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ABSTRACT

Employing pre-trained language models (LM) to extract con-
textualized word representations has achieved state-of-the-art
performance on various NLP tasks. However, applying this
technique to noisy transcripts generated by automatic speech
recognizer (ASR) is concerned. Therefore, this paper focuses
on making contextualized representations more ASR-robust.
We propose a novel confusion-aware fine-tuning method
to mitigate the impact of ASR errors on pre-trained LMs.
Specifically, we fine-tune LMs to produce similar represen-
tations for acoustically confusable words that are obtained
from word confusion networks (WCNs) produced by ASR.
Experiments on multiple benchmark datasets show that the
proposed method significantly improves the performance of
spoken language understanding when performing on ASR
transcripts1.

Index Terms— spoken language understanding, contex-
tualized embedding, ASR robustness

1. INTRODUCTION

A spoken language understanding (SLU) module serves an
important role in a spoken dialogue system, which aims at
extracting semantic concepts from spoken utterances and
provides structured information for accessing the backend
database. Typical tasks of SLU include intent detection and
slot filling. These two tasks focus on predicting speaker’s
intent and extracting semantic concepts as constraints for the
natural language. A movie-related example utterance “find
comedies by James Cameron” shown in Figure 1 has two
slot-value labels and a specific intent for the whole utterance.

Applying deep learning techniques has been shown to
boost the performance of SLU [1, 2, 3, 4]. Most prior work
focused on applying understanding models on manual tran-
scripts, ignoring the errors introduced by automatic speech
recognizers (ASR). Hence, several methods were proposed
to address this problem. Simonnet et al. [5] simulated ASR
errors and trained SLU models for better handling of the
errors. The prior work leveraged information from lattices

1Code available at: https://github.com/MiuLab/SpokenVec

Word find comedies by james cameron
Slot genre: comedy, director: James Cameron

Intent find movie

Fig. 1: An annotated utterance example.

or word confusion networks [6, 7, 8, 9, 10, 11], and Zhu et
al. [12] applied domain adversarial training for ASR-error
adaptation, demonstrating the importance of incorporating
ASR errors for better SLU performance.

Deep contextualized word representations recently have
achieved great success among language understanding tasks
[13, 14, 15]. Nevertheless, they may be less robust to noisy
texts, such as the recognized results. In this paper, we in-
vestigate the impact of ASR errors on contextualized em-
beddings and further propose a novel confusion-aware fine-
tuning method to alleviate this problem. To our best knowl-
edge, there is no prior work that learned contextualized word
embeddings and considered the errors produced from spoken
language for better robustness. Our contributions are 3-fold:

• This is the first attempt to learn contextualized word
embeddings specifically for spoken language.

• The proposed approach achieves better performance on
the benchmark spoken language understanding tasks.

• The proposed method shows better robustness to ASR
errors.

2. LEARNING ASR-ROBUST CONTEXTUALIZED
EMBEDDINGS

Preparing datasets for SLU takes a lot of effort. SLU datasets
are typically smaller than NLU datasets since it’s much more
labor intensive to collect labeled spoken utterances. Hence,
the goal of this paper is to learn ASR-robust contextualized
embeddings such that the downstream SLU models trained on
manual transcripts can perform well on automatic transcripts,
using only unlabeled spoken utterances to adapt.

To enable the embeddings to adapt ASR errors for im-
proving SLU, our proposed method consists of three stages:



1) language model pre-training on general domain corpora
DLM, 2) confusion-aware language model fine-tuning on the
text from the target SLU task, where the text can be either
manual transcripts Dtrs or automatic transcripts Dasr, and 3)
training a language understanding model with the fine-tuned
LM on labeled SLU data DSLU, which consists of the manual
transcripts Dtrs with their corresponding labels.

In this paper, we focus on the task of intent detection,
which is an utterance-level multi-class classification problem.
More formally, given an utterance x = {wx

1 , w
x
2 , ..., w

x
|x|},

the goal is to predict its corresponding intent Ix. The input
utterance x can be either manually transcribed texts, denoted
as xtrs, or ASR-recognized results, denoted as xasr. The pro-
posed approach is detailed below.

