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Abstract—To exploit the co-occurrence patterns of semantic
concepts while keeping the simplicity of context fusion, a novel
reranking approach is proposed in this paper. The approach,
called ordinal reranking, adjusts the ranking of an initial search
(or detection) list based on the co-occurrence patterns obtained
by using ranking functions such as ListNet. Ranking functions
are by nature more effective than classification-based reranking
methods in mining ordinal relationships. In addition, the ordinal
reranking is free of the ad hoc thresholding for noisy binary
labels and requires no extra offline learning or training data.
To select informative concepts for reranking, we also propose a
new concept selection measurement, wc-tf-idf, which considers the
underlying ordinal information of ranking lists and is thus more
effective than the feature selection algorithms for classification.
Being largely unsupervised, the reranking approach to context
fusion can be applied equally well to concept detection and
video search. While being extremely efficient, ordinal reranking
outperforms existing methods by up to 40% in mean average
precision (MAP) for the baseline text-based search and 12% for
the baseline concept detection over TRECVID 2005 video search
and concept detection benchmark.

Index Terms—Context fusion, learning-to-rank, rerank, video
concept detection, visual search, wc-tf-idf.

I. Introduction

TO FACILITATE random access and semantic understand-
ing of large-scale multimedia databases, image/video

retrieval and semantic concept detection [3] have been an
active research area, thanks to the continuing growth of home
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videos, photo collections, broadcast news videos, and media
sharing in the emerging social networks.

Bridging the semantic gap—the chasm between raw data
(signals) and high-level semantics (meanings)—is essential for
exploiting the growing multimedia contents. Toward this goal,
recent research has focused on building detectors for detecting
concepts such as locations, objects, and people [3] using a pre-
defined lexicon and a sufficient number of annotated examples.
Once trained, these detectors can be used to semantically tag
and index multimedia contents in a fully automatic fashion.

On the other hand, there has been a substantial body of
work on visual search, whose goal is to find images or
videos in response to queries that are unknown to the system.
Current visual search solutions are mostly restricted to text-
based approaches which process keyword queries against text
tokens associated with the media, such as speech transcripts,
captions, file names, etc. However, such textual information
may not necessarily come with the image or video. It has been
shown that the use of other modalities such as image and audio
content improves text-based visual search [8], [17]–[19], but it
requires multiple example images, which could be difficult for
users to prepare. Additionally, it is observed that most users
expect to search simply through a few keywords [9].

Being two extreme scenarios (supervised versus unsuper-
vised), concept detection and visual search actually share a
unified goal: finding videos or images meeting certain seman-
tic information needs (or target semantics). Therefore, success
in one scenario should benefit the other. Since concept detec-
tion is likely to provide high-level contexts,1 one promising
direction is to utilize auxiliary concepts to aide (supervised)
concept detection and even (unsupervised) visual search. For
example, since the detection accuracy of the concept person
is high, we can use its detection result to help the detection of
related, yet more difficult, concepts such as people marching
or crowd. Likewise, since “Hu Jintao” is contextually related
to concepts such as government leader, office, and Asian
people, “Searching videos of Hu Jintao,” could be easier by
incorporating the detection results of these concepts.

The use of peripherally related concepts to refine detection
or search of semantic targets is generally called context fusion.

1The meanings of “context” are usually application-dependent [34]. Here,
we refer to context as those attributes describing who, where, when, what,
etc., shared by documents forming the recurrent patterns.
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Fig. 1. Architecture of the proposed ordinal reranking framework for context
fusion, with applications to video search and concept detection. The initial
result from a text-only search model or a pre-trained concept detector is
taken as an approximation of the target semantics. A ranking algorithm is
then employed to mine the co-occurrence patterns of extracted features (i.e.,
concept detection scores [4]) to rerank the initial result.

It was first explored in prior work for concept detection
[15]–[18] and then extended to video search under a reranking
framework [5]–[7], which aims to leverage the co-occurrence
patterns between target semantics and extracted features (high-
level concept detectors or low-level visual features) to refine
(by reordering) the result of an initial text-based search. A
typical approach, referred to as classification-based reranking
[7] in this paper, takes the higher rank and lower rank results
of a baseline system as pseudopositive and pseudonegative
examples to train a discriminative model and regards the
normalized classification score for each object in the ini-
tial list as its reranked score. Since reranking is largely
unsupervised, it can be applied equally well to context
fusion in both concept detection and video search tasks.
Salient performance gain over baseline methods has been
reported in [7]. In addition, the simplicity of the keyword-
based search paradigm is maintained under the reranking
framework.

Though the classification-based reranking method has the
advantage that existing classification methodologies can be di-
rectly applied, it is not free of problems. First, the formulation
of learning as a minimization of classification errors neglects
the underlying ordinal information of the initial list. Second,
the classification-based reranking resorts to an ad hoc mech-
anism for determining the threshold for noisy binary labels.
In addition, determining the pools of the pseudopositive and
pseudonegative sets, which is vital to the system performance,
is not straightforward.

In this paper, to exploit contextual information for concept
detection and visual search, we propose a novel reranking
method, called ordinal reranking, that employs ranking algo-
rithms such as RankSVM [11] and ListNet [20] to learn the
co-occurrence patterns between target semantics and features
extracted from the initial list. Since the objective function is to
minimize errors in object ranking, ordinal reranking is more

effective and efficient for mining ordering information and free
of the ad hoc thresholding problem.

