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ABSTRACT

The rapid development of technologies in both hardware and
software have made content-based multimedia services feasi-
ble on mobile devices such as smartphones and tablets; and
the strong needs for mobile visual search and recognition
have been emerging. While many real applications of vi-
sual recognition require a large scale recognition systems, the
same technologies that support server-based scalable visual
recognition may not be feasible on mobile devices due to the
resource constraints. Although the client-server framework
ensures the scalability, the real-time response subjects to
the limitation on network bandwidth. Therefore, the main
challenge for mobile visual recognition system should be the
recognition bitrate, which is the amount of data transmis-
sion under the same recognition performance. For this work,
we exploit and compare various strategies such as compact
features, feature compression, feature signatures by hash-
ing, image scaling, etc., to enable low bitrate mobile visual
recognition. We argue that thumbnail image is a competi-
tive candidate for low bitrate visual recognition because it
carries multiple features at once and multi-feature fusion is
important as the size of semantic space increases. Our eval-
uations on two subsets of ImageNet, both contain more than
10,000 images with 19 and 137 categories, verify the efficacy
of thumbnail images. We further suggest a new strategy that
combines single (local) feature signature and the thumbnail
image, which achieves significant bitrate reduction from (av-
erage) 102,570 to 4,661 bytes with merely (overall) 10% per-
formance degradation.
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Figure 1: Low bitrate visual recognition. Images
taken by a mobile device are classified on the server
to ensure scalability over the large semantic space.
The mobiles can send back information such as raw
images, extracted features, compact signatures, or
thumbnails, etc., for recognition in the server. Be-
cause the wireless connection between the server
and mobile devices has limited bandwidth, the data
transmission should be minimized to ensure prompt
response, which is the main challenge for the mo-
bile image recognition frameworks and also the key
factor we would like to exploit in this work.

1. INTRODUCTION

Two ongoing trends are leading nowadays multimedia re-
search and applications. The first is the increasing emphasis
on the scale of data and the scalability of system. In visual
recognition, the increase in scale does not only multiply the
amount of data, but also the size of feature and semantic
spaces [13, 28, 34]. The motivation for increasing the scale
of visual recognition system is not only from research inter-
ests but also from real application needs. For example, since
human can recognize tens of thousands of concepts and cat-
egorize them accordingly from images, an automatic photo
annotation system would be limited if it can only recognize
few concepts. Another example is event detection systems;
since there exists an enormous amount of potential events, a
general purpose event detection system would be applicable
if more events can be detected in real-time response. Many
new methods for scalable multimedia applications have been
developed in the past few years [29, 34, 31], and the problem
remains open with highly active research.

The second leading change is the paradigm shift from
personal computer (PC) or workstations to mobile devices.
While high quality camera becomes a basic component on
current mobile devices, they are currently used as passive



recorders. Combining with the growing computation capa-
bility and the rich contexts in mobile devices, the camera can
enable more proactive and smart applications such as remote
healthcare, lifelog, automatic photo annotation, etc. Among
all potential applications, many of them depend on visual
recognition technologies. For example, automatic tagging
system can be easily combined with popular social network
applications such as Facebook to enable more user friendly
media sharing.

1.1 Physical Constraints on Mobiles

Although there exists many promising technologies for
large scale visual recognition, most of them assume oper-
ating on PCs or even workstations, where the underlying
assumption about available resources may not fit that of
mobile devices.

Some of the most important limitations on mobile devices
include: Limited computing power, where many visual
recognition systems assume the computing power of server
level CPU. This restricts the use of complicated recognition
systems and multiple features, where it takes roughly 1 sec-
ond for feature extraction of each feature on current mobile
devices [8, 10, 20]. Limited storage, usually around 10 to
100 GB. The limited storage inevitably restricts the amount
of models that can be stored on the devices. Meanwhile,
it imposes a hard limit on the scalability of purely native
system. Limited network bandwidth, which forbids the
rapid communication with remote servers. It also degrades
the user experience when real time response is required for
the services. Limited power/battery, which limits both
heavy computation and rapid network transmission on the
device. These limitations indicate that methods which work
fine on servers may not work on mobile devices, and further
optimization for mobile devices is necessary.

1.2 Low Bitrate Mobile Visual Recognition

With the physical limitations on mobile devices, the ob-
jective of mobile visual recognition system is to maximize
user satisfactory under given resource constraints. User sat-
isfactory is influenced by different factors such as response
time, accuracy, power consumption and the scale of the se-
mantic space. One possible direction for the mobile system
is to match the server-based systems in terms of accuracy
and scalability, which are the focus of server based system,
while minimizing the response time and power consumption,
which are the new requirements of mobile system.

