
WEAKLY SUPERVISED USER INTENT DETECTION FOR MULTI-DOMAIN DIALOGUES

Ming Sun† Aasish Pappu§ Yun-Nung Chen†? Alexander I. Rudnicky†

†Carnegie Mellon University, Pittsburgh, PA, USA
§Yahoo Research, New York, NY, USA

?National Taiwan University, Taipei, Taiwan

ABSTRACT

Users interact with mobile apps with certain intents such as
finding a restaurant. Some intents and their corresponding ac-
tivities are complex and may involve multiple apps; for exam-
ple, a restaurant app, a messenger app and a calendar app may
be needed to plan a dinner with friends. However, activities
may be quite personal and third-party developers would not
be building apps to specifically handle complex intents (e.g.,
a DinnerPlanner). Instead we want our intelligent agent to ac-
tively learn to understand these intents and provide assistance
when needed. This paper proposes a framework to enable the
agent to learn an inventory of intents from a small set of task-
oriented user utterances. The experiments show that on previ-
ously unseen user activities, the agent is able to reliably rec-
ognize user intents using graph-based semi-supervised learn-
ing methods. The dataset, models, and the system outputs are
available to research community.

Index Terms— Multi-domain dialogue, user intent detec-
tion, mobile applications

1. INTRODUCTION

People interact with smartphone applications (apps) in pursuit
of various goals (or intents). Some of them, such as finding
a restaurant or navigating to a place can be fulfilled by sin-
gle apps (e.g., YELP, MAPS). However, other intents may be
complex and can involve using multiple apps together. For
example, to plan an evening out or to schedule a group study
with classmates, a series of actions across several apps may
be performed [1, 2]. Currently, people manually (or verbally)
launch the next app(s) and mentally carry over the context
from previous app(s). It is desirable for the agent to learn
complex user intents from daily app behavior of a user. One
obvious utility, among others, would be that the agent would
know which app the user would like to use immediately fol-
lowed by the current active application [3].

As a natural communication modality, speech conveys
user intents. For example, a user can express relatively sim-
ple intents such as call Mom at home or more complex ones
like I want to have a dinner with my family this Friday night.
To carry out a user intent, an agent should be able to map the

content of a spoken input into sequence of actions. Our long-
term goal is to let the agent automatically associate given
spoken input with sequence of actions with few manually
labeled intents. As a first step, an agent should automatically
learn and maintain an inventory of complex user intents [4, 5].
The agent should add new intents to the inventory as it ob-
serves user’s daily activities and also update existing intents
based on user’s feedback.

Having acquired an intent inventory, the next step is to
recognize the user intent in current activity and update the
inventory. Intent can be determined from two sources of in-
formation: app sequence and user’s speech input. For both
modalities, the input could be an ongoing activity, e.g., cur-
rently observed (unfinished) app sequence or simple speech
commands. On the other hand, completed activities (e.g.,
a sequence of apps) should be either mapped to one of the
known intents or recognized as an outlier. In this work, we
investigate semi-supervised way to recognize complex user
intent from a completed app sequence. The contributions of
this paper are two-fold: The system 1) learns an inventory
of complex user intents from spoken utterances and automati-
cally cluster the intents, and 2) accurately recognizes complex
intents by observing sequence of applications using graph-
based semi-supervised methods.

In the rest of this paper, we first introduce the approaches
to building intent inventory in Section 2, followed by experi-
ments and results in Section 3. Finally we make concluding
remarks and future directions. Our dataset, models and sys-
tem output are released1.

2. METHODOLOGY

2.1. Intent Inventory Learning

An inventory of complex user intents along with examples
is maintained by the agent (see Fig 1). When enough new
observations are accumulated, the agent updates the inventory
with the following outcomes: 1) new intents can be formed;
2) new examples can be added to existing intents. This can be
achieved by automatically clustering interactions into groups.