Fig. 1 gives an illustrative example. A baseline model,
which can be a text-based search model or a pre-trained
concept detector, retrieves video shots (basic video retrieval
units) that match the target semantics “Find shots of boats.”
Besides false positives (e.g., images with an anchorperson or
crowds), there are still certain relevant shots ranked low due
to the semantic gap or the lack of associated keyword anno-
tations. From the noisy initial ranked list, ordinal reranking
mines the co-occurrence patterns and identifies “ocean” and
“outdoor” as the relevant concepts. Reranking is then made
by reordering the shots with high search scores linearly fused
by these relevant concepts.

We further investigate concept selection methods that au-
tomatically select informative concepts for reranking in an
unsupervised fashion. Considering visual objects (video shots
or images) as documents and concepts as visual terms,
we improve the c-tf-idf (concept tf-idf2) measurement [10]
by incorporating the ordinal information provided by the
initial list. The new measurement, weighted c-tf-idf (wc-
tf-idf), has promising performance and further improves
reranking.

Besides being extremely efficient, ordinal reranking outper-
forms existing reranking methods and improves up to 40% in
mean average precision (MAP)3 for the baseline text-based
search and 12% for the baseline concept detection, when
evaluated on the TRECVID 2005 video search and concept
detection benchmark [1].

In summary, the primary contributions of the paper include
the following.

1) To our best knowledge, the proposed ordinal reranking
method represents one of the first attempts that utilize
ranking algorithms for reranking (Section IV). Because
the underlying ordinal information is better exploited,
ordinal reranking outperforms existing reranking meth-
ods in both effectiveness and efficiency.

2) As far as we know no feature selection measure has been
designed specifically for reranking. We adapt the famous
tf-idf measurement to the reranking framework by taking
the ordering of the objects into account (Section V).

3) An extensive performance study including comparisons
to existing reranking methods, parameter sensitivity test,
and analysis of the result of concept selection, is con-
ducted (Section VI).

II. Related Work

As shown in Table I, context fusion approaches can be cat-
egorized into “offline” and “online” methods. Offline methods
use annotations of training data to discover the contextual
information, while online methods approximate the initial
result of a baseline system as pseudoground truth to further
rerank the initial result. Below we briefly review some existing
methods.

2“tf-idf” stands for term-frequency inverse-document-frequency [14].
3MAP: mean average precision, a performance metric used in TRECVID

for concept detection and search [1].
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TABLE I

Comparison of Context Fusion Approaches

Offline (Supervised) Online (Unsupervised)

Classification-based reranking Ordinal reranking

Learning strategy Using annotations of training data to discover
contextual information to rerank test data

Using initial result of a baseline system as pseudoground truth to
learn to rerank the initial result

Higher rank (positive), lower rank (negative) Maintaining ranking order

Advantage – Unsupervised, comparable performance to
offline methods

More effective and efficient in
mining ordinal information

Drawback Not applicable to image/video search Ad hoc thresholding, losing ordinal informa-
tion

–

References [7], [15]–[17], [21]–[27] [6]–[8], [19], [28] This paper

A. Offline Context Fusion

The context-based concept fusion approach has been ex-
plored in prior work for concept detection [15]–[17], [21]–
[23]. The nature of concept detection makes it possible to
discover related concepts through mining ground truth anno-
tations for co-occurrences of concepts and training models. For
example, the discriminative model fusion (DMF) method [21]
generates a model vector based on the detection score of the
individual detectors and trains a discriminative model to learn
the contextual relationships, while the boosted conditional
random field (BCRF) method [15] learns the contextual rela-
tionships by graph learning. In these early offline methods, the
learning is fully supervised. Also, the learning requires explicit
knowledge of the target semantics and ground truth labels to
discover the contextual relationships. While this constraint is
fine for concept detection where many labels are available, it
is unclear how these methods can deal with the unsupervised
conditions in search.

Work on using concept detectors for context fusion in
search is relatively limited. Basic applications require methods
of filtering out or boosting certain concept types depending
on the type of query [24], [17], or investigating matches
between query keywords and concept descriptions to find
related concepts [7], [25]–[27]. However, deeper relationships
to peripheral concepts are difficult to uncover, particularly in
search, where the details of the target semantics are unknown
to the system. Moreover, these relationships are often shaky,
sometimes degrading search performance by uncovering re-
lationships that are ill-suited for video retrieval [7]. As a
result, it is still considered more feasible to uncover the visual
co-occurrence of related concepts from the target semantics
directly instead of the less meaningful lexical relationships.

B. Online Classification-Based Reranking

In view of the lack of supervision for visual search, online
methods approximate the initial result of a baseline system as
pseudoground truth to learn the contextual patterns. Rooted
in pseudorelevance feedback for text search [8], [19], [28],
online classification-based reranking leverages features that
can potentially discriminate between higher rank and lower
rank images in the initial result to determine a new ordering
of the images without resorting to any offline learning or
extra training data. In [5] and [6], the reranking framework
is applied to low-level features such as text token frequencies,

grid color moments, and image textures in a statistical manner.
Authors of [7] explore the use of discriminative classifiers
on a large concept lexicon [1] composed of 374 high-level
concepts. The pseudopositive and pseudonegative examples
are used to train a support vector machine (SVM), and the
classification margin for an object is regarded as its reranked
score. As shown in [7], the performance of classification-based
reranking is comparable to that of supervised methods such as
BCRF [15] and DMF [21]. Evaluated on TRECVID 2005, it
improves the concept detection baseline from MAP 0.399 to
0.427 (a 7.0% relative improvement) and the search baseline
“text-okapi” from 0.087 to 0.112 (28.7%).

