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Investigating 3D Model and Part Information For
Improving Content-based Vehicle Retrieval

Yen-Liang Lin, Ming-Kuang Tsai, Winston H. Hsu, Chih-Wei Chen

Abstract—Content-based vehicle retrieval in unconstrained
environment plays an important role in surveillance systems.
However, due to large variations in viewing angle/position, illumi-
nation, occlusion, and background, traditional vehicle retrieval is
extremely challenging. We approach this problem in a different
way by rectifying vehicles from disparate views into the same
reference view and searching the vehicles based on informative
parts such as grille, lamp, and wheel. To extract those parts, we
fit 3D vehicle models to a 2D image using active shape model
(ASM). In the experiments, we compare different 3D model fitting
approaches and verify that the impact of part rectification on
the content-based vehicle retrieval performance is significant. We
propose a model fitting approach with weighted jacobian system
which leverages the prior knowledge of part information and
shows promising improvements. Then, we use pyramid histogram
of orientation (PHOG) feature to describe rectified parts (e.g.,
grille, wheel, lamp). We compute mean average precision of
vehicle retrieval with L1 distance on NetCarShow300 dataset,
a new challenging dataset we construct. We conclude that it
benefits more from the fusion of informative rectified parts (e.g.,
grille, lamp, wheel) than a whole vehicle image described by SIFT
feature for content-based vehicle retrieval.

Index Terms—3D model construction, 3D model fitting, vehicle
retrieval, part rectification

I. INTRODUCTION

VEHICLES are one of the most important subjects in
surveillance environment when surveillance cameras be-

come ubiquitous and more and more surveillance video data
is available. However, millions of surveillance videos are so
large-scaled that it is impossible for human to deal with.
Therefore, effective vehicle retrieval is becoming increasingly
significant. Moreover, people may be interested in some sce-
narios, for example, “Where and when did white vehicles
pass through here yesterday?,” “Can I find hatchbacks in
these videos?,” “Can I find vehicles made by Honda or
whose models are BMW X6 in these videos?,” and more
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Fig. 1. An overview of the proposed system. (a) Input image with bounding
box. (b) Aligning 3D model to 2D image. (c) Rectifying vehicles to the same
reference view points and extracting vehicle parts (e.g., grille, wheel, and
lamp). (d) Top 5 searching results by fusing three parts. Best seen in color.

possible descriptions about vehicles. As a result, we propose
an effective content-based vehicle retrieval approach to satisfy
the needs. See Figure 1.

There is no doubt that vehicle retrieval and recognition
are very challenging. For surveillance videos with time in-
formation or surveillance images, there are several problems
which cannot be ignored. Besides reflective surface and semi-
transparent media, shadow or illumination possibly makes
edge detectors or feature detectors incur more noises. Oc-
clusions in crowded scenarios are common, and occluded
parts cause discontinuity and incompleteness in shape. Also,
background noise and shape variations are potential difficulties
when detecting or segmenting vehicles. What is more, vehicles
are observed from a variety of viewpoints, so it is hard to
retrieve similar vehicles without constructing correspondence.

To address diversity of viewpoints and shape variation, it
comes to our minds that using rectified parts extracted from
fitted 3D vehicle models are more promising than a whole
image for content-based vehicle retrieval. In other domains,
such as face [1] and people [2] search, salient attributes or parts
have been utilized to identify targets. However, the utilization
of parts for vehicles has not achieved similar successes. In
addition, unlike people or face recognition, using 2D models
to extract parts of a vehicle within the bounding box generally
fails due to dramatic variations in viewing angles. Employing
3D models is more suitable for our work. In fact, using 3D
vehicle model is one of the major line of research in the fields
of vehicle detection [3], pose estimation [4][5], classification
[6][7][8][9], etc.
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We propose to augment content-based vehicle retrieval by
aligned 3D vehicle model and fusing informative parts (cf.
Figure 1). First, we establish consistent shape representation
between several 3D vehicle models and align 3D model to
natural images (cf. Figure 1(b)). Second, informative parts
(e.g., grille, lamp, and wheel) are extracted and rectified into
one reference view, and the parts are represented by several
features for retrieval (cf. Figure 1(c)). Third, we evaluate
our approach under different viewpoints, illuminations, and
situations. The result shows that we improve the retrieval
performance significantly even in diversity of viewpoints.

The main contributions of this work include:
• We implement and compare current state-of-the-art 3D

model fitting algorithms and evaluate on a challenging
dataset.

• We argue to improve 3D model fitting precision by
leveraging the prior knowledge of those informative parts.

• We investigate the impacts of rectified parts on the
content-based retrieval performance.