1https://github.com/aasish/userIntentDataset

Table 1. R2 examples
App Sequence Intent Description

WECHAT; SMS; WECHAT
getting friends to gather
for karaoke

SMS; BROWSER; SMS viewing a link Brooke
sent me

BROWSER; YOUTUBE;
APPSTORE;
IHEARTRADIO;
APPSTORE

listening to and trying to
buy a new song

CLEANMASTER;
SPIDERMAN; FACEBOOK;
SPIDERMAN

inviting nerds to
spiderman

CHROME;
STEELERSRADIO

searching stats on the
Steelers/listening to the
Steeler game on the radio

Table 2. A breakdown of three different resources
Resource # seqs # apps/seq # unique apps
R1 6248 3.9± 3.4 369
R2 1089 3.4± 2.4 188
R3 533 2.4± 1.0 129

2.1.1. Resources

In order to form an array of intents, we use the following re-
sources to mine user intents:

• R1: sequences of apps users interact with on their smart
phones. This is noisy since there are background apps
(e.g., music is playing all the time).

• R2: user knowledge of the intent-embedded sequence
structures and the nature of the intents. Fig 2 illus-
trates user annotation on R1. Table 1 shows examples
of clean app sequences and the intent descriptions.

• R3: speech commands to perform actions that com-
pose complex intents (e.g., “Find a birthday song in
YouTube” → “Post the song on Carter’s Facebook”).
Depending on the availability of manual transcripts,
one can use speech recognition hypotheses instead
(R′3). We used Google ASR’s top-1 hypotheses with
WER = 23%.

Twenty seven (27) participants (27.7± 9.9 years old) en-
rolled in this longitudinal study. However, 8 of them did not
show up after the first visit. App level activities (i.e., app invo-
cations) are logged together with contexts such as time and lo-
cation on a daily basis from the Android phones of the rest 19
participants (29.3±11.1 years old) to formR1. A time-based
segmentation divides a sequence into two if there is an inac-
tivity for 3 min. We observed, in a pilot study, that 3 min was

optimal, although the threshold may vary across users. Par-
ticipants could easily delete sequences from the logging in-
terface for privacy purpose. R2 requires supervision from the
same participants who produce the app sequences (see Fig 2).
A further 5 participants dropped out before we started to col-
lectR3. From the remaining 14 participants (31.3±12.4 years
old) we sampled a portion of R2 and let users re-enact the
same activity but by talking to a Wizard-of-Oz speech system
instead of GUI interface [6]. The relationship among these
three resources is: R3 ⊂ R2 ⊂ R1. A breakdown of these
three resources is shown in Table 2.

2.1.2. Learning Intent Clusters

To cluster observed activities into groups (step 1 and 3 in
Fig 1), a vector representation for each data point and a
clustering algorithm are required. Sequences in R2 can be
represented as ~S = [~A, ~D], a concatenation of (fixed-size)
vector representations of app sequence (~A) and intent de-
scription (~D) respectively. Similarly, activities in R3 can
be represented in the same fashion, with ~D representing
word sequence in an array of speech commands. Instead of
sparse one-hot vector based on the vocabulary of apps and
descriptions, we use continuous representation based on app-
embedding and word-embedding. To represent app sequence
A = {a1, a2, ..., an} we normalize the aggregated embed-
dings of each app: ~A = (

∑n
i=1 ~ai)/n. Here, each ~ai can be

trained similar to word2vec [7], but instead on a corpus of
app occurrence (i.e., R1). We call this app2vec. Similar
idea has been proposed in [8]. Fig 3 shows that apps with
similar functionality are close to each other in this embedding
space. To get ~D, we can either aggregate word embeddings
or directly train a doc2vec representation. In this work,
we added up embeddings of content words in the description
sentence and normalize it with the length of the description.

Commonly used clustering methods such as k-means or
Latent Dirichlet Allocation (LDA) [9] suffer from the require-
ment of a pre-determined number of clusters k. On the other
hand, methods such as mean-shift, affinity propagation or g-
means can automatically optimize k, which is ideal for our
application. In this paper, we used affinity propagation.

2.2. Recognizing Complex User Intent

Given a sequence of mobile applications {a1, a2, a3 . . . an},
we want to predict user’s intent C ∈ {C1, C2, C3 . . . Ck} de-
termined in the clustering process (described in the previous
section). As a result, the agent can test its hypothesis of the
current user intent by verbally confirming with the user, only
when the confidence is not high (step 2 in Fig 1). However, it
is expensive to obtain labeled data that accurately associate
app sequences with intents. Therefore, we perform semi-
supervised learning to label unlabeled sequences.

