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Abstract
Sequence-to-sequence deep learning has recently emerged

as a new paradigm in supervised learning for spoken language
understanding. However, most of the previous studies ex-
plored this framework for building single domain models for
each task, such as slot filling or domain classification, com-
paring deep learning based approaches with conventional ones
like conditional random fields. This paper proposes a holistic
multi-domain, multi-task (i.e. slot filling, domain and intent
detection) modeling approach to estimate complete semantic
frames for all user utterances addressed to a conversational sys-
tem, demonstrating the distinctive power of deep learning meth-
ods, namely bi-directional recurrent neural network (RNN) with
long-short term memory (LSTM) cells (RNN-LSTM) to handle
such complexity. The contributions of the presented work are
three-fold: (i) we propose an RNN-LSTM architecture for joint
modeling of slot filling, intent determination, and domain clas-
sification; (ii) we build a joint multi-domain model enabling
multi-task deep learning where the data from each domain re-
inforces each other; (iii) we investigate alternative architectures
for modeling lexical context in spoken language understanding.
In addition to the simplicity of the single model framework, ex-
perimental results show the power of such an approach on Mi-
crosoft Cortana real user data over alternative methods based on
single domain/task deep learning.
Index Terms: recurrent neural networks, long short term mem-
ory, multi-domain language understanding, joint modeling

1. Introduction
In the last decade, a variety of practical goal-oriented conver-
sation understanding systems have been built for a number of
domains, such as the virtual personal assistants Microsoft’s Cor-
tana and Apple’s Siri. Three key tasks in such targeted un-
derstanding applications are domain classification, intent deter-
mination and slot filling [1], aiming to form a semantic frame
that captures the semantics of user utterances/queries. Domain
classification is often completed first in spoken language under-
standing (SLU) systems, serving as a top-level triage for subse-
quent processing. Intent determination and slot filling are then
run for each domain to fill a domain specific semantic template.
An example semantic frame for a movie-related utterance, ”find
recent comedies by James Cameron”, is shown in Figure 1.

This modular design approach (i.e., modeling SLU as 3
tasks) has the advantage of flexibility; specific modifications
(e.g., insertions, deletions) to a domain can be implemented
without requiring changes to other domains. Another advantage
is that, in this approach, one can use task/domain specific fea-
tures, which often significantly improve the accuracy of these

W find recent comedies by james cameron
↓ ↓ ↓ ↓ ↓ ↓

S O B-date B-genre O B-dir I-dir
D movies
I find movie

Figure 1: An example utterance with annotations of semantic
slots in IOB format (S), domain (D), and intent (I), B-dir and
I-dir denote the director name.

task/domain specific models. Also, this approach often yields
more focused understanding in each domain since the intent de-
termination only needs to consider a relatively small set of in-
tent and slot classes over a single (or limited set) of domains,
and model parameters could be optimized for the specific set of
intent and slots. However, this approach also has disadvantages:
First of all, one needs to train these models for each domain.
This is an error-prone process, requiring careful engineering to
insure consistency in processing across domains. Also, during
run-time, such pipelining of tasks results in transfer of errors
from one task to the following tasks. Furthermore, there is no
data or feature sharing between the individual domain models,
resulting in data fragmentation, whereas, some semantic intents
(such as, finding or buying a domain specific entity) and slots
(such as, dates, times, and locations) could actually be common
to many domains [2, 3]. Finally, the users may not know which
domains are covered by the system and to what extent, so this
issue results in interactions where the users do not know what
to expect and hence resulting in user dissatisfaction [4, 5].

We propose a single recurrent neural network (RNN) archi-
tecture that integrates the three tasks of domain detection, intent
detection and slot filling for multiple domains in a single SLU
model. This model is trained using all available utterances from
all domains, paired with their semantic frames. The input of
this RNN is the input sequence of words (e.g., user queries) and
the output is the full semantic frame, including domain, intent,
and slots, as shown in Figure 1. Since the dependency between
the words is important for SLU tasks, we investigate alternative
architectures for integrating lexical context and dependencies.
We compare the single model approach to alternative ways of
building models for multi-task, multi-domain scenarios.

The next section sets the baseline RNN-LSTM architecture
based on the slot filling task [6], and explores various architec-
tures for exploiting lexical contexts. In Section 3, we extend this
architecture to model domains and intents of user utterances in
addition to slot filling, and propose a multi-domain multi-task
architecture for SLU. In the experiments, we first investigate the
performance of alternative architectures on the benchmark ATIS
data set [7], and then on the Microsoft Cortana muilti-domain
data. We show that the single multi-domain, joint model ap-
proach is not only simpler, but also results in the best F-measure



in experimental results.