• To our best knowledge, this is the first content-based
vehicle retrieval approach that uses informative parts and
analyzes the detailed parameterizing components for the
framework.

II. RELATED WORKS

Vehicles have been a subject of interest. Most approaches or
systems either detect vehicles from background or classify ve-
hicle types such as cars, buses, trucks. Some people further use
3D models to improve their works. Arie-Nachmison et al. [4]
construct a general 3D implicit shape model by factorization,
and they apply RANSAC procedure to estimate vehicle poses.
[6] embeds rendered 3D vehicle prototype to deal with vehicle
classification. [5] builds 3D representations of vehicle classes
to handle viewpoint changes. In the past, simple 3D polyhedral
vehicle models have been used for vehicle recognition based
on the assumption that matching the edges in the images with
the edges of the polyhedron is sufficient [7][8]. However, it
is clear that few edges of these rough models, even in low-
resolution images, are limited in gaining acceptable accuracy.
To address the lack of details in simple polyhedral models,
some approaches adopt more delicate 3D vehicle models
which provide rich constraints to match vehicles reliably. In
[9], based on a set of labeled salient points on the detailed 3D
model and metadata information, HOG features are extracted
and compared between the rendered model and the real scene
to classify vehicle types. Leotta et al. [10] and Tsin et al.
[11] use 3D CAD models and refine 3D-to-2D alignment until
convergence.

Vehicle make and model recognition or content-based ve-
hicle retrieval is a relatively new research problem. The basic
idea is to extract suitable features from the images of a vehicle,
which can be used to not only retrieve vehicle images having
similar appearances but also retrieve its make and model.

The objective of content-based image retrieval (CBIR) is
to efficiently analyze the contents of the image and retrieve
similar images from the database when metadata such as
keywords and tags are insufficient. To bridge the semantic

gaps, how to efficiently use available features such as color,
texture, interest points of images and spatial information is the
key. VisualSEEk system [12] developed a joint color/spatial
images query strategy. To acquire region-based signature for
retrieval, Malik et al. [13] applied image segmentation by
using cues of color and texture. Scale and affine-invariant
interest points have been used to deal with significant affine
transforms and illumination changes and shown effective for
image retrieval [14]. To improve CBIR performance, other
works provide effective indexing, refine results with feedback
from the user, select more powerful features from a pool of
features, etc.

Searching for vehicles in surveillance videos, Feris et al.
[15] build a surveillance system capable of vehicle retrieval
based on semantic attributes. They train motionlet detectors
which cover 12 viewpoints and are learned in shape-free
appearance space from a set of city surveillance cameras.
They define several attributes as possible descriptions, such as
dominant color, length, height, and direction. Those attributes
are extracted from detected motion blobs. To estimate vehicle
dimensions in world coordinates, they manually do camera
calibration and use a simple 3D model fitting approach on the
basis of several assumptions (i.e., a vehicle’s location on the
ground plane, orientation of heading direction, and the scale of
the model). Different from this system based on attributes and
applied on surveillance videos, our work focuses on extracting
informative parts from fitted vehicle models and investigating
part information for improving content-based vehicle image
retrieval.

Vehicle make and model recognition (MMR) is mostly
applied on frontal vehicle images. Petrovic and Cootes [16]
present an investigation in a rigid structure approach for
vehicle make and model recognition. They show that gradient
representations are reliable for recognition of vehicles from
frontal views under a variety of conditions. Similarly, Negri
et al. [17] propose an oriented-contour points based voting
algorithm. They use LPREditors license plate recognition
method to get the corners of the vehicle license plate. They
empirically regard the area extended from the corners as the
region of interest and do vehicle type classification based on
oriented contours. Instead of using edge maps as features,
Kazemi et al. [18] apply curvelet transforms to represent
image edges and curved singularities. Rahati et al. [19] show
contourlet transforms are more suitable with smooth contours
in all directions. Zafar et al. [20] propose to use additional
local texture in the contourlet decomposition across scales of
directional resolutions and get increased accuracy on vehicle
make and model recognition. They have shown that structural
features are distinguishable on frontal vehicle images.

Different from those prior works, we conduct content-based
retrieval on vehicle images using more rigorous 3D model
fitting methods to deal with a variety of viewpoints. Our
approach is applicable not only in absolutely frontal view
but also in a wider range than previous vehicle make and
model recognition. Moreover, we present an investigation for
content-based vehicle retrieval based on several semantic parts
and their fusion. The experimental results show that vehicle
make and model retrieval based on those informative parts
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Fig. 2. Our framework of content-based vehicle retrieval. In the offline
process, we use 3D vehicle models to build an active shape model (ASM).
Then we are able to do 3D model fitting on the input vehicle image. We
crop and rectify informative parts into the same reference view. After feature
extraction, we conduct part-based vehicle retrieval on NetCarShow300, a
challenging dataset.

are more representative than a whole vehicle, and it is also
possible to enhance more information or attributes for further
improvement.