For visual recognition on mobile devices, any native sys-
tems will have limited scalability due to the storage con-
straint. To overcome the constraint, the client-server frame-
work is an intuitive solution and is adopted in many mo-
bile visual search systems [9, 18]. The framework, however,
is subject to the limitation of network bandwidth, as illus-
trated in fig. 1. We proposed the comparison of recogni-
tion bitrate, which considers the recognition performance
with respect to the amount of data transmission between
mobile devices and the server as in fig. 2. Unlike traditional
server based systems, which consider only the dimension of
performance, we introduce the new dimension of data trans-
mission. The new dimension is important in that we would
like to minimize the data transmission while retaining a rea-
sonable performance in real visual recognition applications.
Low recognition bitrate leads not only to faster response
time for applications, but also lowers network usage rate
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Figure 2: The goal for low bitrate mobile vi-
sual recognition. The objective of mobile visual
recognition system is different from the general vi-
sual recognition systems, where the mobile system
prefers the strategies that minimize the data trans-
mission while ensuring the performance. For this
work, we will exploit and compare various strate-
gies such as state-of-the-art features, hashing learn-
ing methods, image scaling, etc., to enable low bi-
trate mobile visual recognition.

and battery consumption, which are important factors for
real applications.

The limitation of wireless network on mobile devices has
been widely acknowledged in mobile visual search [18]. For
example, it takes 8 to 10 seconds on average to transmit a
typical JPEG image over 3G network. Many efforts have
been devoted to feature hashing or compression to enable
visual search on mobile systems [33, 9], which provide some
candidate strategies to achieve low bitrate mobile visual
recognition including:

e Transfer features with moderate dimension. By us-
ing features with moderate data sizes and fair perfor-
mance, the system can work with acceptable perfor-
mance and data transmission.

e Transfer compressed features. The strategy exploits
either feature with proper compression rate, such as

compressed histogram of gradient, or compression schemes

with small performance degrade, such as product quan-
tization [29)].

e Transfer feature signature produced by hashing. The
strategy generates a compact signature that retains the
performance. There exists a large family of hashing
method, including random projection, spectral hash-
ing, etc.

e Transfer scaled-down images. The images must be
scaled down to be transfered over wireless network.

In most existing works on mobile visual search, transmit-
ting images over the wireless network is considered infeasible
for applications that require real-time response because of
the image size. The claim, however, does not consider that
it may not be necessary to transmit the original image to
the server for visual recognition or retrieval. Research has
shown that both human and computer system can recog-
nize images with very small resolutions [31], which is much
smaller in data size than general consumer photos. The fact
that most existing visual recognition datasets are mainly



consist of small images also indicates that very high reso-
lution images may not be necessary for visual recognition.
Besides, mobile applications based on sending thumbnail im-
ages over wireless network have been proposed [11]. Indeed,
while sending original images over 3G network may be im-
possible, transmitting thumbnail images is well applicable
yet the efficacy of thumbnail images for visual recognition
has not been explored.

The dire needs for mobile visual recognition emerge but
the applicable methods are still missing. To entail mobile
visual recognition, we conduct a systematic study on the
recognition performance with respect to transmission bitrate
for mobile visual recognition. In particular, we compare
different strategies such as compact features, feature com-
pression, feature signature by hashing, image scaling, etc.
Several state-of-the-art features are included for compar-
isons. The evaluation is conducted on two subsets of Ima-
geNet, both with more than 10,000 images. By understand-
ing the bandwidth requirements and performance ranges for
these strategies, we can motivate new mobile-cloud-balanced
learning methods and cost-effective features. Our key con-
tributions include:

e We propose to use recognition bitrate as the compar-
ison criteria for mobile recognition models, instead of
focusing only on recognition rate.

e We conduct intensive comparisons among various strate-
gies for low bitrate mobile visual recognition, including
visual features, feature signatures and thumbnail im-
ages. In particular, we examine the performance of
thumbnail images with respect to image scales, which
is not well studied in previous works.

e We combine multiple features in the comparisons of
visual recognition bitrate. In existing works on low bi-
trate descriptor, the effort is on decreasing the bitrate
of a single feature. Our experimental result shows that
multi-feature fusion can further reduce bitrate and be-
comes more important when the number and diversity
of concepts increase.

e We propose to transfer thumbnail image along with
single (local) feature signature, which is affordable in
both network bandwidth and computation for current
mobile devices and achieves near optimal recognition
performance.

The remaining of this paper is organized as follows. In sec-
tion 2, we describe related works. In section 3, we describe
the datasets used for the evaluation, and the general setup
for the evaluation is in section 4. In section 5, we discuss
the importance of multi-feature fusion. In section 6, we dis-
cuss the effect of image scaling on visual recognition perfor-
mance. In section 7, we compare the recognition bitrate of
signatures. Finally, we conclude our discovery in section 8.