Semi-supervised learning (SSL) exploit input distribution

User opens {Yelp, Maps, …, Messenger}
Agent: “What are you doing?”
User: “Arranging lunch with lab-mates.”

1. Cold-start
supervised training
(first few weeks)

User opens {Yelp, Messenger}
Agent: “Are you arranging a lunch?”
User: “Not really. I’m planning a family dinner.”

2. Warm-start
active learning

I want to have
dinner with friends.

3. Update intent inventory

OK! Let’s find a
restaurant first.

4. Interactive assistance

Desc: Arrange lunch with lab-mates
Apps: {Yelp, Maps, …, Messenger}

“arrange lunch” examples “schedule meeting”

“book travel tickets”

Desc: Plan family dinner
Apps: {Yelp, Messenger}

“plan dinner”

Fig. 1. Update intent inventory. Small circles denote individual multi-app interactions while dashed ones are newly observed
and have not been clustered. Clusters of intents are automatically formed (coded with different colors). Part of the newly
observed examples form new intent cluster(s); the rest add to existing intents.

Fig. 2. Example of user annotation. User first connects apps that serve a common intent and then provides a brief description
of the nature of the task. To aid recall, we provide context such as when and where this activity happened (if GPS available).

to learn a classification model. There are several SSL methods
viz., generative models (Semisupervised Naive Bayes) [10],
Transductive Support Vector Machines [11], Self-training
methods that use kernel functions [12], entropy minimiza-
tion [13] and graph-based methods [14, 15, 16, 17]. In this
work we primarily focus on graph-based SSL methods that
exploit latent relations between data points. Graph based
methods are particularly known to work well in diverse tasks
such as entity linking [18], sentiment lexicon induction [19],
gloss finding [20] and other information extraction tasks.
In this work, we study several graph construction methods
and three graph-based inference methods. We discuss the
problem formulation and the individual methods below. We
construct an undirected graph from input data points, in our
case every app sequence is a datapoint. We use both labeled
and unlabeled sequences to construct this graph. The edge
and its weight between a pair of datapoints can be determined
using a distance metric, kernel function or a correlation func-
tion. Once the graph is constructed, seed labels are assigned
to few nodes in the graph L and the labels are propagated
to the unlabeled nodes U based on their affinity to the la-

beled nodes. The graph G is defined as (V,E,W), where
V ← L ∪ U , E edges, W similarity matrix for all nodes in
V . The labeled nodes are assigned with seed-labels S and an
iterative algorithm performs label assignment under the con-
straints of edge weights with hyperparameters that control the
label propagation. In this work, we explored various graph
construction techniques and graph-based SSL methods.

2.2.1. Graph Construction

We trained vector space representation for app sequences
(app2vec) on the training data to obtain d dimensional vec-
tors for every app a in our dictionary of apps A. Later we
use this representation to infer a dense vector for every app
sequence of variable length. Given n app sequences (both
labeled and unlabeled), we use a vector representation for
each one to construct a matrix of these vectors Xn×d. To
construct a graph from X , we explored several methods to
build an adjacency matrix Wn×n— 1) Nearest Neighbors 2)
Covariance estimation 3) Kernel-based similarity.

Nearest Neighbors is a popular method for construct-
ing graphs in graph-based SSL [21]. We used both KDTree

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

Chart Title

R1 R2

Spotify

Facebook

Calendar

Motorola Email

Whatsapp
Google Maps

Snapchat

LG Email

Browser

Phone

Dialer

LG Camera

HTC Contacts
Contacts

Gmail
Facebook Messenger

Chrome

SMS Instagram

Motorola Gallery

Gallery

ContactPro

Fig. 3. Illustration for distributional app vectors. 30 dimen-
sion app vector is learned for each app in R1 via word2vec.
Frequently used apps are shown.

and BallTree algorithms [22] to construct the graphs. The
BallTree algorithm constructs a binary tree in d dimensional
space where every datapoint is treated as d dimensional hy-
persphere, in our case every app sequence is a hypersphere.
The algorithm iteratively splits the datapoints based on their
greatest separation in near-linear time (O(nlogn)). KD-tree
operates in a similar fashion as BallTree.