However, as mentioned in Section I, classification-based
reranking formulates ranking as a classification problem and
thus neglects the underlying ordinal information of the ranked
list. In addition, the classification approach requires an ad
hoc mechanism to determine the threshold for noisy binary
labels. To remedy such pitfalls, the proposed ordinal reranking
incorporates ranking algorithms into the reranking framework
to mine the co-occurrence patterns.

III. Ranking Algorithms

In this section, we first introduce the learning-to-rank task
and two famous ranking algorithms, RankSVM and ListNet,
and then compare learning-to-rank and reranking.

A. Learning-to-Rank

Any system that presents ordered results to a user is
performing a ranking. A common example is the ranking
of search results from the search engine (e.g., Google). A
ranking algorithm assigns a relevance score to each object, and
ranks the object by the score. The ranking order represents the
relevance of objects with respect to the query. In the literature,
the task of training a ranking model which can precisely
predict the relevance scores of test data is commonly referred
to as learning-to-rank, which has received great interests from
academia and industry [11]–[13], [31].

For learning-to-rank, a query is associated with a list
of training data D = (d1, d2, . . ., dN ), where N denotes
the size of training data and dj denotes the jth object,
and a list of manually annotated relevance scores Y =
(y1, y2, . . ., yN ), where yj ∈ [0, 1] denotes the relevance score
of dj with respect to the query. Furthermore, for each object
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dj a feature vector Xj = (Xj1, Xj2, . . . , XjM) is extracted,
where M is the dimension of the feature space. The purpose of
learning-to-rank is to train a ranking model f (·) that accurately
predicts the relevance score of test data by leveraging the
co-occurrence patterns between X and Y. More specifically,
for the training set D we obtain a list of predicted relevance
score Z = (z1, z2, . . . , zN ) = (f (X1), f (X2), . . . , f (XN )). The
objective of learning is to minimize the total loss L(Y, Z),
where L is a loss function for ranking.

Many existing ranking algorithms take object pairs as
instance in learning. These pairwise approaches formulate
the learning task as classification of object pairs into two
categories (correctly ranked and incorrectly ranked) and train
classification models for ranking. The use of SVM, boosting,
or neural network as the classification model leads to the
methods RankSVM [11], RankBoost [29], and RankNet [30].
Though the pairwise approach offers advantages, it ignores
the fact that ranking is a prediction task on a list of objects.
In addition, the pairwise approach is time-consuming as the
operation on every possible pair is of O(N2) complexity.

The listwise approach ListNet proposed in [20] conquers
these shortcomings by using score lists directly as learning
instances and minimizing the listwise loss between the initial
list and the reranked list. In this way, the optimization is
performed directly on the list, and the computational cost
can be reduced to O(N), making online reranking applications
possible. Our experiment (described later in Section VI) shows
ListNet is surprisingly efficient and even outperforms the well
known pairwise approach RankSVM.

More specifically, to define a listwise loss function, authors
of [20] first employs top-one probability to transform a list of
ranking scores into a probability distribution. Given the scores
of all the objects, the top-one probability P(yj) of an object
dj represents the probability of dj being ranked on the top

P(yj) =
�(yj)∑N
n=1 �(yn)

=
exp(yj)∑N
n=1 exp(yn)

(1)

where �(·) is an increasing and strictly positive function such
as the exponential function [20]. Since the list of scores is
modeled as a probabilistic distribution, a metric such as the
cross entropy can be used to measure the distance (listwise
loss) between the original score list and the predicted one

L(Y, Z) = −
N∑

j=1

P(yj) log(P(zj)). (2)

In [20], a linear neural network model is employed as the
ranking model, predicting the ranking score in the form of a
linear weighted sum

zj = f (Xj) = 〈W, Xj〉 (3)

where 〈·, ·〉 denotes inner product and W = (w1, w2, . . ., wM) is
a weighting vector. To minimize (2), we can derive its gradient
with respect to W as

�W =
∂L(Y, Z)

∂W
=

N∑
j=1

(
P(zj)− P(yj)

)
Xj (4)

and then use the gradient descent procedure to update W at a
learning rate η

W ← W − η×�W (5)

where W is initially set to zero. The learning process ter-
minates when the change in W is less than a convergent
threshold δ. The values of η and δ are determined empirically,
and a parameter sensitivity test over them is presented in
Section VI-B.4.

B. Learning-to-Rank Versus Reranking

Reranking and learning-to-rank differ in a number of as-
pects. First, while learning-to-rank requires a great amount
of supervision, reranking takes an unsupervised fashion and
requires no ground truth from the initial concept detection or
search results. The online training set D is made up of the
objects of the initial results. The associated relevance scores
assigned by the baseline method are taken directly as the
pseudo ground truth Y. No manual labeling, extra training
data or offline learning is needed. Second, for learning-to-rank
the ranking algorithm f (·) is trained in advance (the training
data can consist of multiple queries) to predict the relevance
scores for arbitrary queries, while for reranking f (·) is trained
at runtime by cross validation (described later) specifically for
each query.

As described in Section II, existing approaches mine the
co-occurrence patterns via statistical [5], [6] or classification
[7], [19], [28] methods. Despite that both learning-to-rank and
reranking explore ordinal information, little effort has been
made to incorporate ranking algorithms into the online rerank-
ing framework. To our best knowledge, this paper represents
one of such attempts.

IV. Ordinal Reranking

The input to ordinal reranking is a list of objects D and
the corresponding relevance scores Y assigned by a baseline
model (for either search or concept detection). We assume
that feature extractions (e.g., concept detections) for each
visual object are computed in advance. For these N objects
in D, the corresponding M-dimensional features can form an
N ×M feature matrix X. A concept score is a real value in
[0, 1] that indicates the confidence of existence of the specific
concept. The major steps of ordinal reranking are as follows
(also illustrated in Fig. 1).