2. RELATED WORK

One of the ongoing change in visual recognition research
is the enlargement of semantic space. The most popular
dataset for large scale visual recognition is ImageNet [12].
It is a dataset with concept ontology and contains more
than 20,000 synsets, or concepts, with an average of 650
images for each concept. The ImageNet dataset has en-
abled the study of scalable visual recognition. Based on the

dataset, the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [4] is a contest that requires the recognition
of 1,000 image categories. In ILSVRC 2010, there is a to-
tal of 1.2 million training images, which becomes one of the
most popular image recognition dataset.

The development of visual feature has long been the cen-
ter of visual recognition research. Among all visual features,
local features have been proved effective in many domains.
Many local features have been proposed since the advent of
the difference of gaussian detector combined with SIFT de-
scriptor introduced by Lowe [24, 25]; a large number of local
features have adopted the SIFT descriptor with different de-
tectors, such as Hessian affine detector and dense sampling
[26]. For visual recognition systems, the local features from
an image are usually pooled together to form a vector rep-
resentation of the image for classification. There also exists
many different pooling methods, such as Fisher vector or
bag of visual word models [28, 30, 21]. Bag of word mod-
els can be further extended by multi-scaled spatial pyramid
[22], which has been adopted in many state-of-the-art visual
recognition systems.

While spatial pyramid method is superior in performance,
it results in a high dimensional vector for each image and
may even be larger than the original image in data size.
The data size limits the scalability of systems and the trans-
mission of features over wireless network in mobile devices.
Feature compression methods such as product quantization
have been introduced to increase the scalability of systems
[29], where a compression rate of 64 to 128 can be achieved
without significant loss of performance. Beside feature com-
pression, various hashing methods that generate represen-
tative signatures from the original features are also studied,
ranging from the data-independent random projection, data-
dependent spectral hashing and semi-supervised sequential
projection learning [5, 1, 33, 35].

With the explosive growth and prevalence of mobile de-
vices, visual features that are more suitable for mobile de-
vices have been developed. SURF is a local feature that
reduce both computational cost and the dimension [3], and
modification that makes the computation even more mo-
bile friendly with moderate performance degrade is proposed
[36]. Compressed histogram of gradient is a new local fea-
ture descriptor that aims to reduce the transmission bitrate
[9], and residual enhanced visual vector is a new compact
local feature pooling method that aims to reduce the data
size and store the entire database for retrieval on the mobile
devices [10].

Utilizing information in thumbnail images has been ex-
ploited before in different tasks. Torralba et. al. have con-
ducted an object recognition study on a dataset of nearly
80 million tiny images with 32x32 pixel color images [31].
Their result shows that color images with 32x32 resolution
are already recognizable by human. Thumbnail images are
also used in new mobile services. In IMShare, a new mobile
image sharing technique is built based on thumbnail images
[11]. The thumbnail image of a photo taken by mobile de-
vices and the detection results of local feature detector are
sent to the server, where the server reconstructs the im-
age by the thumbnail image and local feature descriptors
extracted from the thumbnail image. These results show
that thumbnail image do contain sufficient information for
recognition, and that extracting meaningful features from
thumbnail image is possible.
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Figure 3: Example images from ImageNetl137
dataset. The dataset consists of photos downloaded
from internet. We also show the same images in
different scales, as in the evaluation setting. Note
the images are not shown in their original sizes but
preserve their relative sizes and scales.

3. DATASETS

In this section, we describe the datasets used for the study.
The goal of this paper is to study the recognition perfor-
mance under different transmission bandwidths. In partic-
ular, we would like to study the performance of features
extracted from different image sizes, which prohibit from
directly using most of the popular datasets for visual recog-
nition, because most of the datasets such as Scene [22] and
Caltech256 [19] are mainly consist of images with low reso-
lution compared with consumer photos. Besides, to evaluate
the effect of increasing the scale of recognition system, the
experiments require both large training set and semantic
space.

To overcome the limit, we perform experiments on two
subsets of ImageNet and screened out images with low res-
olution in the datasets. The choice of ImageNet is to ensure
there exists enough images and classes for study. Specifi-
cally, we consider the following two dataset:

e ImageNet19. 19 categories from ImageNet 2011 Fall
Release with the same categories of PASCAL Visual
Object Classes (VOC) 2007 Challenge [15] were se-
lected, following the protocol in [28]. We did not find
the synset of “potted plant,” and for the remaining 19
synsets, we downloaded only the synset itself without
children synsets. In this dataset, images with length
smaller than 500 pixels or width smaller than 300 pix-
els were discarded, which resulted in a total of 19886
images.

e ImageNet137. The training set of ILSVRC2010 was
used to construct this dataset. In this dataset, images
with length smaller than 800 pixels or width smaller
than 600 pixels were discarded, and only categories
with more than 60 images remaining were included,
which resulted in 137 categories and a total of 12008
images. Some of the images are shown in fig. 3.