2.1. Embeddings from Language Model (ELMo)

Peters et al. [13] proposed ELMo to extract context-dependent
word embeddings from a pre-trained LM, and the contextual-
ized embeddings were proved to be able to improve the per-
formance of downstream NLP tasks. In this paper, we adopt
the same model architecture as in the original work, which
consists of a CNN character encoder and two bidirectional
LSTMs [16]. Same strategy of combining hidden states from
different layers is applied [13], which computes the represen-
tation et for a word wx

t in the sentence x as:

et = γ

2∑
i=0

αi · hxt,i,

where hxt,i = [
←−
hxt,i;
−→
hxt,i] is the concatenation of the i-th layer

output from both directions at the time t, αi is the weight for
the i-th layer, and γ is a scaling factor. αi and γ are scalar
parameters learned along with downstream tasks. The ELMo
model is pre-trained on the general-domain textual data DLM.

2.2. Language Model Fine-Tuning

One advantage of pre-training a language model is that it can
leverage large amounts of unlabeled text corpora. Usually the
data is general such as Wikipedia. However, the data distri-
bution of the target task may be different from that used in
pre-training, posing a domain mismatch problem. Howard et
al. [17] proposed to fine-tune the pre-trained LM with sen-
tences from the downstream dataset and showed that it boosts
the performance of the downstream task. Chronopoulou et
al. [18] also demonstrated the effectiveness of the fine-tuning
method.

In order to adapt the pre-trained LM to the target data,
the fine-tuning technique is applied. Given an utterance x =
{w1, w2, ..., w|x|}, the bidirectional language modeling loss
can be written as:

LLM =
1

|x|

|x|∑
t=1

− log p(wt | w<t)− log p(wt | w>t),

where p(wt | w<t) and p(wt | w>t) are probabilities of wt

predicted by the forward LM and the backward LM respec-
tively.

Language model fine-tuning can be performed on both
manual transcription and recognized results

2.3. Confusion-Aware Fine-Tuning

Taking ASR transcripts as inputs may introduce an issue that
words in an utterance may be misrecognized. For instance,
fair and fare are acoustically similar, so an ASR system may
fail to distinguish between them, resulting in a substitution
error. Such recognition errors might be recovered by hu-
man, because human are aware of the acoustic confusability
of words. However, the errors may significantly degrade the
testing performance when the models are trained on manual
transcripts. In order to enhance the ASR robustness in contex-
tualized word embeddings, this section integrates the acoustic
confusion into our LM.

We propose a confusion-aware fine-tuning method to mit-
igate this problem from pre-trained LMs, which aims at mak-
ing the LM consider multiple acoustically confusable words.
Let c = {wx1

t1 , w
x2
t2 } denote an acoustic confusion, i.e., two

words with similar pronunciation in two different utterances
x1 and x2, and C = {c1, c2, · · · , c|C|} denote the set of all
acoustic confusions in x1 and x2. We introduce a new loss
term called confusion loss:

Lconf =
1

|C|
∑
c∈C

1∑
i=0

1−
hx1
t1,i
· hx2

t2,i∥∥hx1
t1,i

∥∥∥∥hx2
t2,i

∥∥ ,
which is the cosine distance between the LM hidden states
corresponding to words. Note that we empirically find that
including only the first two layers in loss computation works
the best. Two approaches are designed for extracting acoustic
confusions.

2.3.1. Supervised Confusion Extraction

Assuming that both ASR transcripts xasr and manual tran-
scripts xtrs of a spoken utterance are accessible, we align xasr
with xtrs with respect to minimum edit-distance criterion to
extract acoustic confusions as shown in Figure 2a. By mini-
mizing Lconf, we directly force the LM to produce representa-
tions for an erroneous word similar to its correct counterpart.
This method is called supervised confusion extraction con-
sidering that it requires the availability of manual transcripts
Dtrs.