2. Deep Learning for SLU
A major task in spoken language understanding in goal-oriented
human-machine conversational understanding systems is to au-
tomatically classify the domain of a user query along with do-
main specific intents and fill in a set of arguments or ”slots” to
form a semantic frame. In this study, we follow the popular IOB
(in-out-begin) format for representing the slot tags as shown in
Figure 1.

A detailed survey of pre-deep learning era approaches for
domain detection, intent determination, and slot filling can
be found in [1]. Basically, domain detection and intent de-
termination tasks are framed as classification problems, for
which researchers have employed support vector machines [8],
maximum entropy classifiers [9], or boosting based classi-
fiers [10, 11]. Similarly, slot filling is framed as a sequence
classification problem and hidden Markov models [12] and con-
ditional random fields [13, 14] have been employed.

With the advances on deep learning, deep belief networks
(DBNs) with deep neural networks (DNNs) have first been em-
ployed for intent determination in call centers [15], and later for
domain classification in personal assistants [16, 17, 18]. More
recently, an RNN architecture with LSTM cells have been em-
ployed for intent classification [19].

For slot filling, deep learning research has started as exten-
sions of DNNs and DBNs (e.g., [20]) and is sometimes merged
with CRFs [21]. One notable extension is the use of recursive
neural networks, framing the problem as semantic parsing [22].
To the best of our knowledge RNNs have first been employed
for slot filling by Yao et al. [23] and Mesnil et al. [24] con-
currently. We have compiled a comprehensive review of RNN
based slot filling approaches in [6].

Especially with the re-discovery of LSTM cells [25] for
RNNs, this architecture has started to emerge [26]. LSTM cells
are shown to have superior properties, such as faster conver-
gence and elimination of the problem of vanishing or exploding
gradients in sequence via self-regularization, as presented be-
low. As a result, LSTM is more robust than RNN in capturing
long-span dependencies.

2.1. RNN with LSTM cells for slot filling

To estimate the sequence of tags Y = y1, ..., yn correspond-
ing to an input sequence of tokens X = x1, ..., xn, we use the
Elman RNN architecture [27], consisting of an input layer, a
hidden layer (for the single layer version), and an output layer.
The input, hidden and output layers consist of a set of neurons
representing the input, hidden, and output at each time step t,
xt, ht, and yt, respectively. The input is typically represented
by 1-hot vector or word level embeddings. Given the input layer
xt at time t, and hidden state from the previous time step ht−1,
the hidden and output layers for the current time step are com-
puted as follows:

ht = φ(Wxh[ ht−1

xt ]) (1)

pt = softmax(Whyht) (2)
ŷt = argmax pt (3)

where Wxh and Why are the matrices that denote the weights
between the input and hidden layers and hidden and output
layers, respectively. φ denotes the activation function, i.e.,
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Figure 2: LSTM cell, as depicted in [31].

tanh or sigm. The softmax is defined as: softmax(zm) =
ezm/

∑
i e

zi . The weights of the model are trained using back-
propagation to maximize the conditional likelihood of the train-
ing set labels: ∏

t

p(yt | x1, ..., xt). (4)

Previous work [28] has shown that training model param-
eters with backpropagation over time could result in exploding
or vanishing gradients. Exploding gradients could be allevi-
ated by gradient clipping [29], but this does not help vanishing
gradients. LSTM cells [25] were designed to mitigate the van-
ishing gradient problem. In addition to the hidden layer vector
ht, LSTMs maintain a memory vector, ct, which it can choose
to read from, write to or reset using a gating mechanism and
sigmoid functions. The input gate, it is used to scale down the
input; the forget gate, ft is used to scale down the memory vec-
tor ct; the output gate, ot is used to scale down the output to
reach the final ht. Following the precise formulation of [30],
these gates in LSTMs are computed as follows, as also shown
in Figure 2:

[
it
ft
ot
gt
] = (

sigm
sigm
sigm
tanh

)Wt[ xt
ht−1

], (5)

where the sigm sand tanh are applied element-wise, Wt is
the weight matrix, and

ct = ft � ct−1 + it � gt, (6)
ht = o� tanh(ct). (7)

2.2. Integration of context

In SLU, word tags are not only determined by the associated
terms, but also contexts [32]. For example, in ATIS data, the
city name Boston could be tagged as originating or destination
city, according to the lexical context it appears in. For capturing
such dependencies, we investigated two extensions to the RNN-
LSTM architecture (Figure 3.(a)): look-around LSTM (LSTM-
LA) and bi-directional LSTM (bLSTM) [33].

At each time step, in addition to xt, LSTM-LA (Fig-
ure 3.(b)) considers the following and preceding words as part
of the input, by concatenating the input vectors for the neigh-
boring words. In this work, our input at time t consisted of a
single vector formed by concatenating xt−1, xt, xt+1.

