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ABSTRACT
A fundamental problem that confronts data center admin-
istrators in integrated management is to understand poten-
tial management options and evaluate corresponding space
of the managed system’s potential status. In this paper, we
present iPOEM, a middleware with GPS-like UIs to support
integrated power and performance management in virtual-
ized data centers. iPOEM offers novel system positioning
services to enable a declarative management methodology:
administrators specify a target location in terms of system
performance and power cost, and iPOEM returns the man-
agement configurations and operations that are required to
drive the system to the target status.

In the core of iPOEM lies an automated management con-
figuration engine exposing two simple APIs: get position()
and put position(). We study the relationships between sys-
tem status and the management configurations in our prob-
lem domain, and design a logarithmic configuration search-
ing algorithm for the engine. Several system positioning
services are developed atop the engine, including an auto-
piloting scheme leveraging sensitivity based optimization tech-
nology, and provide intuitive UIs to operation users. The
iPOEM prototype is developed atop Usher, an open-source
virtual machine management software. The evaluation driven
by real data center workload traces shows that iPOEM ren-
ders both intuitive usage and efficient performance in the
integrated management of virtualized data centers.
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1. INTRODUCTION
Integrating power and performance management in virtu-

alized data centers could lead to effective use of IT infras-
tructures, but requires continuous maintenance of delicate
tradeoff to realize the goal under dynamic workload. From
workload management point of view, performance manage-
ment seeks for a balanced load distribution among available
servers to tolerate workload dynamics and avoid hotspots,
while power management for energy saving brings skewness
into server load distribution through server consolidation.
The fundamental problem that confronts data center ad-
ministrators is to understand mutual impact of performance
and power management decisions, and have a clear view of
potential status space of the managed system under different
configuration combinations of the two management compo-
nents.

In this paper, we present iPOEM (integrated POwer and
pErformance Management), a middleware to guide admin-
istrators in this tradeoff decision process. iPOEM offers
Global Positioning System (GPS)-like user interfaces for its
users to configure and control their system: users specify a
target location in terms of system performance and power
cost, and iPOEM returns the management configurations
and operations that are required to drive the system to the
destination status. The management configurations include
two server load thresholds: CPUhigh, which the performance



management component enforces the CPU load of all ac-
tive servers to be no higher than through hotspot elimina-
tion; CPUlow, which the power management component en-
forces the CPU load of all active servers to be no lower than
through server consolidation. The management operations
are the related VM migrations and machine on/off opera-
tions that the performance and power management compo-
nents will execute to maintain server load between CPUlow

and CPUhigh.
At the core of iPOEM is a management configuration en-

gine which exposes two API functions for system position-
ing: get position(), which reports the system status upon
input information including VM workload and management
configurations, and put position(), which returns the man-
agement configurations/operations needed for the system to
reach the input specified status. The engine includes a dis-
crete event simulator which models the system and the al-
gorithms used by the performance and power management
components, and a logarithmic searching algorithm for the
function put position(). The searching algorithm is designed
based on the relationship analysis between system status and
the management configurations in our problem setting.

We developed the iPOEM prototype based on an open-
source virtual machine management framework called Usher [10].
We extended Usher with the implementation of simplified
performance and power management components in VMware
Dynamic Power Management [18] product, and applied iPOEM
for the integrated management of the two components. The
iPOEM prototype offers several system positioning services
developed atop the configuration engine, including an auto-
piloting scheme leveraging sensitivity based optimization tech-
nique, and what-if query tools for system position reporting
and destination searching under different workload predic-
tions. The evaluation driven by real data center workload
traces showed that iPOEM rendered both intuitive usage
and efficient performance in the integrated management of
virtualized data centers.

The rest of the paper is organized as follows. Section 2
gives the problem formulation and Section 3 presents the
iPOEM architecture. The details of the management con-
figuration engine are presented in Section 4, the analysis on
the relationships between system status and the manage-
ment configurations is given in Section 5, and the iPOEM
prototype is presented in Section 6. We present the evalua-
tion results in Section 7, the related work in 8, and conclude
in Section 9 with future work.

2. PROBLEM FORMULATION
In this section, we first describe two representative algo-

rithms separately for performance and power management
in virtualized data centers, then define the integrated man-
agement target through three system status metrics, and
last present the integrated management as a system map-
ping problem.