2.3.2. Unsupervised Confusion Extraction

Considering the scenario where only audio recording of a spo-
ken utterance is available, we can apply an ASR on the record-
ing and construct a word confusion network (WCN). Then a
list of n-best hypotheses is generated and aligned using WCN,



xtrs : Show  me   the   fares from   Dallas   to   Boston

xasr : Show  me    *    affairs from   Dallas   to   Boston

Acoustic Confusion 𝑪 = 𝑤3
xtrs,𝑤2

xasr

(a) Supervised confusion extraction
with aligned utterances

List

Least

Lift

all flights

lights

slides

tomorrow

to*

*

Monaco

Morocco

Acoustic Confusion Top hypothesis x1

Alternative hypothesis x2

(b) Unsupervised confusion extraction using
a WCN generated by ASR

Fig. 2: Illustration of different extraction approaches. ∗ denotes a blank symbol for alignment purpose.
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Fig. 3: Illustration of our SLU model architecture.

and the acoustic confusions can be obtained as depicted in
Figure 2b.

An important advantage of this approach is that it does not
require any labeled utterances or manual transcripts; there-
fore, we can leverage unlabeled audio recordings to fine-tune
LMs in an unsupervised fashion.

2.4. Joint Objective Function for Fine-tuning

In the fine-tuning stage, we minimize the joint objective func-
tion including the LM loss and confusion-aware loss:

LFT = LLM + βLconf,

where β is a hyperparameter to balance the contribution of
two loss functions. The procedure enables our model to incor-
porate not only the target domain information but the acoustic
information for better robustness to ASR errors.

2.5. Spoken Language Understanding (SLU)

To further build an SLU model that leverages ASR-robust
contextualized embeddings, we employ a biLSTM as our
SLU model, where the biLSTM takes contextualized word
embeddings {et}|x|t=1 as the input, and the outputs of the last
biLSTM layer are max-pooled, linearly transformed and soft-
maxed to obtain the predicted probabilities for each class.

The overall architecture is illustrated in Figure 3. During
training, we use cross entropy as the loss function. Weights
of the ELMo model are fixed during this stage except for αi

and γ. The SLU model is trained on DSLU and evaluated on
automatic transcripts. The trained SLU model is expected to
achieve better performance on automatic transcripts due to the
integration of ASR-robust contextualized word embeddings.

3. EXPERIMENTS

train test intents WER
ATIS 4478 893 21 15.55%

SmartLights close 1765 6 45.61%
far 1765 6 71.02%

Snips 13084 700 7 45.56%

Table 1: Dataset statistics.

3.1. Setup

Three SLU datasets used in the experiments as listed below:
• ATIS (Airline Travel Information Systems) [19, 20, 21]

is a benchmark dataset widely used in language under-
standing research. The dataset contains audio record-
ings of people making flight reservations with corre-
sponding manual transcripts.
• Snips SmartLights [22] contains spoken commands for

smart light assistant. The dataset comes with two kinds
of microphone settings, close field and far field.
• Snips [23] is a dataset for benchmarking NLU systems.

This dataset is larger than ATIS and Snips SmartLights.
We use a commercial text-to-speech system 2 to synthe-
size audio from text data.

The dataset statistics are shown in Table 1.
For ATIS, we train an ASR system on WSJ [24] using the

s5 recipe from Kaldi [25]. For the other datasets, we use an
ASR model released in Kaldi to provide better recognition re-
sults 3. We use the ASR system to recognize audio recordings
and extract acoustic confusions for fine-tuning.