In bLSTM (Figure 3.(c)), two LSTM architectures are tra-
versed in a left-to-right and right-to-left manner, and their hid-
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Figure 3: RNN-LSTM architectures used in this work.

den layers are concatenated when computing the output se-
quence (we use the superscripts b and f for denoting parameters
for the backward and forward directions):

pt = softmax(W f
hyh

f
t +W b

hyh
b
t), (8)

where forward and backward gates are computed respectively
as follows:

[
ift
ff
t

oft
gft
] = (

sigm
sigm
sigm
tanh

)W f
t [ xt

hf
t−1
], (9)

[
ibt
fb
t

obt
gbt
] = (

sigm
sigm
sigm
tanh

)W b
t [ xt

hb
t+1
]. (10)

In order to make the implementation more efficient, many
of the shared computations are done once such as input vector
preparation or top level gradient computation, pt−trutht, where
trutht is the 1-hot vector for the target tag.

Figure 3 depicts these three architectures, as well as the in-
tent LSTM architecture of [19] that we used for modeling of
intents and domains in isolation as the baseline.

3. Joint, Multi-Domain Modeling of
Domain, Intent and Slots

A commonly used approach to represent slot tags for slot fill-
ing is associating each input word wt of utterance k with an
IOB-style tag as exemplified in Figure 1, hence the input se-
quence X is w1, ..., wn and the output is the sequence of slot
tags s1, ..., sn. We follow this approach and associate a slot tag
with each word.

For joint modeling of domain, intent, and slots, we as-
sume an additional token at the end of each input utterance k,
<EOS>, and associate a combination of domain and intent tags
dk and ik to this sentence final token by concatenating these

tags. Hence, the new input and output sequence are :

X = w1, ..., wn, <EOS>
Y = s1, ..., sn, dk ik

The main rationale of this idea is similar to the sequence-
to-sequence modeling approach, as used in machine transla-
tion [34] or chit-chat [35] systems approaches. The last hidden
layer of the query is supposed to contain a latent semantic repre-
sentation of the whole input utterance, so that it can be utilized
for domain and intent prediction (dk ik).

4. Experiments
For training all architectures, we used mini-batch stochastic gra-
dient descent with a batch size of 10 examples and adagrad [36].
We experimented with different hidden layer sizes in {50, 75,
100, 125, 150} and a fixed learning rate in {0.01, 0.05, 0.1}
in all of the experiments. We used only lexical features (i.e.,
no dictionaries), and represented input with 1-hot word vectors,
including all the vocabulary terms. In addition to 1-hot word
vectors, we experimented with word2vec [37] and Senna [38]
embeddings, and did not observe significant performance im-
provement, hence only results with 1-hot vectors are reported.
All parameters were uniformly initialized in [−0.01, 0.01].

4.1. Data sets

For investigating the integration of contexts for slot filling, we
have experimented with the benchmark ATIS data set [7] for
the air travel domain. For experiments related to joint domain,
intent, and slot modeling, four domains are chosen: alarm, cal-
endar, communication and technical, to create a diverse set in
terms of vocabulary size, number of intents and slots. The
number of training, development and test utterances, vocabu-
lary size, number of intents and slots for each of these data sets
are listed in Table 4. As seen in the last row of this table, the
number of intents and slots in the joined data set is less than
the sum of the number of intents and slots in individual do-
mains, this is because some of these are shared across different
domains.

4.2. Slot Filling Experiments

ATIS data set comes with a commonly used training and test
split [7]. For tuning parameters, we further split the training set
into 90% training and 10% development set. After choosing the
parameters that maximize the F-measure on the development
set, we retrained the model with all of the training data with the
optimum parameter set with 10 different initializations and av-
eraged F-measures. The maximum F-measure (best F) is com-
puted on the test set when 90% of the training examples were
used and the average F-measure (avg. F) is computed by averag-
ing F-measure from the 10 runs when all the training examples
are used with the optimum parameters. These results are shown
in Table 2. We get the best F-measure with the bi-directional
LSTM architecture (though comparable with LSTM-LA), the
relative performances of RNN, LSTM, and LSTM-LA are in
parallel with our earlier work [39], though F-measure is slightly
lower due to differences in normalization.

4.3. Multi-Domain, Joint Model Experiments

Following the slot filling experiments, we used bi-directional
LSTM for modeling slots alone and jointly modeling intent and
slots, and following [19], we use LSTM for modeling intents.



Table 1: Data sets used in the experiments. For each domain, the number of examples in the training, dev, and test sets, input vocabulary
size of the training set, and number of unique intents and slots.