2.1 Performance and Power Management Al-
gorithms

Figure 1 is a simplified performance management algo-
rithm for hotspot elimination in virtualized data centers.
When a server is overloaded (e.g., CPU utilization is higher
than an upper bound CPUmax for several continuous time
points), the algorithm will be invoked for hotspot elimina-
tion by migrating out enough VMs out of the overloaded

Data Structures:

• VM list with the load distributions and existing VM
hosting information (V Mi, Serverj).

• Physical server list including load information,
server utilization threshold CPUhigh.

Algorithm (invoked on an overloading event):

1. sort the VMs in the overloaded server j in decreas-
ing order by the resource demand (calculated as
µ+2σ, where µ is the mean and σ2 is the variance
of a VM’s history load).

2. place each VM i in order to the best server k in
the list which has the new load no higher than the
threshold CPUhigh after hosting i, and yields the
minimal remaining capacity.

3. if j’s load meets the load threshold CPUhigh after
moving out VM i, terminates the searching process
for this server. otherwise, continues the searching
for the remaining VMs on j.

Figure 1: A simplified performance management al-
gorithm for hotspot elimination

server and enforcing the threshold CPUhigh (≤ CPUmax)
for all servers during the process.

Figure 2 is a simplified power management algorithm for
energy efficiency in virtualized data centers through server
consolidation. Periodically (e.g., every a few hours), the al-
gorithm will be invoked for server consolidation by migrat-
ing all VMs out of under-utilized server and enforcing the
thresholds CPUhigh and CPUlow for the load on all servers.

Performance and power management through controlling
server load within a target range [CPUlow, CPUhigh] is a
common mechanism, and adopted in many industry prod-
ucts including VMware’s Distributed Power Management
(DPM) [18] and NEC’s SigmaSystemCenter [11], and other
research work [19, 2, 17]. Clearly, different settings of the
thresholds CPUhigh and CPUlow will lead to different be-
haviors of the performance and power management compo-
nents. For example, a low CPUhigh will lead the perfor-
mance management component to use more server resource
for conservative load balancing, while a high CPUlow will
lead the power management component to be aggressive dur-
ing server consolidation process.

2.2 Integrated Management Target Definition
For integrated power and performance management, we

define the high-level management target through three system-
wide status metrics:

• Performance cost. This metric measures the penalty
cost due to performance violations when the system
runs under a specific management configuration. In
this paper, we choose a probabilistic SLA metric [2]
which is defined as the percentage of the time in aver-
age when servers have CPU utilization higher than the
desired target CPUhigh. It reflects the penalty cost of
SLA violations due to server overloading.



Data Structures:

• VM list with the load distributions and existing VM
hosting information (V Mi, Serverj).

• Physical server list including load information,
server utilization thresholds CPUhigh and CPUlow.

Algorithm (invoked periodically)

1. for the under-utilized servers whose load are lower
than the threshold CPUlow, sort them in increasing
order by the server load.

2. for each under-utilized server j in the order

(a) place each VM i in j to the best server k in
the list which has the new load no higher than
the threshold CPUhigh after hosting i, and
yields the minimal remaining capacity. If no
such server is available, terminates the search-
ing process for this server and go to next under-
utilized server.

(b) When all the VMs in server j can find a target
non-overloaded server to move out, label this
server as an empty server to be turned off, and
migrate out all the VMs.

(c) repeat the above steps until no empty server
can be found.

Figure 2: A simplified power management algorithm
for server consolidation

• Power cost. This metric measures the power consump-
tion if the system runs under a specific management
configuration. In this paper, it is referred to as the
total power (in kWatts) consumed by servers.

• Operation cost. This metric measures the frequency of
management operations when the system runs under
a specific management configuration. In this paper,
it is defined as the number of VM migrations that the
performance and power management components need
to execute for the server load configuration enforce-
ment.VM migrations are an important factor under
administrators’ consideration when managing virtual-
ized data centers. Many performance/power manage-
ment tools offer interfaces to control VM migration fre-
quency (e.g., the migration threshold in VMware Dis-
tributed Resource Scheduler). Frequent VM migra-
tions are not desired since they will clog data center
networks and impact negatively on the performance of
the applications run in the migrated VMs. Fuirther-
more, because of interference due to shared I/O, such
migrations also impact the performance of other appli-
cations whose VMs run on the same physical hosts. As
shown in [6], ignoring these migration costs can have
significant impacts on the ability to satisfy response-
time-based SLAs.