Note the two datasets have no overlapping categories. Fol-
lowing the convention of the PASCAL VOC Challenge [15,
16], each category was randomly and equally split into train-
ing and test sets, and we repeated the process 10 times. All
results are averaged over the 10 runs of experiment with the
statistical standard deviation also reported.

4. EXPERIMENTAL SETUP

In this section, we describe the features used in evaluation
and the feature extraction procedures. Then we describe the
classifier adopted for classification.

4.1 Features

To explore the optimal recognition performance given an
image, we evaluate a variety of popular general-purpose fea-
tures. Many of these features are adopted in the state-of-
the-art visual recognition systems and are evaluated on both
public datasets and recognition contests such as PASCAL
VOC and ImageNet [16, 4, 28, 34]. The features can be
categorized into the following two groups.

4.1.1 Global Features

Global features include all features that are non-local.
While there exists a large number of global features ranging
from color, texture to edge features, we choose some of the
most widely used general-purpose feature as follow:

e Color histogram. We use 24 dimension color his-
togram in HSV color space where the histogram on
each dimension is computed separately and then con-
cated. For quantization, H is divided into 18 levels, S
and V are divided into 3 levels.

e Color Moment. We use 225 dimension grid color mo-
ment; each image is divided into 5x5 grids and the first
to third moments in RGB color space are extracted
from each grid respectively.

e Gabor. We use 48 dimension log Gabor coefficients
as features. 24 filters with 6 orientations and 4 scales
are used to compute the response, and for each filter
response, the first and second moment are extracted
[23].

e LBP. We use local binary pattern with uniform pat-
terns extension, which results in a 59 dimension his-
togram [2].

e PHOG. We use 3400 dimensional pyramid histogram
of oriented gradient with 4 bin histogram and 3 level
pyramid (K =4, L = 3) [6].

We also examine the popular Gist [27, 14] feature, but the
performance is only slightly better than color histogram on
ImageNet19 despite of the high dimensionality (960), so we
do not include it in further experiments.

4.1.2 Local Features

Local features have become the standard component of
state-of-the-art visual recognition systems. Among the wide
range of detectors as well as descriptors, we choose the fol-
lowing combinations in our evaluations:

e DoG. Difference of Gaussian detector + SIFT descrip-
tor [24].

e HA. Hessian Affine detector 4+ SIFT descriptor [26].

e Dense. Extract SIFT features with dense sampling,
using 20x20 patches and overlapping windows shifted

by 10 pixels. We use the Vlfeat library for Dense SIFT
extraction [32].

e SURF. SURF detector + SURF descriptor [3].



We also examine Compressed Histogram of Gradient [9] (CHoG)

descriptor which is especially designed for mobile visual search;
we do not include it in the following discussions because its
performance is similar to SURF in our preliminary test and
is not especially representative.

4.2 Descriptors

To utilize local features in classification, local descriptors
in an image are usually aggregated into a compact feature.
Many descriptors were proposed in recent years, while Bag
of Word (BoW) and Fisher Vector (FV) are the most pop-
ular ones among all descriptors. We choose the following
two descriptors which are the variations of BoW and FV
respectively in our evaluations:

e LLC. Locality constraint linear coding (LLC) is a vari-
ation of BoW and further combined with Spatial Pyra-
mid (SPM). We choose LLC for its performance, and
our preliminary tests also confirm that LLC signifi-
cantly improves over BoW + SPM. In our experiments,
we use codebook size ¢ = 200 and 400 with pyramid
level I = 2. Note that the codebook was constructed
simply by K-means without optimization for LLC.

e VLAD. Vector of locally aggregated descriptors (VLAD)
is a simplification of FV. The reasons for choosing
VLAD over FV is twofold. The first is that in our pre-
liminary tests, VLAD shows comparable performance
with FV with smaller dimension (no covariance vec-
tor). The second is that computing VLAD requires
less storage and computation resource, which is im-
portant on mobile devices. In our experiments, we use
codebook size ¢ = 16, 64, 256 respectively.