Kernel-based Similarity We compute similarity matrix
W given the matrix X (vertically stacked vectors of nodes)
using different kernel functions such as:

1. linear k(u, v) = uv̇T which returns gram matrix

2. polynomial k(u, v) = (γuT v + c0)x

3. sigmoid k(u, v) = tanh(γuT v + c0)

4. RBF k(u, v) = exp(−γ||u− v||2)

5. χ2 kernel k(u, v) = exp(−γ
∑

i
(u[i]+v[i])2

u[i]+v[i])

Covariance Estimation As an alternative to kernel esti-
mation to construct the adjacency matrix, we could use es-
timated covariance matrix Σn×n of the label sequence ma-
trix Xn×d. We used several covariance estimation techniques
listed below in our experiments:

1. Empiricial Covariance: This estimation technique
computes maximum likelihood estimate of the labeled
sequence matrix X . This technique is sensitive to
outliers in the dataset, but serves as a good baseline.

2. Shrunk Covariance: Shrunk covariance is a transforma-
tion applied to the empirical covariance matrix where it
reduces the ratio between the smallest and largest eigen
value in the matrix. This essentially performs a con-
vex transformation on the input covariance matrix, thus
obtaining a robust estimate of the covariance matrix.

3. Ledoit-Wolf (LW): This technique performs a robust es-
timation of covariance matrix for large matrices [23].
It does not make assumptions about the distribution of
the sample, thus can be applied to samples drawn from
noisy data. The resultant covariance matrix is invertible
and also well-formed. The method computes an asymp-
totically convex combination of the Empirical covari-
ance and the identity matrix, results in robust covari-
ance matrix.

4. Pearson product-moment Correlation: This technique
computes pairwise Pearson correlation for all data-
points in X across all dimensions d. It returns a matrix
Rn×n with values between −1 and 1.

2.2.2. Graph based Labeling

Given input matrix X , similarity matrix W and a set of la-
bels C where only some of the datapoints in X are labeled L
and rest are unlabeled U . We use the following methods to
estimate label distribution for U .

Label Propagation algorithm [24] assumes a fully con-
nected graph that uses a scaled version of euclidean distance
to construct a weight matrix. The iterative algorithm allows
the label distribution propagate to all nodes through edges.
Edges with large weights allow labels to propagate easily and
a probability transition matrix (between nodes) is estimated
based on the edge weights. In every iteration all nodes prop-
agate their label distribution to their neighbors until the dis-
tribution of every node convergences such that low-density
regions in the input data are assigned with labels. The advan-
tage of this algorithm is its simplicity but there’s no theoreti-
cal convergence guarantee.

Adsorption is a transductive learning algorithm [25] that
operates in noisy-label assumption and aims to relabel la-
beled examples for coherency across the graph. Adsorption
performs a controlled random walk over the graph G and
the control is determined by three hyperparameters inject,
continue, and abandon and corresponding probabilities
pinj , pconj , pabnd for every node v ∈ {L ∪ U}. Once the al-
gorithm starts its random walk, with probability pinj , it may
stop and return the pre-defined label distribution Y . Alterna-
tively, it can abandon the labeling and return all-zeros vector
with probability pabnd. Or it would continue the random walk
from the current node to one of its neighbors with probability
pcont. Similar to label propagation, the transition probability
between two nodes is a normalized edge weight between the
nodes. The advantage of this algorithm is that it can be eas-
ily parallelized and scalable to large datasets. However, it has
been shown that the minimization of Adsorption’s objective
function does not converge to local optima.

Modified Adsorption [26] improves on Adsorption by
guaranteeing convergence to local optima. It differs from Ad-
sorption in its objective function, which enforces the follow-
ing conditions: (i) estimated labels for labeled nodes should

Table 3. First row shows graph statistics for the graph constructed through each process. Rows 2–4 show Kullback-Leibler Divergence
between Task description Topic Distribution vs Semi-supervised multi-label multi-class topic distribution. Lower the Better. We see that only
Kernel based methods perform the best among all graph-construction methods.