2.3 Integrated Management: A System Map-
ping Problem

We formulate the integrated management as a system

mapping problem:

• given a specific configuration on (CPUlow, CPUhigh),
what’s the expected system status ( i.e., performance
cost, power cost, and operation cost)?

and its dual problem:

• given an expected system status, what’s the specific
configuration ( i.e., the VMs-servers mapping) on (CPUlow,
CPUhigh) leading to it?

3. IPOEM DESIGN

3.1 Architecture

Power Management
Component

Configuration & Monitoring
DB

Performance Management 
Component

Position Reporting Destination Searching Autopiloting
System

Positioning
services

iPOEM users

Data center

API−Get()

iPOEM

API−Put()

MGNT configuration engine

Figure 3: iPOEM architecture.

Figure 3 shows the iPOEM middleware architecture. It
takes a layered design and consists of two stacks: manage-
ment configuration engine, and system positioning services.

3.2 Management Configuration Engine
Like a GPS receiver processor, the management configura-

tion engine consumes run-time system information including
VM resource utilization information, server status informa-
tion, current management configuration settings, and ex-
poses two primitive functions.

API: get position().

Input:

• (tstart, tend)

• workload re-shaping scheme

• management configurations

Output:

• system status

Figure 4: iPOEM primitive function - GET

The first primitive function, called get position, provides
the report on where the system would be located in terms
of the three cost metrics under certain workload and sys-
tem settings. As shown in Figure 4, the input and output
parameters of the GET API include:

• (tstart, tend): this parameter set specifies the inter-
ested time period when the VM workload will be used



for system status calculation. Note that the time pe-
riod can only be the history time when the system/workload
monitoring data are available.

• workload re-shaping scheme: this parameter provides
the option to apply different prediction schemes on the
original workload data during the time period (tstart,
tend). More details on workload re-shaping schemes
are described in Section 4.2.

• management configurations: this parameter set spec-
ifies the management policy settings. In this paper,
the configurations include the CPU load control range
[CPUlow, CPUhigh]. The default are the actual man-
agement configurations during the time period (tstart,
tend).

• system status: this parameter set describes the system
location in a virtual coordinate space, like the (longi-
tude, latitude, elevation) geographical coordinate space.

API: put position().

Input:

• (tstart, tend)

• workload re-shaping scheme

• Performancetarget, Powertarget

• ε&α (error tolerance)

Output:

• management configurations

• operation cost & actions

Figure 5: iPOEM primitive function - PUT

As shown in Figure 5, the second primitive function, called
put position, provides the report on how the system should
be configured to reach a specific status. Most of the in-
put and output parameters of the PUT API have the same
physical meanings as those defined in the GET API. For in-
tegrated power and performance management, we limit the
high-level system status specification to performance and
power cost, and ε&α specify the allowable errors on the des-
tination location during the searching process.

More details on the management configuration engine will
be presented in Section 4.

3.3 System Positioning Services
To end users (e.g., data center administrators), iPOEM

presents system positioning services leveraging the two prim-
itive functions. Next we describe three example services
mimicking the GPS interfaces in car driving, where the map
is on a three-dimensional space and (X, Y, Z) corresponds
to the system cost of (Performance, Power, Operation).

The first service, position reporting, gives a visual report
on how the system has gone through in the map during the
history (e.g., in the past one hour), and several future direc-
tions where it could go. It is similar to the tracking function
in GPS devices,and built on the get position primitive.

The second service, destination searching, provides what-
if query interface to automatically generate the management
configurations upon a user-specified status point. It also re-
ports a feasibility zone which is defined by the maximally
and minimally feasible performance cost and power cost.
The status points outside the feasibility zone are not reach-
able, either due to performance constraint (e.g., the server
overloading time < 5%), or due to physical resource limi-
tation (e.g., maximally 200 servers available in the resource
pool). It is similar to the navigation function in GPS de-
vices, and built on the put position primitive.

The third service, auto-piloting automatically generate an
optimal management configuration at the end of each con-
solidation epoch. The optimality is defined in the context
of the following performance-power optimization problem

min Power(configs) s.t. Performance(configs) ≤ Pth.

where Pth is the upper bound of the performance cost.

Service: Auto-piloting.

Input: (m × n)-grid map, migration cost threshold t

Output: management configurations (CPUlow, CPUhigh).

Algorithm:

1. Prune all grid nodes with migration cost > t in the
map.

2. If no node remains, return the current configuration.

3. Else, for the remaining grid nodes, calculate the
cost sensitivity on each x with the configuration
(CPUx

low, CPUx
high) as:

• Sensitivity(x)= |

∂P erfomancecost
∂CP Ux

low
∂P owercost

∂CP Ux
low

−

∂P erfomancecost
∂CP Ux

high
∂P owercost
∂CP Ux

high

|

4. Pick the grid node x with the mininal Sensitivity(x)
value, return (CPUx

low, CPUx
high).