1) Concept Selection: Select informative concepts via a
concept selection method (cf. Section V) to reduce the
feature dimension to M ′.

2) Randomly partition the dataset into F -folds D =
{D(1), D(2), . . . , D(F )}.

3) Employment of Ranking Algorithms: Hold out one fold
of data D(1) as the test set and train the ranking algorithm
f (i) using the remaining data. Predict the new relevance
scores Z(i) of the test set D(i). Repeat until each fold
is held out for testing once. The predicted scores of
different folds of objects are then combined to form the
new list of scores Z = {Z(1), Z(2)), . . . , Z(F )}.
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4) Rank Aggregation: After normalization, the initial score
yj and new score zj (for object dj) are fused to produce a
merged score sj by taking a weighted average as follows:

sj = (1− α)yj + αzj (6)

where α ∈ [0, 1] denotes a fusion weight on the initial
and reranked scores; α = 1 means totally reranked.

5) Rerank: Sort the fused scores to output a new ranked
list for the target semantics.

In this paper, we focus on leveraging hundreds of pre-
trained concept detectors for context fusion. Therefore, we use
concept scores to form the feature space and apply concept
selection methods to select informative concepts. In practice,
thanks to the generality of the ordinal reranking approach, we
can also utilize contextual cues other than high-level concept
scores such as low-level visual features, time stamps, geo-tags,
etc. For example, in [2] we use visual words [35] and geo-tags
as the contextual cues for reranking the result of a consumer
photo search system.

To accommodate the supervised ranking algorithms to the
unsupervised environment of reranking, we employ the F-
fold cross validation technique [7] to partition the dataset,
and train F ranking algorithms with different folds of data
held out as the test set. Though the new scores Z are not
assigned by a unified ranking algorithm, the nature of cross
validation ensures that F–2 folds of data are commonly used
in the training of two different ranking algorithms.

A ranking algorithm predicts the relevance scores of ob-
jects by exploiting the co-occurrence patterns learnt from the
training data. We then use (6) for rank aggregation of the
initial relevance scores and the newly predicted scores. Such
a linear fusion model, though simple, has been shown adequate
to fuse visual and text modalities in video retrieval and concept
detection [17], [18]. The fusion weight α controls the degree
of context fusion and may be influential to the reranked result.
In our experiments described in Section VI.B.4, variant fusion
weights are tested experimentally.

V. Concept Selection

We further investigate concept selection methods to remove
irrelevant or redundant features and thus enhance accuracy.
We improve the concept tf-idf (c-tf-idf) proposed in [10] by
incorporating the ordinal information of the initial list and
emphasizing the contribution of higher rank objects. We first
briefly review the existing feature selection methods and then
describe the proposed weighted c-tf-idf (wc-tf-idf).

As reported in [10] and [7], the performance of a video
search model can degenerate significantly as the feature
dimension increases arbitrarily. However, the feature selection
methods used in most existing ranking models are originally
designed for classification rather than for ranking. Applying
these selection methods may be problematic due to the distinct
problem definition and objective function between classifi-
cation and ranking. There has been rare method of feature
selection specifically proposed for ranking, leaving the work
on feature selection for ranking a still unsolved problem [31].

One exception is proposed in [32], where feature selection
is formulated as an optimization problem and the evaluation
measures in ranking are utilized to measure feature impor-
tance. However, the feature selection method needs ground
truth data and thus is inapplicable to online reranking.

A promising solution is the totally unsupervised c-tf-
idf measurement proposed in [10]. As the name implies,
c-tf-idf is adapted from the best known term-informativeness
measurement tf-idf [14]. Viewing visual objects as documents
and concept scores as visual term frequencies, we construct
a document–concept occurrence table from a list of visual
objects and the associated concept scores, and define the
c-tf-idf of concept c in a query q as follows:

c-tf-idf(c, q) = freq(c, q) log

(
T

freq(c)

)
, c ∈ C (7)

where freq(c, q) =
∑N

j=1 Xjc is the occurrence frequency of

c in the initial reranked list, Xjc is the concept score of c

in dj (estimated by a pre-trained concept detector), N is the
length of the initial list, and C denotes the concept set. The
denominator freq(c) =

∑T
j=1 Xjc is the occurrence frequency

of c in the whole corpus. T is the size of corpus, and typically
T � N because the initial list is a subset of objects that are
considered relevant. The intuition of (7) is that the relevance of
a concept increases proportionally to the frequency it appears
in the return list of a query, but is offset by the frequency of
the concept in the entire corpus to filter out common concepts
(such as face and indoor). In this way, c-tf-idf offers a good
combination between popularity (idf) and specificity (tf) [14].

However, because c-tf-idf considers each object in the initial
list as equally relevant to the target semantics, the underlying
ordinal information is totally neglected. Since the higher rank
objects are more relevant to the target semantics, they should
be weighted more than the lower rank ones. To this end, we
propose to utilize the initial relevance scores to weight the
concept score of each object as follows:

wc-tf-idf(c, q) =
N∑

j=1

yjXjc log

(
T∑T

j=1 Xjc

)
. (8)

After sorting wc-tf-idf(c, q) in descending order, the top
ranked concepts are selected to train the ranking algorithms.
Note that wc-tf-idf is generic and applicable to other contex-
tual cues such as low-level visual features.