Graph
NN search Kernel Covariance

KD Ball linear poly sigmoid χ2 RBF Emp LW Shrunk PearsonTree Tree
#Vertices
#Edges

762
1714

842
2134

1087
90,919

1089
100,826

1087
105,938

1089
22,546

1089
135,975

1087
104,001

1087
104,759

1087
104,693

1087
252,325

Label Prop 6.974 4.095 0.226 0.099 0.100 0.138 0.075 0.100 0.100 0.100 0.129
Adsorption 6.917 3.982 0.253 0.124 0.126 0.147 0.101 0.125 0.126 0.126 0.154
Modified 6.917 3.982 0.284 0.128 0.130 0.145 0.105 0.129 0.130 0.130 0.153Adsorption

be close to their a-priori labels, (ii) nodes that are connected
by larger weights should have high overlap in label distribu-
tion (iii) regularize estimated label distribution at every step.

3. EXPERIMENTS AND RESULTS

3.1. Intent Inventory Construction

To evaluate the quality of the learned inventory, we first clus-
terR2 orR2+R3 using algorithms which do not require a pre-
determined number of clusters. Then, on 50 sequences ran-
domly sampled from R2 (with 18 manually created clusters
as reference) we report normalized mutual information which
is often used for evaluating soft-membership clusters [27].

We represent each activity in R2 or R3 with a vector
composed of app vector ~A and description vector ~D. The
construction of these vectors is described in detail in Sec-
tion 2.1.2. For apps ai ∈ A, their vector representations ~ai
are computed as app-embedding via app2vec. For con-
tent word wi ∈ D, we used pre-trained 300-dimensional
Google News word2vec representation2. ~ai are aggregated
(and normalized) to form ~A and ~D is computed in the same
way.

R2 is clustered using affinity propagation (AP). We also
augmented R2 with conversational data R3. The preference
of each data point to be selected as exemplar in AP is var-
ied, leading to different number of clusters. Evaluated on the
aforementioned 50 samples, we find that augmentingR2 with
R3 is better than using R2 alone when the number of learned
clusters is close to the ground truth (see Fig 4). Speech recog-
nition hypotheses are not significantly inferior to manual tran-
scripts. This indicates the effectiveness and robustness of in-
corporating atomic user utterances into learning complex user
intents. Table 4 shows descriptions of examples clustered us-
ing the R2 +R3 model.

2https://code.google.com/archive/p/word2vec/

0.6

0.65

0.7

0.75

0.8

-60 -50 -40 -30 -20 -10

N
o

rm
al

iz
ed

 M
u

tu
al

In

fo
rm

at
io

n

Preference

R2+R3
R2+R3'
R2

Fig. 4. Evaluation using different resources to learn R2 clus-
tering. 50 samples are randomly selected from R2 and man-
ually clustered. R′3 uses ASR hypotheses. When preference
∈ [−50,−30], the number of clusters generated by Affinity
Propagation is close to the ground truth (# clusters = 18).

3.2. Intent Inventory Update

Obtaining supervision is expensive. In real-life, when user
performs a sequence of actions, we want the agent to 1) un-
derstand the user intent (later confirm with user if necessary)
and 2) remove the noisy actions from the observation. This
allows the agent to add a clean data point to its inventory.
In this section, we first describe our approach to recognizing
user intents with minimum supervision. We then discuss our
attempt to separate content actions from noise.

3.2.1. Intent Recognition with Weak Supervision

We experimented with graph-based intent recognition meth-
ods using R2. 70% of the total 1089 sequences are used as
seeds. Our task is to predict the cluster for the remaining
30%. Seed labels were obtained by clustering the training
part with Affinity Propagation as described in section 2.1. In
obtaining seed labels, we used both app sequence and task
descriptions (with additional help from conversational data).
Note, however, that in this recognition task we do not have ac-
cess to descriptions — by observing user performing a series

Table 4. Clustering examples on R2.

Cluster Example Descriptions

1 playing crossy road with optimum ram;
playing spiderman;

2 updating apps on Google play; updating apps

3

used voice app to navigate to hambones
restaurant in Lawrenceville; using maps to
look up a work-related phone number for a
business and then call

4

trying to find an address for our campsite at
cherry springs; using Google search and
maps to look up estimated driving time from
Pittsburgh to Cleveland connor theater.