Figure 6: iPOEM Auto-piloting scheme

As shown in Figure 6, the auto-piloting scheme chooses
the optimal (CPUx

low, CPUx
high) configuration under a mi-

gration cost constraint, and is based on a map of (m × n)-
sized grid. Each grid point corresponds to the system status
position for some (CPUx

low, CPUx
high) configuration and a

specified workload. Specifically, we partition the feasibility
zone provided by the destination searching service equally
into (m−1) sub-ranges along the power cost dimension, and
for each of the m power cost points, use the put position
primitive to get n points which have different performance
and operation cost. The minimal sensitivity difference cri-
teria on the two dimensions is a necessary condition for the
optimal solution, and the proof can be referred to [9].

3.4 Discussions
While not an internal iPOEM component, monitoring in-

formation calibration is a critical part of the management



framework to ensure the correctness of iPOEM outputs.
Its main function is calibrating the monitoring information
scrambled by noise, errors, and co-hosting interference. We
are pursing a signal processing based solution to this prob-
lem, and do not further discuss it in this paper.

4. MANAGEMENT CONFIGURATION EN-
GINE

Domain knowledge

API−GET() API−PUT()

Management Configuration Engine

System simulator Simulation output

Power Management

Configuration generator

Configuration & Monitoring 
DB

Performance management 
component 

Power Management
component 

Workload generator

Performance management 
component simulator component simulator

Figure 7: Management configuration engine archi-
tecture.

Figure 7 shows the iPOEM management configuration en-
gine architecture. Next we describe the components in de-
tails.

4.1 Configuration Generator
This component drives the configuration engine. It takes

calls to the two primitive functions, and decides how to
transfer them into internal subtasks in the engine and sched-
ule the execution. It contains an efficient searching algo-
rithm for the solution of PUT API calls.

Figure 8 describes the searching algorithm inside the func-
tion put position(). Its main steps include the procedure
to find CPUlow that leads to the desired Powertarget and
the procedure to find CPUhigh that leads to the desired
Performancetarget. Note a (Performancetarget,Powertarget)
input might not be a feasible status; we first filter status in-
puts with the feasibility zone information, and return the
feasible status point closest to the input target if it is within
the zone. Those details are skipped in Figure 8 for simplic-
ity.

Note that there may exist multiple configurations to reach
a desired system status. The searching algorithm is deter-
ministic and will terminate for the first such configuration
encountered; we do not seek for optimizations such as min-
imizing the operational cost in this paper. The searching
overhead will be evaluated through the algorithm complex-
ity analysis in Section 5, and through the query response
time measurement in Section 7.3.2.

4.2 Workload Generator
This component takes a specified time period as input,

and provides embedded schemes to re-shape the VM load
information of that period in the monitoring database. The
iPOEM prototype inlcudes two example schemes. One scheme
takes input a load change factor in percentage (e.g., +20%
means increasing each VM’s load in record by 20%), and an-
other scheme runs a regression-based load prediction algo-
rithm [14] to output a predicted load on each VM. The out-
put of the workload generator upon each re-shaping scheme

is new VM load data in time series to represent speculated
new workload scenarios.

4.3 System Simulator
This component is a discrete-event simulator to output

the estimated system status and detailed management op-
erations. It answers what-if questions on the system status
under different workload scenarios. It simulates system sta-
tus on server-level, and contains data structures and logic
functions to simulate per-server resource utilization infor-
mation based on the VM workload input from the workload
generator. It also includes event logs which lead to the invo-
cation of management component simulators. For example,
a detection of server overload during the system simulation
process could invoke the performance management simula-
tor, which reacts with the corresponding management opera-
tions that the system simulator will execute; a timer register
could trigger periodic invocations of the power management
simulator to execute server consolidations. The simulated
server performance information will be analyzed to output
the system status report, so will be on the simulated man-
agement operations.

4.4 Management Component Simulators
These components encode the algorithm/scheme details of

the performance and power management components. They
interact with the system simulator to output the expected
management operations when the workload is replayed. In
the prototype, we implemented the performance and power
management algorithms described in Section 2.

5. ANALYSIS
In this section, we analyze the relationships between the

two system status metrics defined in Section 2.2 and the
management configurations (CPUlow, CPUhigh).