4.3 Feature Extraction

To evaluate the recognition performance with respect to
varying image sizes, we extract the features from the same
image at different scales. For ImageNet19 dataset, the im-
ages are scaled down to 1/2, 1/4, 1/8, and for ImageNet137
dataset, the images are scaled down to 1/2, 1/4, 1/8, 1/16,
as shown in fig. 3. On feature extraction, every (scaled-
down) image is scaled up to their original size using bilinear
interpolation before feature extraction. Image up-scaling
is performed for performance reasons; our evaluation shows
that scaling up the images to the original size generally yields
better performance. In particular, the image size directly
corresponds to feature point number for Dense SIFT feature,
which in turns affects performance. Therefore, we perform
image up scaling for all features for the consistency of evalu-
ation. No additional information other than the thumbnail
image is used during feature extraction.

We also examined the performance of various feature ex-
traction strategies. For example, we computed the SIFT
descriptors on upscaled images using the salient points de-
tected on the original images, which is the strategy adopted
in IMShare [11]. The additional detector information in this
strategy turns out to be unhelpful for recognition. We also
examined the optimal scales up for thumbnail images on fea-
ture extraction, and the result is in favor of scaling up image
to the original size.

4.4 Classifier

In this section, we describe the classifier adopted for clas-
sification and the method for multi-feature fusion. For all

features, we use SVM with linear kernel for classification [17]
with 1-vs-all framework for multi-class classification. Linear
SVM is adopted because of its training and testing efficiency
and its success in many state-of-the-art visual recognition
system [16, 4, 28, 34]. The parameter of SVM is determined
by 5-fold cross validation on the training set.

For multi-feature fusion, we apply late fusion strategy —
averaging the normalized scores from different classifiers over
varying features. We use late fusion instead of early fusion
for its efficiency, which is important due to the large num-
ber of possible combinations. To perform late fusion, the
decision values of each classifier are first normalized with
sigmoid function, and the scores from the same modality
over different categories of each image are then L1 normal-
ized. The summation of normalized score over all features
is used to determine the class label of the instance. We do
not explore sophisticated fusion methods, because the focus
of this study is on features rather than the sophisticated al-
gorithms, which do not show significant performance gains.

4.5 Compression Factor of Images

For bitrate comparison, we have to estimate the image
size (in storage). The average image size over the entire
dataset is used as the estimator, and the images are all in
JPEG format with the original image quality of ImageNet
dataset. For thumbnail images, Image scaling is performed
using OpenCV [7], and the thumbnail images are also in
JPEG format with the default compression factor 95 in 100-
scale of OpenCV.

Although changing the compression configuration may also
reduce data size, we focus on image scaling because the effi-
cacy of thumbnail image has been justified [31, 11]. Besides,
image scaling is more straightforward for controlling image
quality. Therefore, the compression configuration is kept the
same throughout the evaluations.

5. MULTI-FEATURE FUSION IS IMPORTANT

We first evaluate the performance of different features and
show that no single feature performs the best on all cate-
gories. The result implies the importance of multiple fea-
tures, and we show that multi-feature fusion is more effi-
cient than increasing feature and descriptor dimensions in
improving image recognition performance. The overall clas-
sification performance of each feature for the two datasets
are in fig. 4. The result shows that, on average, local fea-
tures significantly outperform global features. Besides, Hes-
sian affine SIFT performs better with VLAD, while Dense
SIFT performs better with LLC and achieves the best per-
formance when we consider only single feature.

Although the performance differences between different
features seems significant, the situation is very different when
we inspect closer about the classification results on category
basis. The classification accuracy of 6 out of 19 categories
in ImageNet19 are in fig. 5(A). We can see from the result
that no single feature achieves the best performance in all
categories, and in some categories, global features are com-
parable with local features. This implies the necessity of
using multiple features to achieve robust overall classifica-
tion performance.

The same observation can be made in ImageNet137 dataset,
where the result of 12 out of 137 categories are in fig. 5(B).
Note that nearly every feature, including global features,
achieves the best in certain categories. The result leads to
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Figure 4: Average classification accuracies of differ-
ent features on the original image. ¢ = 64 for VLAD
and ¢ = 400 for LLC descriptor. On average, lo-
cal features significantly outperform global features,
and Dense SIFT + LLC achieves the optimal per-
formance on both datasets. All results are reported
with statistical standard deviation over 10 rounds of
experiments.

the same conclusion that multi-feature fusion is important;
it further indicates that multiple features are getting more
important as the number and diversity of the categories to
be recognized increases.