VI. Experimental Results

A. Experiment

A series of experiments are conducted on the TRECVID
2005 (TV05) dataset to give a comprehensive evaluation
of the proposed reranking framework.4 The TV05 dataset

4‘TRECVID’ stands for TREC Video Retrieval Evaluation [1], the goal
of which is to promote content-based video analysis and retrieval via open,
metrics-based evaluation. The TRECVID dataset has been widely used as a
benchmark for evaluating video search and concept detection methods. We
use TRECVID 2005 here so that we can compare our method with others
[6], [7].
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TABLE II

Performance Comparison of Various Reranking Methods on the TRECVID 2005 Search Task Using ‘‘Text-Okapi’’ as the Baseline

# Reranking Algorithm Feature Set Feature Selection MAP Improvement (%) Time/Query
1 Baseline Text-only – 0.087 – –
2 IB [6] Low-level – 0.105 20.7 18 s
3 SVM [7] cp374 Mutual information 0.112 28.7 17 s
4 RankSVM cp39 – 0.103 18.4 1 h
5 ListNet cp39 – 0.113 30.0 0.2 s
6 ListNet low-level – 0.105 20.7 0.9 s
7 ListNet cp374 – 0.116 33.3 1.4 s
8 ListNet cp374 c-tf-idf 0.118 35.6 0.4 s
9 ListNet cp374 wc-tf-idf 0.121 40.0 0.4 s

consists of 277 international broadcast news video programs
and accumulates 170 h of videos from six channels in three
languages (Arabic, English, and Chinese). The time span is
from October 30 to December 1, 2004. The automatic speech
recognition and machine translation transcripts are provided by
the National Institute of Standards and Technology. The video
data is segmented into shots and each shot is represented by
a few keyframes (subshots). In the following experiments, we
evaluate the performance at shot level in terms of average
precision (AP), which approximates the area under a non-
interpolated recall/precision curve. Since AP only shows the
performance of a query, we use MAP, which is simply the
mean of APs for multiple queries, to measure average perfor-
mance over sets of different queries in the test data. See more
explanations in [1].

We first apply the reranking approach to the search task,
where 24 query topics are provided with ground truth anno-
tations. Since TRECVID evaluates the search results over the
top 1000 shots, we use the top 1300 subshots (which typically
encompass the top 1000 shots) returned by the text-based
search method “text-okapi” [6] for reranking.

We also apply ordinal reranking for the concept detection
of the 39 LSCOM-Lite concepts [4] over a set sampled from
the TV05 development data.5 Since TRECVID evaluates the
high-level concept detection results over the top 2000 shots, we
use the top 2600 subshots returned by the baseline detection
method from [17] for reranking. In a supervised fashion, the
concept detection accuracy is generally much higher than that
from the search baseline.

For feature representation, we adopt the detection scores
of pre-trained concept detectors [4] for the LSCOM (cp374)
and LSCOM-Lite (cp39) lexicons [17] to provide high-level
semantics. The LSCOM concept lexicon is a set of 374
visual concepts which were annotated over an 80-h subset
of the TRECVID data. The LSCOM-Lite lexicon is with
39 concepts and is an early version of LSCOM. Low-level
visual features (low-level) including 5 × 5 grid color mo-
ments and 4 × 6 Gabor textures [6] are also included to
compare against the high-level concept scores. Though they
are primitive feature representations, prior work such as [6],
[17] has shown their excellence in image retrieval and concept
detection.

5Dataset available online: http://mpac.ee.ntu.edu.tw/˜yihsuan/reranking/.

The implementation of RankSVM is based on the software
SVMlight [33] with default parameters. ListNet is implemented
in MATLAB. The programs are executed on a regular Intel
Pentium server.

B. Reranking for Video Search

1) Comparison of Variant Reranking Methods and Feature
Sets: We first conduct experiments on TV05 video search
task with variant reranking methods and feature sets without
feature selection. Empirically, we set the fusion weight α to
0.5 for simplicity and use fivefold cross validation to conduct
reranking. The learning rate η and convergent threshold δ for
ListNet are empirically set to 0.005 and 1e−4, respectively
(parameter sensitivity tests are presented later). While the
MAP of the text-based search baseline “text-okapi” is 0.087,
existing methods [6], [7] improve the MAP to 0.105 and 0.112
respectively, as shown in the second and third rows of Table II.
Note that [6] uses low-level visual features without feature
selection, whereas [7] utilizes mutual information to select the
75 most informative concepts among cp374 for reranking.

We first compare the performance of ordinal reranking
with different ranking algorithms, namely, RankSVM and
ListNet. As shown in the fourth row of Table II, RankSVM
is extremely time-consuming and thus get abandoned in the
following experiments. On the contrary, thanks to the linear
kernel, ListNet is surprisingly efficient and takes less than one
second to rerank a single query. The efficiency of ListNet
makes it superior to the method described in [6], which needs
a clustering process, and to the method described in [7],
which uses non-linear optimization and ad hoc thresholding.
Moreover, the fact that ListNet improves the MAP to 0.113
with a small concept lexicon cp39 further demonstrates its
effectiveness in reranking.