2https://cloud.google.com/text-to-speech/
3https://kaldi-asr.org/models/m1



Model ATIS SmartLights Snipsclose far
Manual ASR Manual ASR Manual ASR Manual ASR

(a) Oracle 96.47 94.75 90.60 74.05 82.94 56.96 96.38 91.79
(b) Context-independent 93.60 90.35 95.67 65.71 95.67 44.55 96.29 72.70
(c) Pre-trained ELMo 96.65 93.27 97.01 64.53 97.01 44.46 96.29 77.86
(d) (c) + fine-tune, LLM only 96.91 94.27 95.91 66.33 95.66 46.22 96.38 87.74
(e) (c) + fine-tune, LFT (sup-conf) 96.61 95.65 95.92 67.99 95.53 46.57 97.01 88.52
(f) (c) + fine-tune, LFT (unsup-conf) 97.02 95.39 95.98 67.98 95.79 47.38 97.04 89.55

Table 2: Results of intent detection tasks (%). Manual and ASR indicate evaluating on xtrs and xasr respectively. close and
far represent different microphone settings. sup-conf stands for supervised confusion extraction, and unsup-conf stands for
unsupervised confusion extraction. The best numbers for each dataset are marked in bold.

3.2. Model and Training Details

The pre-trained weights of ELMo from [13] are adopted.
The size of contextualized representations is 1024. Our SLU
model has two layers with 300-dimensional hidden states.

In the fine-tuning stage, acoustic confusions that contain
stop words are excluded, and β is set to 0.1. We set batch
size to 64 and use Adam as the optimizer [26] with learning
rate 0.001 for all stages. We fine-tune ELMo for 3 epochs and
train the SLU model for 50 epochs. The Snips SmartLights
dataset is very small, so we use 10-fold cross validation to
evaluate the models as suggested in [22].

3.3. Baselines

We compare our method with two baselines and an oracle sys-
tem as listed below.
• Context-independent: replaces the contextualized rep-

resentations with traditional context-independent word
embeddings. The embedding matrix is initialized ran-
domly.

• Pre-trained ELMo: uses pre-trained ELMo weights
without fine-tuning.

• Oracle: trains SLU on xasr with pre-trained ELMo em-
beddings.

Note that our models do not utilize the information the oracle
system uses, xasr paired with labels.

3.4. Results

Table 2 shows the experimental results, where the reported
numbers are accuracies averaged over 5 runs. All models
are trained on xtrs except for the oracle system, and they
all perform great when evaluated on xtrs. Rows (b) and (c)
show that ASR errors degrade SLU performance considerably
for both context-independent and context-dependent embed-
dings. When testing on xasr, the performance drops 3.38%
on ATIS dataset using pre-trained ELMo embeddings. The
results on Snips datasets show that the performance drops
more in higher WER scenarios.

Our proposed method, confusion-aware language model
fine-tuning, outperforms baselines by a large margin on all
datasets (rows (d)-(f)), while it maintains identical perfor-
mance on xtrs. Results in row (d) can be viewed as an abla-
tion to rows (e) and (f), where we exclude Lconf from the joint
objective. Rows (e) and (f) show that while LLM provides sig-
nificant improvement alone, adding Lconf further boosts per-
formance notably. The results demonstrate that the proposed
method can provide ASR robustness to the SLU models.

3.5. Discussion

The research on SLU has been investigated for several years,
and there are two main branches. The first branch treats SLU
as a natural language understanding (NLU) task, where the
prior work trained the models directly on natural language
data without misrecognition [1, 2, 3, 4]. Another branch fo-
cuses on building understanding models with consideration of
ASR results. While some prior work relied on ASR lattices or
WCNs to provide richer information to SLU models [6, 7, 8],
the work presented here focuses on using the 1-best results
from ASR. Simonnet et al. proposed an ASR error simu-
lation scheme to train robust SLU models [5], whereas we
dig realistic ASR errors from recognition results. Shivaku-
mar et al. used WCNs to extract acoustic confusions for fine-
tuning context-independent word embeddings [9, 10]. Our
work combines the idea of using acoustic confusions with
language model fine-tuning [17] to obtain ASR-robust con-
textualized embeddings.

4. CONCLUSION

This paper proposes a novel confusion-aware language model
fine-tuning method for learning ASR-robust contextualized
embeddings. We introduce supervised and unsupervised
methods for extracting acoustic confusions and integrate a
confusion loss that forces LMs to consider acoustically con-
fusable words. The experiments on SLU demonstrate that our
proposed method learns contextualized embeddings that are
robust to ASR errors.
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