Based on the observation, we perform late fusion of mul-
tiple features for classification to verify the importance of
multiple feature. We perform feature selection on late fu-
sion by iteratively adding one feature at a time, where the
feature that achieves the most performance improvement is
selected. The process stops when no further features can im-
prove the performance. The result is in fig. 6, where both
absolute and relative improvements of each feature fused
are reported. The relative improvement is defined by the
absolute improvement divided by the optimal fusion perfor-
mance. We can see that multi-feature fusion, even with a
simple late fusion (i.e., averaging the normalized confidence
scores from different modalities) strategy, can significantly
increase the classification performance, and the relative im-
provement increases as the number of category increases.
This result is consistent with the previous observation that
the importance of multi-feature fusion increases as the di-
versity of categories increases.

A commonly used strategy to increase classification per-
formance while using single feature, especially local features,
is to increase the descriptor dimension. We next compare
the effectiveness of increasing descriptor dimension and fus-
ing multiple features. In particular, we compare the classifi-
cation accuracy with respect to the total feature dimension,

1Since we have conducted intensive experiments of different
configurations, all the figures are best seen in color.
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Figure 5: Results of 6 categories from ImageNet19
dataset are in (A), 12 categories from ImageNet137
dataset in (B). From ImageNet19, we can see that
no single feature achieves the best performance in
all categories. This indicates the necessity of multi-
ple features to achieve optimal classification perfor-
mance. In ImageNet137, which contains more cat-
egories and diverse concepts, every feature except
Gabor achieves the best performances in different
categories, and even the same local feature using dif-
ferent pooling methods show different performances.
Compared with the results of ImageNet19 dataset,
we can see the strong needs of multi-modal fusion
across different features as the number of category
increases’.

because the dimension is proportional to the bitrate of the
strategy. The dimension of multi-feature fusion is defined
as the sum of the dimensions of all the features being fused.
The result of ImageNet19 dataset is in fig. 7. It is obvi-
ous that multi-feature fusion achieves better performance
than increasing the feature dimension under the same bi-
trate. The result indicates that when extracting multiple
features is possible, using multiple features is more efficient
for improving classification accuracy than using complicated
models from a single feature.

6. IMAGE SCALING REDUCES BITRATE

In this section, we evaluate the recognition performance of
features extracted from scaled down images and the recog-
nition bitrate of the image. Our evaluation is based on the
general claim that images taken by mobile devices are too
large to be transfered over wireless network for prompt re-
sponse time. In visual recognition, for example, transmitting
images in the original high resolution may not be necessary,
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Figure 6: Results of multi-feature fusion. For (A),
each section in the histogram indicates the absolute
performance improvement of fusing one additional
(best) feature. For (B), each section indicates the
relative performance improvement over the optimal
performance. The relative improvement increases
in dataset with larger number and diversity of cate-
gories (ImageNet137), which confirms that multiple
feature fusion is very important as the category (or
concept) number increases.

because images with transferable size may achieve accept-
able performance for applications.

Because the image size is dependent to the image content,
we measure the average image size of the dataset for bitrate
comparison. The result of ImageNet19 dataset is in table
1. Note that the average size difference between color im-
age and gray scale image is small compared to the effect of
image scaling; so we assume transmitting color image in the
following discussions.

We first measure the performance degradation incurred
by image down-scaling. The result of global features is in
fig. 8, and that of local features is in fig. 9. We can see
from the result that global features are more resistant to
image down-scaling, while local features degrade more sig-
nificantly. The performance of PHOG may even exceed DoG
SIFT and SURF when the images are scaled down to 1/8 on
ImageNet19 dataset. This indicates that multiple global fea-
tures can be carried by a single scaled-down image without
significant loss of information.
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Figure 7: Recognition performance versus total di-
mensions of features on ImageNet19 dataset. Fusing
multiple features, including global features, can sig-
nificantly improve performance under the same fea-
ture dimension. Note that we only apply a simple
late fusion strategy (i.e., average confident scores) to
achieve the significant performance improvement.
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Figure 8: The performance changes of global fea-
tures under different image scales on ImageNet19
dataset. The performance of global feature does not
degrade significantly as the image being scaled down
even to a tiny image. Therefore, we can compress
and transmit all global features at once by sending
a scaled down image without much loss of perfor-
mance.

We next compare the performance of scaled-down image
and image features under different bandwidth requirements.
Based on the previous observation, we know that scaled
down image contains information of multiple (global) fea-
tures, therefore, the result of multi-feature fusion as well
as that of the best single feature are reported. The result
of ImageNet19 dataset is in fig. 10. The feature sizes are
computed using feature dimension, where each dimension is
stored in a double precision floating point number. We can
see that performing multi-feature fusion with scaled down
image achieves better performance under the same band-
width, and the performance even does not degrade under
moderate scaling. The result in ImageNet137 dataset is
similar, as can be seen in fig. 11, with more significant
improvements by multi-feature fusion.