We then evaluate the performance of ListNet with variant
feature sets (rows 5–7 of Table II). Despite the less salient
performance gains that can be provided, low-level visual
features still offer contextual cues that augment the baseline
text-based methods and improve the MAP to 0.105. It is not
surprising that reranking based on low-level visual features
does not perform as well as that based on high-level concepts
since concepts tend to capture both the visual similarities and
the semantic correlations. In addition, the visual patterns of
target semantics may not be consistent or evident enough,
bringing noises to the reranking procedure. For example, a
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TABLE III

Top Positively Weighted Concepts of ListNet and Top Selected Concepts of wc-tf-idf Among LSCOM 374 Concepts for Video

Search

Query Baseline AP ListNet Without Feature Selection ListNet With Top 150 Ranked Concepts Selected by wc-tf-idf
AP Top Positively Weighted Concepts AP Top Selected Concepts

condoleeza rice (149) 0.098 0.085 Military building, U.S. flags 0.089 Crowd, non-uniformed fighters, parade, peo-
ple marching

omar karami (151) 0.443 0.532 Interview, government leader 0.571 Singing, meeting, conference room, furni-
ture, interview

hu jintao (152) 0.211 0.188 Flag-U.S., network logo, horse 0.185 Asian people, Hu jintao, Colin Powell, gov-
ernment leader

tony blair (153) 0.357 0.554 Hu Jintao, judge, Colin Powell 0.588 Person, room, furniture, actor, sketches,
civilian people

mahmoud abbas (154) 0.259 0.391 Ground crew, smoke stack 0.428 Singing, ground crew, baby, outer space,
conference room

tennis court (156) 0.021 0.027 Tennis, text labeling people 0.030 Athletes, studio with anchorperson, Cau-
casians, basketball

boat (164) 0.169 0.233 Cigar boats, river, lakes 0.235 Lakes, airplane flying, exploding ordinance,
waterscape

soccer goal (171) 0.263 0.407 Soccer, lawn, stadium 0.480 Athletes, basketball, indoor sports venue,
stadium, running

named person may wear clothes of different colors and appear
in diverse locations.

Ordinal reranking with the semantic-richer cp374 feature
set, though improves the MAP further to 0.116, does not yield
significant performance gain against that of cp39. It might sug-
gest the necessity of concept selection. Because ListNet forms
the prediction result by the weighted sum of concept scores,
the weight assigned to each concept can be regarded as the
relevance to the query settled by ListNet. Positive (negative)
weight implies positive (negative) correlation. Therefore, we
examine the weights to evaluate whether ListNet discovers
perceptually related concepts. Table III (the left and middle
parts) lists the top positively weighted concepts for each query
and the resulting APs before and after reranking. Some highly
weighted concepts are indeed relevant to the queries, e.g., the
concepts soccer, lawn, and stadium are brought out for the
query “soccer goal (171).” However, some counterexamples
do exist, such as flag− U.S., network logo, and horse for
“hu jintao (152).” These erroneously weighted concepts offer
little contextual information for reranking, and even lead to
serious performance degradation.

2) Performance of Concept Selection: To select informa-
tive concepts for each query, we apply c-tf-idf and wc-tf-
idf to rank cp374 according to the relevancy to the target
query, and evaluate the resulting MAP by varying numbers
of concepts for reranking. It can be observed from Fig. 2
that reranking based on the concepts selected by wc-tf-idf can
achieve higher MAP with fewer concepts than those selected
by c-tf-idf, showing that wc-tf-idf is more adept at selecting
informative concepts than c-tf-idf. As the number of selected
concepts grows, the MAPs first reach a plateau since most
informative concepts have been selected, and then begin to
degrade after too much irrelevant concepts are added. It is also
observed that, with the 150 most informative concepts selected
by wc-tf-idf, ListNet improves the MAP up to 0.121, which

Fig. 2. Reranking result of the TRECVID 2005 search baseline “text-okapi”
using ListNet with different numbers of top ranked concepts selected by wc-
tf-idf and c-tf-idf. It can be observed that wc-tf-idf achieves higher MAP with
fewer concepts, showing its superior concept selection ability.

outperforms existing methods significantly. As we summarized
in the ninth row of Table II, the incorporation of concept
selection procedure does not add much computational burden,
and the reranking of a single query can still be finished in
roughly 0.4 s.

In the right part of Table III shows the top ranked concepts
among cp374 selected by wc-tf-idf and the resulting APs by
using the 150 most informative concepts for ordinal reranking.
Obviously, many of the concepts judged relevant to a specific
query do make sense. For example, the concept athlete is
ranked high for both “soccer goal (171)” and “tennis court
(156),” despite the low AP of the latter query. Conference room
and government leader are ranked high for the name persons,
which are most politicians. However, there are still some
counterexamples, e.g., singing for “mahmoud abbas (154)”
and non-uniformed fighters for “condoleeza rice (149).” We
believe this mismatch is reasonable since the accuracies of the
LSCOM concept detectors are not equally well, and can bring
noises to the concept scores to which wc-tf-idf is applied.
Noises may also come from the incorrect ordinal information
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Fig. 3. Average precisions of baseline and reranked search results for each
query in TRECVID 2005. The reranking algorithm is ListNet, with 150
most informative concepts selected from LSCOM 374 concepts by wc-tf-idf.
Ordinal reranking improves the result of almost every query and improves the
MAP from 0.087 to 0.122 (40% relative improvement).

Fig. 4. MAPs for applying ListNet to rerank search baseline “text-okapi”
with two feature sets as we change the fusion weight α from 0 to 1 at an
increasing step of 0.05. Optimal performance is achieved by setting α at 0.6.

set by the baseline model. From Table III it can also be
observed that, for the query “hu jintao (152),” despite the top
selected concepts are mostly correct, the AP is not improved
after feature selection. The reason is we have fixed the number
of selected concepts to be 150 for all the queries. Actually, we
found the overall performance can be further improved if the
number of selected concepts is query-dependent. For example,
if only the top three ranked concepts are used for reranking
“hu jintao (152),” the AP can reach 0.192. Yet we leave it as
part of the future works.