5 choosing a picture to send on Whatsapp;
sending pictures to friend

Table 5. Evaluation of BIO tagging. Overall precision, recall
and F1 are reported.

Feature P R F
Majority 0.69 0.69 0.69
Category 0.73 0.69 0.70
AppID 0.74 0.70 0.71

app2vec 0.78 0.73 0.75
desc2vec 0.78 0.75 0.76

of actions, we want the agent to interpret the intent.
During graph construction, we used K=5 for all Nearest

Neighbor methods, γ = 0.5 for all Kernel Methods and de-
fault values for all covariance estimation techniques as set
in scikit-learn [28]. For graph-labeling, we ran the
random-walk for 1000 iterations in all three settings.

For each testing app sequence, our model estimates a
distribution over labels. To evaluate the performance of SSL
methods, we compute Kullback-Leibler (KL)-divergence be-
tween this distribution and the cluster distribution obtained in
section 2.1. As we can see in Table 3, the rbf kernel-based
graph construction with label propagation approach outper-
forms others. We note that graphs constructed through kernel-
based methods and covariance methods have higher edges
compared to nearest-neighbor based methods. Also, kernel
based methods generate graphs with fewer nodes with high
degreeness i.e., few nodes with higher influence. Whereas,
graphs generated by covariance methods have evenly dis-
tributed node degreeness. We believe that kernel-based
methods perform better because of higher degreeness thus
propagating high quality and low-noisy labels to the unla-
beled nodes. Based on the recognition confidence, agent can
perform the actions in step 2 in Fig 1 (e.g., confirming the
predicted intent). Later, step 3 can be carried out.

3.2.2. Content Apps Extraction

We adopted sequence labeling on any observed app sequence.
The task is to tag each app with one of B (begin), I (in) and
O (out) labels. By accurately identifying B’s and I’s, the
agent demonstrates the ability to extract relevant content apps.
We trained our Conditional Random Fields-based BIO tag-
ger on R1. Features for each app can be its category (e.g.,
games or communication) or app identity. Alternatively, we
also used vector representations of app identity (the afore-
mentioned app2vec) and app descriptions provided by the
app store. We used doc2vec in gensim [29] to learn the
description vector. As shown in Table 5, using a vector repre-
sentation of apps can achieve better overall performance. This
shows the feasibility of separating content apps from back-
ground or noisy apps in observed user activity.

4. CONCLUSION

Our long-term goal is to develop an agent that learns how
to perform a complex task by decomposing it into smaller
atomic tasks and execute in sequence. In this paper, we de-
scribe a framework that enables an agent to infer a user’s
intent while they use applications on their smart phone. To
this end, our agent can learn an inventory of intents from
a small set of task-oriented user utterances. We show that
on previously unseen user activities, the agent reliably recog-
nizes user intents using graph-based semi-supervised learning
methods. We also demonstrate that our CRF-based sequence
labeling model can effectively segment a sub-sequence of ap-
plications, that potentially map to a user intent, from a larger
sequence of applications. Finally we made our dataset, mod-
els and the system output available to the research community.

5. ACKNOWLEDGMENT

This work was supported in part by the Yahoo InMind project
at Carnegie Mellon and by the General Motors Advanced
Technical Center–Israel.

6. REFERENCES

[1] Ming Sun, Yun-Nung Chen, and Alexander I. Rudnicky,
“An intelligent assistant for high-level task understand-
ing,” in IUI, 2016.

[2] Toby Jia-Jun Li and Brad Myers, “Smartphone text en-
try in cross-application tasks,” in CHI Workshop on In-
viscid Text Entry and Beyond, 2016.

[3] Yun-Nung Chen, Ming Sun, and Alexander I. Rudnicky,
“Leveraging behavioral patterns of mobile applications
for personalized spoken language understanding,” in
ICMI, 2015, pp. 83–86.

[4] Aasish Pappu and Alexander Rudnicky, “Predicting
tasks in goal-oriented spoken dialog systems using se-
mantic knowledge bases,” in SIGDIAL, 2013, pp. 242–
250.

[5] Aasish Pappu and Alexander I Rudnicky, “Learning sit-
uated knowledge bases through dialog,” in Interspeech,
2014, pp. 120–124.