In the following, we assume a homogeneous system, and
the workload remains the same for different configuration
settings.

Theorem 1. Performancecost(CPUhigh) is a non-decreasing
function of CPUhigh.

Proof. Let’s keep all the other system settings (includ-
ing CPUlow, the workload) the same, and take two choices
on CPUhigh, CPUs

high and CPU l
high, where CPUs

high <

CPU l
high. Let Performancecost(CPUs

high) be the perfor-
mance cost under the management methodology described
in Section 2, and maps be the consequent vm-server map
produced with the configuration CPU s

high. Clearly, maps

will be a valid load placement for the new configuration
CPU l

high from performance management point of view. Let

mapl be the consequent vm-server map produced under the
new configuration CPU l

high, the difference from maps to

mapl will be caused by the power management component,
which may push some server’s load higher through server
consolidation in mapl. As the elimination of one server
(freed after consolidation) with load no more than CPU l

high

will create at least one server with the load higher than
CPUs

high, Performancecost(CPU l
high) could be no less than

Performancecost(CPUs
high).

This theorem says that in a homogeneous system, given
the same workload, the performance cost typically increases



API: put position().

Input: tstart, tend, workload re-shaping scheme, Performancetarget, Powertarget, ε&α (error tolerance).

Output: management configurations (CPUlow, CPUhigh), operation cost & actions.

Algorithm:

1. Assign CPUlow = CPUmax, CPUhigh = CPUmax;

2. (Performancecost, P owercost) = get position(CPUlow, CPUhigh, tstart, tend, workload re-shaping scheme);

3. If Powercost > Powertarget, then a subset of servers has been turned off forcedly to meet Powertarget;

(a) (VM-server map, resource inventory) = forced down(Powertarget, tstart);

(b) Powercost = Powertarget, CPUlow = CPUmax;

4. Else; //start binary searching for CPUlow

(a) CPUleft = CPUmin, CPUtemp = CPUlow, CPUright = CPUlow;

(b) while(CPUleft < CPUright)

(c) CPUtemp =
CPUleft+CPUright

2
;

(d) (Performancecost, P owercost) = get position(CPUtemp, CPUhigh, tstart, tend, workload re-shaping scheme);

(e) If (Powercost > Powertarget + ε
2
)

(f) CPUleft = CPUtemp + 1; CPUlow = CPUtemp;

(g) Else if (Powercost < Powertarget −
ε
2
)

(h) CPUright = CPUtemp − 1; CPUlow = CPUtemp;

(i) Else; //find the configuration for CPUlow

(j) CPUlow = CPUtemp; break;

5. CPUleft = CPUlow, CPUtemp = CPUhigh, CPUright = CPUhigh;

(a) while(CPUleft < CPUright)

(b) repeat binary searching for CPUhigh

6. return (CPUlow, CPUhigh), and the corresponding operation cost & actions.

Figure 8: iPOEM destination searching algorithm

along with higher CPUhigh. Intuitively, the lower is CPUhigh,
the more balanced is the load, which leads to lower perfor-
mance violations.

Theorem 2. Powercost(CPUlow) is a non-increasing func-
tion of CPUlow.

This theorem says that in a homogeneous system, given
the same workload, the power cost usually decreases along
with higher CPUlow. Intuitively, the higher the CPUlow,
the more aggressive is load consolidation in the system, and
therefore leads to less power consumption. The proof is
similar to that for Theorem 1 and we skip it in this paper.

The monotonicity relationships between system status and
the management configurations lead to the correctness of the
configuration searching algorithm used in put position().

Corollary 1. iPOEM destination searching algorithm
finds the status destination in O(log R) steps, where R =
CPUmax-CPUmin, is the load control range.

The proof is straightforward for the two-stage binary search-
ing algorithm given the system properties described above,
and skipped in this paper. Note the algorithm starts with
the maximal CPUlow and CPUhigh, and searches in the or-
der of the target CPU∗

low followed by CPU∗

high due to the

constraint CPUlow ≤ CPUhigh. We will present in Sec-
tion 7.3.5 experiment results to further illustrate those func-
tions.

6. IPOEM IMPLEMENTATION

Figure 9: iPOEM prototype implementation.

iPOEM is implementated on Usher, a virtual machine
management framework developed by McNett et al [10].



Figure 9 shows the overview of iPOEM. The light-grayed
boxes are our addition to the existing Usher framework and
we use dark-grayed boxes to color existing Usher compo-
nents to which we made minor modifications.