3) Discussion of the Reranking Performance for Video
Search: Fig. 3 depicts the APs achieved by the baseline
method, reranking using ListNet with cp374 as the feature
set, and reranking using ListNet with the 150 most infor-
mative concepts selected by wc-tf-idf. Remarkably, the per-
formance improvements of ordinal reranking over the base-
line are consistent—almost all queries are improved. Among
them, salient improvements are observed for queries with
higher initial AP, such as “omar karami (151),” “tony blair
(153),” and “soccer goal (171).” Concept selection by wc-
tf-idf further enhances the result, especially for “soccer goal
(171),”which has strong contextual links with many concepts.

Fig. 5. MAPs for applying ListNet with different numbers N of subshots to
be reranked. This result shows the MAP, which is evaluated using the top
1000 subshots, can be further improved by using a larger N, which provides
more training data and increase the possibility to improve the recall rate by
retrieving subshots which are ranked lower in the initial list.

However, as existing reranking method [7], for queries which
lack viable methods for getting a good initial search result,
such as “map iraq (155)” and “tall building (170),” ordinal
reranking does not offer improvements since the contextual
patterns are difficult to discover. This may be an inherent
limitation of the reranking methodology, which heavily relies
on the quality of the initial model. We do not discuss this issue
further, leaving it as part of the future research.

4) Parameter Sensibility: We are also interested in the
performance with different values of weight α for fusing text-
based relevance scores Y and context-based reranked scores Z
in (6). To analyze the impact of fusion weights, we compare
the performance with different fusion weights ranging from 0.0
(totally text-based) to 1.0 (totally reranked) with an increasing
step of 0.05 and plot the results in Fig. 4. Interestingly, we
discover the influence of α similar to what has been reported
in [5]. When α is close to 1, the reranking process relies
almost entirely on the contextual similarities and ignores the
text search prior; hence, the performance degrades sharply.
When α = 1 (totally reranked), the performance of the process
is similar to that of the purely text-based method. In addition,
the text modality and context modality carry important infor-
mation, and the fusion of both gives rise to optimal reranking,
showing the two modalities are quite complementary. The
same phenomenon is observed when either cp39 or cp374 is
used as the feature set.

We then conduct parameter sensibility test on the values of
the learning rate η and the convergent threshold δ for ListNet.
Being used in (5), η controls the degree of updating of the
weights W and influences the convergence time. As shown in
Table IV, the performance of ListNet is rather invariant to the
changes of η as long as it is set to a moderately small value.
A large η may result in an oscillation of W and degrade the
performance. On the other hand, δ controls the degree of the
ranking algorithm fitting the training data and also influences
the convergence time. It can be observed in Table IV that
setting δ too small overfits the data and has negative effect on
the reranking performance. To balance the convergence time
and the reranking performance, we have set η and δ to 0.005
and 1e−4, respectively (the cell marked with * in Table IV).

Finally, as N determines the number of subshots to be
reranked and the size of training data, it is also interesting
to know whether we can improve the MAP by using a large
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TABLE IV

Reranking Performance of ListNet With Variant Parameter Settings for the TRECVID 2005 Search Task

Convergent Threshold δ Learning Rate η

1e−4 1e−3 5e−3 1e−2 1e−1
1e−3 0.121 0.121 0.120 0.120 0.092
1e−4 0.121 0.121 0.121* 0.120 0.085
1e−5 0.119 0.119 0.115 0.115 0.082
1e−6 0.120 0.114 0.111 0.110 0.081

*The parameter settings used in other experiments in this paper.

TABLE V

Reranking Performance of ListNet With Variant Feature Sets for TRECVID 2005 Concept Detection Over the Detection Baseline

Method Feature Set Feature Selection Number of Feature MAP Improvement (%) Time/Concept
Baseline – – – 0.369 – –
ListNet cp39 – 39 0.379 2.7 0.7s

cp374 – 374 0.410 11.1 3.7s
cp374 wc-tf-idf 150 0.406 10.0 1.4s
cp374 wc-tf-idf 25 0.413 11.9 0.4s

TABLE VI

Top Selected Concepts by WC-TF-IDF Among LSCOM 374 Concepts for Concept Detection

Concept Top Selected Concepts Concept Top Selected Concepts
Walking running Walking running, crowd, basketball, walking Crowd Crowd, people marching, funeral, parade, cheering
Explosion fire Exploding ordinance, explosion fire, street battle Court Sketches, Colin Powell, court, interview on location
Maps Maps, studio, news studio, studio with anchorper-

son
Desert Desert, street battle, rocky ground, weapons

Flag-U.S. Studio with anchorperson, flag-U.S., Colin Powell Entertainment Singing, entertainment, celebrity entertainment,
room

Building Building, road, office building, urban scenes Meeting Meeting, furniture, conference room, Colin Powell
Waterscape waterfront Oceans, waterscape waterfront, waterways, lakes,

logo full screen, commercial advertisement, boat
ship

Corporate leader Corporate leader, interview on screen, person, inter-
view sequences, Colin Powell, government leader

Mountain Mountain, valleys, hill, rocky ground, landscape Face Person, studio with anchorperson, civilian person
Prisoner Sketches, prisoner, election campaign greeting, per-

son
Military military personnel, soldiers, street battle, military

Sports Athlete, basketball, sports, indoor sport venue,
baseball

Natural disaster natural disaster, rocky ground, still image, flood

Car Ground vehicle, road, car, vehicle, streets Truck Road, ground vehicle, truck, vehicle, daytime out-
door