[6] Ming Sun, Yun-Nung Chen, Zhenhao Hua, Yulian
Tamres-Rudnicky, Arnab Dash, and Alexander I. Rud-
nicky, “Appdialogue: Multi-app dialogues for intelli-
gent assistants,” in LREC, 2016.

[7] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean, “Distributed representations of
words and phrases and their compositionality,” in Ad-
vances in NIPS, 2013, pp. 3111–3119.

[8] Ma Qiang, S. Muthukrishnan, and Wil Simpson,
“App2vec: Vector modeling of mobile apps and appli-
cations,” in ASONAM, 2016.

[9] David M Blei, Andrew Y Ng, and Michael I Jordan,
“Latent dirichlet allocation,” JMLR, vol. 3, no. Jan, pp.
993–1022, 2003.

[10] Fabio Gagliardi Cozman, Ira Cohen, Marcelo Cesar
Cirelo, et al., “Semi-supervised learning of mixture
models,” in ICML, 2003, pp. 99–106.

[11] Thorsten Joachims, “Transductive inference for text
classification using support vector machines,” in ICML,
1999, vol. 99, pp. 200–209.

[12] Xiaojin Zhu and Andrew B Goldberg, “Introduction to
semi-supervised learning,” Synthesis lectures on artifi-
cial intelligence and machine learning, vol. 3, no. 1, pp.
1–130, 2009.

[13] Yves Grandvalet and Yoshua Bengio, “Semi-supervised
learning by entropy minimization,” in NIPS, 2004, pp.
529–536.

[14] Avrim Blum and Shuchi Chawla, “Learning from la-
beled and unlabeled data using graph mincuts,” in
ICML, 2001.

[15] Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al.,
“Semi-supervised learning using gaussian fields and
harmonic functions,” in ICML, 2003, pp. 912–919.

[16] Gad Getz, Noam Shental, and Eytan Domany, “Semi-
supervised learning–a statistical physics approach,”
arXiv preprint cs/0604011, 2006.

[17] Thorsten Joachims et al., “Transductive learning via
spectral graph partitioning,” in ICML, 2003, pp. 290–
297.

[18] Xianpei Han, Le Sun, and Jun Zhao, “Collective entity
linking in web text: a graph-based method,” in 34th
ACM SIGIR, 2011, pp. 765–774.

[19] Delip Rao and Deepak Ravichandran, “Semi-supervised
polarity lexicon induction,” in EACL, 2009, pp. 675–
682.

[20] Bhavana Dalvi, Einat Minkov, Partha P Talukdar, and
William W Cohen, “Automatic gloss finding for a
knowledge base using ontological constraints,” in
WSDM. ACM, 2015, pp. 369–378.

[21] Tony Jebara, Jun Wang, and Shih-Fu Chang, “Graph
construction and b-matching for semi-supervised learn-
ing,” in ICML. ACM, 2009, pp. 441–448.

[22] Jon Louis Bentley, “Multidimensional binary search
trees used for associative searching,” Communications
of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[23] Olivier Ledoit and Michael Wolf, “A well-conditioned
estimator for large-dimensional covariance matrices,”
Journal of multivariate analysis, vol. 88, no. 2, pp. 365–
411, 2004.

[24] Xiaojin Zhu and Zoubin Ghahramani, “Learning from
labeled and unlabeled data with label propagation,”
Tech. Rep., CMU CALD-02-107.

[25] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik,
S. Kumar, D. Ravichandran, and M. Aly, “Video sug-
gestion and discovery for youtube: taking random walks
through the view graph,” in Proceedings of the 17th
WWW. ACM, 2008, pp. 895–904.

[26] Partha Pratim Talukdar and Koby Crammer, “New reg-
ularized algorithms for transductive learning,” in Joint
ECML/KDD. Springer, 2009, pp. 442–457.

[27] Aaron F McDaid, Derek Greene, and Neil Hurley,
“Normalized mutual information to evaluate overlap-
ping community finding algorithms,” arXiv preprint
arXiv:1110.2515, 2011.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” JMLR,
vol. 12, pp. 2825–2830, 2011.

[29] Radim Řehůřek and Petr Sojka, “Software Framework
for Topic Modelling with Large Corpora,” in LREC,
2010, pp. 45–50.