6.1 Infrastructure: Usher background
Usher contains three software modules: a centralized con-

troller, a local node management (LNM) for each managed
machine, and a client interface. The Usher client library
provides API to send virtual machine management requests,
such as create or terminate a virtual machine, to the con-
troller that a client application can call. One local node
manager runs on each managed physical machine and exe-
cutes virtual machine requests sent from the controller. A
LNM also collects resource utilization data of all VMs run-
ning in the LNMand stores them into a centralized monitor-
ing database. We perform per-VM CPU utilization monitor-
ing at the node level with the Xenmon tool [5], and perform
per-server power utilization monitoring at the node level
with SNMP-enabled intelligent PDUs [1]. In the testbed,
the monitoring frequency is set as 30 seconds. The Xen-
mon CPU overhead is low (1%-2%). and the CPU overhead
caused by SNMP clients is almost negligible.

6.2 Power and Performance Management
We implemented the power and performance management

algorithms in Section 2 as plug-ins in Usher. The power
and performance management components are written in
Python under Linux platform, and are totally 1500 lines of
code. The coordination between those two components are
realized through the iPOEM engine described below.

6.3 iPOEM Engine
The iPOEM engine, an implementation of the architec-

ture in Figure 3, includes a proxy plug-in in Usher and the
engine running as a separate process, and they communi-
cate via socket. The iPOEM plug-in registers to the Usher
controller for a periodic event and it would be invoked pe-
riodically determined by a configurable parameter (we use
the same frequency as the performance management compo-
nent does). On each invocation, the plug-in sends a position
reporting request to the iPOEM engine and waits until the
engine notifies when the reply is ready. The GUI will period-
ically pull the engine output from the database for end-user
visualization on system position reporting. We implemented
the iPOEM engine as a separate process from the Usher
framework for ease of code maintenance and re-usability.
The engine can be used as an run-time management engine
with the auto-piloting service, or can be used as an offline
decision supporting tool that users can supply resource uti-
lization data from a different source, such as history data or
a public data center trace. The iPOEM engine is written in
Python under Linux platform, and are totally 3200 lines of
code.

Please note that the iPOEM engine not only can run pe-
riodically in real deployments, but also can be triggered by
administrators at any time when they want to make a desti-
nation search for the optimized system status with specific
performance and power constraints. Upon the reply, the ad-
ministrators can choose whether or not to enforce the engine
outputs in the real system.

6.4 GUIs
We implemented a GUI for iPOEM aiming for data center

operational usage. The GUI includes two interfaces: one for
displaying data center status in the past, now, and the near
future; the other provides the destination searching inter-
face, and serves a power-and-performance knob for opera-
tors to tune the system to a target system status. The GUI
software framework is written in Visual C# with Windows
Presentation Foundation (WPF) and executed on Microsoft
.NET Framework 3.0. The software consists of 10 classes of
program codes, which are 1600 lines in total excluding 3D
libraries to implement 3D UI features such as 3D zooming
and rotation, and 6 XAML style configurations to define its
visual interfaces.

7. EVALUATION

7.1 Data Center Workload Traces
Our evaluation is based on a large set of data center work-

load traces. The trace file includes the resource utilization
data of 5,416 servers from the IT systems of ten large com-
panies covering manufacturing, telecommunications, finan-
cial, and retail sectors. The trace records the average CPU
utilization of each server in every 15 minutes from 00:00 on
July 14th (Monday) to 23:45 on July 20th (Sunday) in 2008.
Among them, 2,525 of the servers have the hardware infor-
mation including the processor speed (in MHZ) and proces-
sor/core number. We use the traces on those 2,525 servers
in the evaluation. Workload characterization on the traces
is skipped due to space limit, and interested readers refer to
[3] for details.

7.2 Methodology
We run the iPOEM prototype as an offline engine. It is

driven by the data traces stored in the monitoring database,
and emulates the integrated management in a virtualized
data center hosting the 2, 525 servers as VMs. In the evau-
lation, we replay their CPU load traces as the corresponding
VM load monitoing data.

The offline engine reads the traces and configuration pa-
rameters periodically, and the management parameters are

• The performance manager is invoked every 24 data
points (i.e., 6 physical hours) while the power man-
ager is invoked every 48 data points (i.e., 12 physical
hours). The slow management frequencies are caused
by the 15-minute monitoring frequency in the data
traces; enough data points are needed to drive the
iPOEM engine for meaningful output.