The observation indicates that in mobile visual recogni-
tion, transmitting the high-resolution image over wireless
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Figure 9: The performance change of local features
under different image scales on ImageNet19 dataset.
Local features degrade more significantly while im-
age is scaled down. Note that the performance of
PHOG even exceeds some local features when the
image is scaled down to 1/8.



Table 1: Average image size of ImageNet19 dataset. The average size of color images is slightly larger than
that of gray images but contains color information which is important in some categories. The trade-off
supports transmitting color images over gray images, and we assume transmitting color image in all following

discussion.

SIFT SIFT

Original | 1/2 size
LLC(400) | VLAD(64) | Color Color

1/2 size | 1/4 size | 1/4 size | 1/8 size | 1/8 size
Gray Color Gray Color Gray

Bytes 67,200 65,536 102,570

31,581

27,094 10,352 8,711 3,637 2,912

network is impossible due to the original image size; mean-
while, it is not necessary to transmit the image in original
size. Transmitting scaled down image may greatly reduce
the bitrate without loss of performance; and by exploiting
informations from multiple features, scaled down image may
be more transmission efficient than image features.

Another benefit of transmitting scaled down image over
transmitting features is the reduction of computation and
storage overhead on mobile devices. Image features such as
LLC require the storage of codebook and solving linear equa-
tions on the fly, and extracting multi-feature for real time
application is computation intensive. Transmitting scaled-
down image eliminates all the overhead, where the resource
on server can handle these overhead without difficulty.

7. FEATURE SIGNATURE ACHIEVES
LOWER BITRATE

In mobile visual search, much efforts have been devoted
to generating a compact signature from the raw features to
reduce the bitrate for retrieval. In this section, we compare
the performance versus bitrate between scaled down image
and image signature.

For signature generation, we use the data independent
sparse random projection (RP) [1]. To verify the choice,
we also compare the performance with two state-of-the-art
hashing and compression methods such as the unsupervised
product quantization (PQ) [29] and the supervised sequen-
tial projection learning hash (SPLH) [33], on ImageNet19
dataset. The result is in fig. 12. For PQ, the feature vector
is first divided into subvector, with the dimension of sub-
vector being G = 8 for VLAD and G = 10 for LLC. The
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Figure 10: The recognition bitrate of scaled down
image on ImageNetl9 dataset. Because a scaled
down image contains information of multiple fea-
tures, the performance of both optimal single fea-
ture and multi-feature fusion is reported. With
multi-feature fusion, scaled down image can signif-
icantly outperform the raw feature under given bi-
trate.

average number of bits for representing each dimension is
set to b = 1. For RP and SPLH, we set the projection
matrix as a square matrix so the output bit number is the
same as the input dimension; so the compression rate is 64
for all methods. Note the bit number of signatures are large
(8k) to ensure recognition performance, because our goal is
to build a mobile system with its performance comparable
with server-based system. We can see from the result that
SPLH does not perform as good as RP in high dimensional
(8k) signatures; more importantly, it performs poorly with
LLC. The performance of PQ and RP is comparable, and
we choose RP for further experiments because of its compu-
tation efficiency and data independent property.

The result of signature is in fig. 13. We can see that
the bandwidth requirement for signature is lower than that
of the scaled-down image. This suggests that there exists
redundant information in the scaled image which is not fully
utilized by the recognition system yet. We also examine the
performance of fusing multiple feature signatures. Under
the two aspects of mobile visual recognition, that is, the
recognition rate and bitrate, fusing multiple signatures turns
out to be the best strategy with near optimal performance
and roughly the same bitrate as thumbnail images. Note
that the performance of fusing multiple feature signatures
can not be further improve by including more signatures
under our multi-modal fusion framework; it might indicate
that there exists irreversible information lost in signature
generation.

Although multiple (local) feature signatures achieve al-
most the best performance with low bandwidth, the strat-
egy may turn out to be unfeasible when we consider the
constraints in mobile computing. The most significant prob-
lem lies in the computing power on current mobile devices,
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Figure 11: The recognition bitrate of scaled down
image on ImageNetl1l37 dataset. Although single
feature performance degrades more significantly on
ImageNet137 dataset, the fusion result of thumbnail
image still outperforms raw features in recognition
bitrate.
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Figure 12: Performance comparison of different sig-
nature generation methods. Feature stands for the
performance of the original feature. ¢ = 64 is used
for VLAD and ¢ =400 for LLC. For random projec-
tion (RP) and sequential projection learning hash
(SPLH), the output bit number is the same as input
dimension. For product quantization (PQ), the av-
erage bit number for each dimension is set to b = 1.
Therefore, the compression rate is 64 for all meth-
ods. Note that we use high dimensional signatures
(8k) to ensure that the recognition performance
does not degrade significantly. Under the compres-
sion rate, RP outperforms SPLH, and SPLH per-
forms poorly with LLC. The performance of RP and
PQ is comparable; we use RP for its efficient com-
putation in the following experiments.