Data Set # Train # Dev # Test |V | # Intents # Slots
ATIS 4,978 - 893 900 17 79
Alarm 8,096 1,057 846 433 16 8
Calendar 21,695 3,626 2,555 1,832 20 18
Communication 13,779 2,662 1,529 4,336 25 20
Techincal 7,687 993 867 2,180 5 18
4 domains 51,257 8,338 5,797 6,680 59 42

Table 2: F-measure results using ATIS data. The first column
shows the best F-measure on the test set, when the model was
trained with 90% of the training examples, the second column
shows F-measure averaged over 10 random initializations with
parameters optimized in the development set (10%).

Model best F avg. F
RNN 93.06% 92.09%
LSTM 93.80% 93.09%
LSTM-LA 95.12% 94.68%
bLSTM 95.48% 94.70%

We experimented with 4 settings, and report slot F-measure
(SLOT F, Table 3), intent accuracy (INTENT A, Table 3 and
overall frame error rate (OVERALL E, Table 4) for each of
these:

• SD-Sep: For each domain, a separate intent detection
and slot filling model was trained, resulting in 2 × |D|
classifiers, where |D| is the number of domains. Opti-
mum parameters were found on the development set for
each experiment and used for computing performance on
the test set. The output of all the classifiers were joined
for overall error rates.

• SD-Joint: For each domain, a single model that esti-
mates both intent and sequence of slots was used, result-
ing in |D| classifiers.

• MD-Sep: An intent detection model and a slot filling
model were trained using data from all the domains, re-
sulting in 2 classifiers. The output of intent detection
was merged with the output of slot filling for computing
overall template error rates.

• MD-Joint: A single classifier for estimating the full se-
mantic frame that includes domain, intent, and slots for
each utterance was trained using all the data.

The first two settings assume that the correct domain for
each example in the test set is provided. To estimate such higher
level domain estimation, we trained an LSTM model for domain
detection using all the data, the accyracy of the domain detec-
tion is 95.5% on the test set. Table 3 shows results for intent
detection and slot filling when the true domain is known for the
first two settings, hence the performances of these two settings
seem higher, however, Table 4 shows overall frame error rates
when the domain estimation is integrated in the decision of the
final frame. In both single-domain and multi-domain settings,
intent detection accuracy improves with joint training (although
small), but slot filling degrades. On the overall, we achieve the
lowest error with the single model approach. The 13.4% seman-
tic frame error rate on all the data is significantly better than the
commonly used SD-Sep.

Table 3: Slot F-measure and intent accuracy results in single
domain (SD) and multi domain (MD) joint and separate model-
ing experiments.

SLOT F SD-Sep SD-Joint MD-Sep MD-Joint
Alarm 95.9% 93.9% 94.5% 94.3%
Cal. 94.5% 93.7% 92.6% 92.4%
Comm. 86.4% 83.8% 85.1% 82.7%
Tech. 90.4% 89.8% 89.6% 88.3%
All 91.8% 90.5% 90.0% 89.4%
INTENT A SD-Sep SD-Joint MD-Sep MD-Joint
Alarm 96.5% 96.2% 94.9% 94.3%
Cal. 97.2% 97.6% 94.2% 94.3%
Comm. 96.1% 95.8% 94.0% 95.4%
Tech. 94.6% 95.9% 93.9% 95.3%
All 96.4% 96.7% 94.1% 94.6%

Table 4: Overall frame level error rates.

Overall E SD-Sep SD-Joint MD-Sep MD-Joint
Alarm 9.5% 9.8% 9.1% 9.2%
Cal. 10.7% 11.1% 11.3% 10.1%
Comm. 19.8% 20.6% 16.3% 17.3%
Tech. 20.4% 20.6% 21.4% 20.2%
All 14.4% 14.9% 13.7% 13.4%

5. Conclusions
We propose a multi-domain, multi-task (i.e. domain and intent
detection and slot filling) sequence tagging approach to esti-
mate complete semantic frames for user utterances addressed to
a conversational system. First, we investigate alternative archi-
tectures for modeling lexical context for spoken language un-
derstanding. Then we present our approach that jointly mod-
els slot filling, intent determination, and domain classification
in a single bi-directional RNN with LSTM cells. User queries
from multiple domains are combined in a single model enabling
multi-task deep learning. We empirically show improvements
with the proposed approach in experimental results, over al-
ternatives. In addition to the simplicity of the single model
framework for SLU, as our future research, such an architec-
ture opens way to handling belief state update, other non-lexical
contexts, such as user contacts or dialogue history in one holis-
tic model [32]. Furthermore, an RNN-LSTM based language
generation system [40] can be jointly trained enabling the end-
to-end conversational understanding framework.
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