• We assume that the SLA threshold is 90%, which means
that if the CPU utilization of a server is larger than
90% we regard it as a performance violation.

• The default <CPUlow, CPUhigh> setting is <40%, 80%>.

• The physical servers in the simulations are homoge-
neous with the CPU spec as: 3GHZ Quadra-core (the
most common CPU model in the traces).

• We assume power consumption per server is either 0
(power-off mode) or 200Watts (power-on mode), sim-
plified on the power model profiled in the local testbed.



7.3 Results

7.3.1 iPOEM GUI - Position Reporting

Figure 10: iPOEM GUI - Position Reporting.

Figure 10 shows a snapshot of the first iPOEM GUI in-
terface for position reporting. In this figure, the position of
a dot in the two coordinates represents the power cost and
performance cost respectively. Figure 10 shows the current
system status in a square dot, and three round dots showing
three possible system status in the near future upon three
workload scenarios: when the current VM workload would
increase by 20%, when the current VM workload would de-
crease by 20%, and when the workload would be like what
the regression analysis predicted. Note all the future system
status points have the same power cost, which is the power
cost after the server consolidation when the power manage-
ment component would be invoked at the time this snapshot
is generated.

7.3.2 iPOEM GUI - Destination Searching

Figure 11: iPOEM GUI - Destination Searching.

Figure 11 shows a snapshot of the second iPOEM GUI
interface for destination searching. The prototype uses the
past 12-hour workload for the inputs of the function put position,
and takes user input for a new target power cost which the
adminstrator would like the system to consume but do not
know exactly how to configure to reach it. The GUI agent
will then send multiple searching requests to the configu-
ration engine, each specifying a target status of the input
power cost and an unqiue performance cost within the fea-
sibility zone. The engine searches the configuration space to
find possible settings to satisfy the requests. In this partic-
ular example of Figure 11, the operator liked to know where
the system would be positioned if the operator challenged
the system to reduce the power cost to 15.0 kWatts from
21.20 kWatts in the current status. The configuration en-
gine recevied 15 searching requests each with the target sta-
tus (x%, 15.0 kWatts), where x = 1, 2, . . . , 15. Two possible
choices are high-lightened in Figure 11 among the returned
configurations, one with the minimal performance cost and
the other with the minimal operational cost. Both are rep-
resented by two bars; the coordinate position of each bar
in the map represents the power cost and performance cost
respectively, and the height of the bar represents the op-
erational cost. The details of management operations such
as VM migrations are also returned from the management
configuration engine, but not shown here due to space limit.

In the case when a target system status is not feasible to
reach, the GUI shows the closest state the system can reach
and the corresponding configuration parameters. As an ex-
ample in Figure 11, the gray colored zones in the map rep-
resents the infeasible areas where the system cannot reach.

7.3.3 iPOEM engine performance
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Figure 12: iPOEM engine performance: response
time.

Figure 12 shows the performance of iPOEM engine in
terms of the response time to requests for the position re-
porting and destination searching services. The position re-
porting service sends requests periodically where each re-
quest asks for refreshing the current system status and its
three potential future destinations; the workload is based on
the history data in a certain time window, where the window
size is measured by the number of monitoring data points.
As shown in Figure 12, the iPOEM engine’s response time to
the position reporting service increases slowly with the time
window size. For the time window size of 48 data points, it
takes in average around 22 seconds for the iPOEM engine



to generate all data needed in the position reporting service.
Figure 12 also shows the average response time of the des-
tination searching service when a user randomly picks loca-
tions in the map to query. Similarly, it increases slowly with
the time window size, and typically takes tens of seconds on
a system with 2525 VMs.

7.3.4 Auto-piloting output
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Figure 13: Auto-piloting management configuration
evolution.

We also ran the auto-piloting service on the traces, and
compared its output with three static (CPUlow, CPUhigh)
configuration schemes: (10%, 10%) for best performance cost
(in time percentage of SLA violations), (10%, 90%) for best
migration cost (in number of VM migrations), and (90%, 90%)
for best power costi (in kWatts). Table 1 shows the aver-
age cost (and the standard deviation) results of the three
schemes, and clearly auto-piloting has good trade-off among
the three costs. Figure 13 shows the evolution of the man-
agement configurations [CPUlow, CPUhigh] (the curve“CPU
low bound” for CPUlow, and the curve “CPU upper bound”
for CPUhigh) output by the auto-piloting service along with
the time; in addition, the run-time aggregate workload (sum
of all VMs’ CPU load, normalized into server number) is
plotted here for the background information. As we can
see, the auto-piloting service adaptively moved to power-
efficient mode upon stable workload by narrowing the range
[CPUlow, CPUhigh]; once in a while a load spike appeared,
which triggered the auto-piloting service moving back to
performance-oriented mode immediately, and the range [CPUlow,
CPUhigh] became wide again.