Charts Charts, text on artificial background, logo full
screen

Vegetation Trees, vegetation, daytime outdoor, lawn, golf
course

Computer tv screen Studio with anchorperson, studio, news studio,
computer tv screen, female anchor, male anchor

Weather Weather, maps, studio, news studio, charts, text on
artificial background, studio with anchor person

Animal Animal, birds, valleys, oceans, logos full screen,
hill

Outdoor Daytime outdoor, outdoor, road, military personnel

N (which is previously set to 1300). We thus vary N from
1000 to 5000 at a step size of 500 and evaluate the MAP
over the top 1000 subshots of the reranked result. Result is
shown in Fig. 5, which indicates the MAP is indeed improved
with larger N ; the MAP is improved to 0.129 (47% relative
improvement to the text baseline) when setting N to 5000.
Using large N provides more training data to the learning-
to-rank algorithms, and increases the possibility to improve
the recall rate by retrieving subshots which are ranked lower
in the initial list. It may be also possible to further improve
the recall rate by applying the learnt contextual patterns to
the whole corpus to retrieve subshots that are not included
in the initial list.

C. Reranking for Concept Fusion

We also study the performance of using context of 374
concept detectors to improve the detection accuracy of each of
the 39 LSCOM-Lite concepts. The use of cp374 for context
fusion of the detection of cp39 is reasonable since cp374
covers richer high-level semantics. Note that the concept
detection methods utilized in cp374 [4] and cp39 [17] are
different since the latter specifically included some parts-
based detection models. Thus the detection results for the
same concept can be different. The same parameter setting for
video search is used here. As [7] reported, existing reranking
methods, including the offline ones and the classification-based
ones, offer 5–7% performance gains, which are less than those
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Fig. 6. Average precision of baseline and reranked results for each target concept in the TRECVID 2005 benchmark. Here ListNet is adopted as the reranking
algorithm, with 25 most informative concepts selected from LSCOM 374 concepts by wc-tf-idf. Ordinal reranking improves the result of almost every concept
detector and improves the MAP from 0.369 to 0.413 (12% relative improvement).

for visual search since the initial concept detection accuracy
has been relatively high (e.g., MAP 0.369 in Table V).

Results shown in Table V indicate that the reranking
approach is also effective for refining the baseline concept
detectors: using cp374 as the feature set, ListNet improves the
MAP from 0.369 to 0.410 (11.1%) over the detection baseline.
If the 25 most informative concepts selected by wc-tf-idf are
used, the MAP is further improved to 0.413 (11.9%), which
significantly outperforms existing context fusion methods. In
addition, ordinal reranking is still remarkable efficient for
concept fusion, taking less than one second to refine the result
of a concept. Moreover, as shown in Fig. 6, the performance
improvements of ordinal reranking over the baseline are also
consistent for concept fusion.

From Table V it can also be observed that context fusion
based on cp39 only slightly improves the result. This is not
surprising since cp39 is actually an essential subset of cp374
and thus the contextual links between the cp39 concepts are
much limited. The other interesting observation is related to
the optimal number of concepts for use in ordinal reranking.
While the optimal number of concepts is around 150 for
video search, the optimal number of concepts is merely 25,
which implies that most informative concepts are successfully
selected by wc-tf-idf. The cause of this notable effectiveness is
twofold. First, the contextual patterns among cp374 (LSCOM
concepts) and the target semantics (39 LSCOM-Lite concepts)
are in nature strong. Second, the initial accuracies of the
concept detectors are already high, making the contextual
patterns easy to be discovered.

We also tabulate the top ranked concepts among cp374 in
Table VI, without excluding the identical concept as the target
concept in cp374. As Table VI shows, most target concepts
rank the identical one in top three, and the contextual rela-
tionship among top selected concepts are intuitively correct.
For example, people marching, funeral, and parade are ranked
high for “Crowd,” and ground vehicle, road, streets are ranked
high for “Car.” In addition, we observe that wc-tf-idf is also
adept at discovering contextual links which query expansion
or keyword matching easily fail to. For example, street battle
and weapons are ranked high for both “Desert” and “Explo-

sion fire,” while map, charts, and studio are ranked high for
“Weather.” These relationships may be less salient literally, yet
are essentially correct since the makeup of TRECVID videos
are mostly news videos [7].

VII. Conclusion

In this paper, we have exploited the contextual information
for visual search and concept detection and proposed a novel
reranking algorithm called ordinal reranking for mining the
co-occurrence patterns between the target semantics and the
extracted features. This ranking-based reranking algorithm is
more effective and efficient than existing reranking methods.
Moreover, because ordinal reranking directly optimizes the
ordering of an initial list obtained by a baseline system, it is
free of ad hoc thresholding for noisy binary labels and requires
no extra offline learning processes or training data. Besides,
as there has been rare feature selection measure specifically
designed for reranking, we also propose a novel measurement,
wc-tf-idf, to select informative concepts and further improve
the performance of reranking.

Because ordinal reranking is largely unsupervised, it can
be applied equally well to context fusion in both concept
detection and video search tasks. An extensive performance
study is conducted on the TRECVID 2005 benchmark to
evaluate the performance of ordinal reranking and concept
selection for the two tasks. Results show that ordinal reranking
is much more efficient and effective than existing reranking
methods and improves the MAP up to 40% over the text-based
search results and 12% over the concept detection baselines.

The proposed ordinal reranking approach is general enough
to be applied to problems in other multimedia domains such
as media-rich social networks and blogs that have strong
contextual links between pieces of information that come from
multiple sources.
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