the stateful
VNC remote desktop service. The results are shown
in Figure 5, which compares application response
time with and without portable storage. In both
cases, we begin instantiating a new replica after
30 iterations. For this application, instantiating a
replica at the nearby hotspot reduces response time
by 35%. Without portable storage, the new replica is
ready after 30:40 minutes at iteration 125. This in-
cludes 23:08 minutes to transfer state and 7:24 min-
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Figure 5. VNC remote desktop

utes to replay the log. Portable storage decreases the
instantiation time to 7:20 minutes, which is com-
prised of 2:50 minutes of transfer time and 4:30
minutes of replay time. Overall, portable storage
reduces the time to instantiate the new replica by
75%, despite having to replay the first 30 iterations
of logged activity. In other words, the time to replay
logged events is much less than the extra time that
is needed to fetch an up-to-date checkpoint from the
home server. We estimated the break-even point for
this application to be roughly 210 iterations, or ap-
proximately 70 minutes of application activity. This
indicates that the log size can grow to be quite large
before it makes sense to fetch a new checkpoint over
a wide-area connection.

4.4 Storage requirements

For the speech recognition service, the compressed
volatile state is 36 MB and the persistent state is
2 GB. For the VNC service, the compressed volatile
state is 30 MB and the persistent state is 1.5 GB.
However, during the execution of our experiments
the speech replica only fetched 6 MB of data chunks
from the persistent storage, while the VNC replica
fetched 8 MB. This represents less than 0.5% of the
persistent state of each service. These results indi-
cate that we could significantly reduce the storage
requirements for Slingshot services if we could ac-
curately predict which chunks will be needed.

We also examined the overlap in persistent state be-
tween the two services. In total, 1.17 GB of data
is common to the two services—primarily because
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they both run on a common Windows XP platform.
This means that content-addressable storage can re-
duce the combined storage requirements of the two
services by 33% from 3.5 GB to 2.33 GB.

5 Related Work

To the best of our knowledge, Slingshot is the first
system to dynamically instantiate replicas of state-
ful applications in order to improve the performance
of small, resource-poor mobile computers. Sling-
shot is an instance of cyber foraging [1], the oppor-
tunistic use of surrogates to augment the capabili-
ties of mobile computers. Previous work in Spec-
tra [4] examined how a cyber foraging system could
locate the best server and application partitioning to
use given dynamic resource constraints. In contrast,
Slingshot takes this selection as a given and pro-
vides a mechanism for utilizing surrogate resources.
More recently, Balan [2] and Goyal [6] have also
proposed cyber foraging infrastructure. Compared
to these systems, the major capability added by
Slingshot is the ability to execute stateful services
on surrogate computers.

Tolia et al. [11] use lookaside caching to integrate
portable storage into a distributed file system and
support Internet Suspend/Resume, which allows a
user to migrate their computing environment be-
tween two desktop computers. In contrast, our work
targets mobile computers such as handhelds and
uses portable storage to support cyber foraging.

6 Conclusion and Future Work

The results in this paper show that portable storage
can decrease the time to instantiate a new replica by
up to 85% in a cyber foraging infrastructure. Fur-
ther, we show how stateful applications can bene-
fit from portable storage by logging and determin-
istically replaying remote operations. Finally, we
quantify the storage requirements for two services.

Our future work will focus on prioritizing wireless
network traffic so that the background traffic asso-
ciated with replica instantiation does not adversely
impact the foreground traffic associated with appli-
cation activity. We also plan to investigate methods
for predicting which chunks of a service’s persistent

state are most likely to be accessed by a surrogate.
These predictions can be used to prioritize which
chunks are cached on portable storage.
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