because it requires extraction of multiple features solely on
the device which is computation intensive. Fortunately, it is
feasible to compute at least single feature signature on mo-
bile devices which is the basis of many mobile visual search
system. Based on our own implementation, it takes less
than a second on average to compute the signature of VLAD
with SURF feature using codebook size ¢ = 64 on iPhone
5. Therefore, a more realistic solution is to compute single
feature signature on the device and send both the thumbnail
image and feature signature to the remote server. The result
of fusing thumbnail images and single feature signature is in
fig. 13. We use Hessian affine local feature and VLAD de-
scriptor with ¢ = 64, with the 8,192 bits signature generated
by sparse random projection. Note that we do not choose
the signature with optimal performance (Dense+LLC+RP)
because LLC is computation intensive and is formidable for
mobile environments. The strategy balances among different
constraints on the device, i.e., storage, network bandwidth
and CPU, and it achieves almost the best performance with
moderate bitrate. Under current physical constraints on mo-
bile devices, this is probably the best strategy from our eval-
uations in terms of recognition bandwidth requirements.

8. CONCLUSIONS AND FUTURE WORKS

This paper presents a study on possible solutions for scal-
able mobile visual recognition system. We conduct a system-
atic evaluation on various strategies for mobile visual recog-
nition under client-server framework in terms of recognition
bitrate, and the experiments are conducted on two subsets
of ImageNet; both datasets contain more than 10,000 im-
ages and one of them contains more than 100 categories.
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Figure 13: Bitrate comparison of all strategies,
including feature signatures. Feature signature
achieves lowest bitrate under similar accuracy. For
the signature used to fuse with thumbnail image,
we use HA+VLAD-+RP because VLAD is more mo-
bile friendly than LLC. Among all strategies, mul-
tiple feature signatures achieves lowest recognition
bitrate, but is not feasible on current mobile de-
vices due to the computation overhead of extracting
multiple features on the devices. Combining sin-
gle (local) feature signature and thumbnail image
is the solution that best fits current mobile device
constraints.

In particular, we compare the recognition bitrate of thumb-
nail images, various image features and feature signatures.
The result shows that even a tiny image contains sufficient
information for visual recognition, and by utilizing multi-
ple features extracted from thumbnail images, the recog-
nition bitrate of thumbnail image is much lower than raw
image features. Although fusing multiple image signatures
may achieve lower bitrate than thumbnail images, extract-
ing multiple (local) features on mobile devices may not be
feasible due to CPU and battery constraints. These exper-
iments indicate that transmitting thumbnail images should
be considered for mobile visual recognition systems.

We further recommend to combine single local feature sig-
nature and the scaled-down thumbnail image, which achieves
near optimal performance under the constraint of current
mobile environment. Using the strategy, we significantly re-
duce the average data transmission from 102,570 bytes to
4,661 bytes (i.e., thumbnail images scaled down to 1/8 of
the original size and the 8,192 bits signature generated by
random projection from Hessian affine feature with 64 cen-
ters VLAD descriptor), while the recognition accuracy only
decreases from 0.67 to 0.59, which is still better than any
single raw feature.

With the new aspects introduced in mobile visual recog-
nition system, such as network bandwidth, power consump-
tion, etc., there remains many to be explored. In this paper,
we focus on the dimensions of feature and data transmis-
sion, and we will extend into other aspects in the future
studies. In particular, we would like to extend the eval-
uation to real system and photos taken by mobile devices
in the future, where the real world environment may bring
new challenges. We would also like to evaluate the recogni-
tion bitrate of videos, because videos are generally larger in
data size and consume a significant amount of mobile net-
work bandwidth, and the evaluation on videos is expected
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Figure 14: A recommended system design based on
our evaluation results. Single (local) feature signa-
ture (e.g. HA+VLAD+RP) is computed on the mo-
bile device, and is transmitted back to server along
with the (down-scaled) thumbnail image. Server ex-
tracts multiple features from the thumbnail image
and perform multi-modal fusion, then returns the
results to the mobile device.

to have an even larger impact. Other exciting directions
include better signature generations, where the side infor-
mation from thumbnail images may be used to improve the
compression rate and achieve lower bitrate. Similarly, a bet-
ter compression technique for images may also lead to bet-
ter recognition bitrate. Beside data compression on either
thumbnail images or signatures, a better classification algo-
rithm on the signature is also possible, where the signatures
lie in Hamming space rather than Euclidean space in which
general classification algorithms are developed.
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