7.3.5 Relationships between System Status and Con-
figurations

Next, we show the system status as a function of (CPUlow,
CPUhigh) during a certain time period of the trace (the day
of July 15th). We set CPUmax = 90%, CPUmin = 10%,
and enumrate all (CPUlow, CPUhigh) combinations with
the step size of 10% and the condition CPUlow ≤ CPUhigh.
This leads to 45 different configuration candidate sets.

Figure 14 shows how the performance cost changes as we
use different CPUlow, CPUhigh. As described in Section 3.2,
this metric measures the performance penalty cost if the
system were configured by the input parameters. Since CPU
lower bound should be no more than the upper bound, there
are no values on the left half of the surface. We can see that,
generally speaking, the smaller the CPU bounds, the less the

Figure 14: The system status as a function of
(CPUlow, CPUhigh): performance cost

performance violations are. The reason is intuitive since the
more conservative we place load over servers, the less likely
that the server has performance violations.

We skip the similar results on power cost due to space
constraint.

8. RELATED WORK
Integrated power and performance management is a key

requirement in data centers today. On device level, Li et
al. [8] proposed performance-directed energy management
for main memory and disks, and designed scheduling algo-
rithms that adjust the values of certain thresholds used in
device control policies to meet performance goals; Riska et
al. [12] proposed a novel model and an algorithm that man-
ages to successfully explore feasible regions of power and
performance on individual disks. On cluster level, Steinder
et al. [15] built a state-of-the-art performance manager
to achieve significant power savings without unacceptable
loss of performance; Sankar et al. [13] explored the use
of multiple dynamic knobs and used sensitivity-based opti-
mization to guide the setting of these knobs at runtime to
maximize energy efficiency in storage system. On data cen-
ter level, Kumar et al. [7] proposed vManage, a solution to
loosely couple platform and virtualization management and
facilitate monitoring and management coordination in data
centers; Chen et al. [4] extended their previous work by de-
signing a novel thermal-aware load metric and integrated it
into the management of data centers on application perfor-
mance, power and cooling. Compared to the previous work,
our work is focused on the declarative management method-
ology and its enabling technologies including the system po-
sitioning primitives.

The model of the management configuration engine can
be mapped into a simulation-based optimization problem,
which is the finding of an optimal configuration for a stochas-
tic function with an unknown structure. Often heuristics are
applied to improve some configuration instead of really per-
forming optimization in practice. Optimization of discrete
event simulation models includes region exploration and ex-
ploitation algorithms to find promising local minima in the
search space [20]and ranking and selection algorithms [16].
Compared to the previous work, our work leverages the do-
main knowledge on the system properties under investiga-
tion, and designs a fast searching algorithm instead ad hoc
heuristics.



Scheme Performance cost Power cost Migration cost

Auto-piloting 1.55% (4.38%) 20.88 (9.9) 37.7 (53)
Static - (10%, 10%) 0 96 (13.5) 342 (510)
Static - (10%, 90%) 2.26% (3.66%) 24.68 (5.08) 23.4 (55.4)
Static - (90%, 90%) 4.46% (3.93%) 16.1 (2) 118.4 (407.2)

Table 1: Comparison of Auto-piloting and three static configuration schemes.

9. CONCLUSIONS & FUTURE WORK
This paper presents iPOEM, an integrated power and

performance management middleware in an virtualized in-
frastructure. iPOEM features novel system positioning ser-
vices for simple and intuitive user interactions, and includes
a management configuration engine to enable data center
declarative management.

In data center management, application performance, ther-
mal, cooling, and per-core power management are just a few
to name in addition to the performance and power manage-
ment addressed in this paper. Taking those into the iPOEM
framework leads to an explosive growth of the system state
space, and how to make iPOEM scalable to those extensions
is a challenge work.

In Cloud computing, it is interesting to extend iPOEM to
support mashup services for customized tenant management
on cloud resources. Tenants may introduce their own perfor-
mance and power cost functions atop the resource monitor-
ing data, and redefine operation cost with specialized per-
formance and power management functions. This can lead
to the creation of virtual maps customized for individual
tenants, and enable flexible cloud resource management.
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