III. OVERVIEW

Our approach focuses on improving content-based vehicle
retrieval performance. In order to deal with a variety of
viewpoints and shapes, we propose to analyse the vehicle in
an image by 3D vehicle model fitting and rectified parts. With
prior part information, we can further enhance model fitting
results.

The overall framework is as illustrated in Figure 2. First,
to deal with shape variation of models, we want to build
an active shape model (ASM). Therefore, we use a CAD
tool to construct 3D vehicle models, and we can enforce
point consistency between all models manually. Second, we
investigate different 3D model fitting methods (e.g., fitting by
point registration, jacobian system, weighted jacobian system).
We are able to get the fitted vehicle in an image and reconstruct
its 3D vehicle models after the model fitting step. Third, we
rectify informative parts into the same reference view. There
is no doubt that recognizing vehicles or parts in different
viewpoints is difficult. As a result, we apply image warping
to informative parts, flip them into the same side, and remove
partial distorted regions. Finally, we extract features from
those rectified parts and conduct detailed content-based vehicle
retrieval experiments. Moreover, we also compare state-of-the-
art 3D model fitting approaches and our improved method
involving part information.

The rest of this paper is organized as follows. 3D model
construction and fitting are defined in Section IV and Section
V. Part rectification method is described in Section VI. Ex-
periment results and comparisons are provided in Section VII,
followed by our conclusion and future work in Section IX.

IV. 3D VEHICLE MODEL CONSTRUCTION

Considering shape variation of vehicles, we have to build a
deformable 3D vehicle model before 3D model fitting process.
As a result, we construct an active shape model (ASM) for
vehicles. An ASM represents an object by a set of 3D points
Pk = [pk

1 ,p
k
2 , · · · ,pk

N ]T . A 3D point pj in each instance
represents the same corner or semantic location, such as a
left-top corner of a windshield, a right-front corner of a roof,
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Fig. 3. 3D vehicle training models, including sedan, wagon, pickup truck,
crossover, hatchback, and SUV.

or one of points consisting of a front wheel. To make sure
the correspondence of the same physical shape, we manually
select 128 points for a half vehicle template model. The
other half can be obtained by mirroring. Then, we adjust
locations of points from the template model to corresponding
locations in each training models. It is inevitable that there
exists difference on rotation, translation, and scale factors
between 3D vehicle models. To eliminate the influences of
these factors and only analyze shape variation by principal
component analysis (PCA), we conduct generalized Procrustes
analysis (GPA) [21]. GPA is an approach to align shapes of
each instance. The algorithm is outlined as following.

1) Choose a reference shape or compute mean shape from
all instances.

2) Superimpose all instances to current reference shape.
3) Compute mean shape of these superimposed shapes.
4) Compute Procrustes distance between the mean shape

and the reference. If the distance is above a threshold,
set reference to mean shape and continue to step 2.

After finishing the GPA process, we apply PCA. That is, we
compute the mean shape m from K training vehicle models:

m =
1

K

K∑
k=1

Pk. (1)

and we can compute the matrix C =
∑K

k=1(Pk −
m)T (Pk − m) and the eigenvectors Ω = [ω1,ω2, ...,ωM ]
which correspond to the M largest eigenvalues of C and
define the “vehicle space.” By projecting a 3D vehicle model
to the “vehicle space,” we get a M -dimensional vehicle shape
parameter U which controls the variability of the shape of a
vehicle model. Then, we can reconstruct a 3D vehicle model
P′:

P′ ≈m + Ω ·U. (2)

In our experiment, we use 11 3D vehicle models as training
instances, including 3 sedans, 2 wagons, 1 pickup truck, 1
crossover, 2 hatchbacks, and 2 SUVs (cf. Figure 3), with
totally 256 salient points for two sides and 342 triangular faces
to describe wheels, radiator grille, doors, lamps, windows, rear,
and other semantic parts (cf. Figure 4).

Then, we estimate the reconstruction error. According to
the mean reconstruction error estimated by the ratio between
average distance error and the vehicle length, we find that less
than 0.4% reconstruction error results from 8 eigenvectors;
that is, the error is only about 4 pixels if the length of a
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Fig. 4. 3D vehicle model representation. Several vertices form one or more
faces which represent a semantic part, such as wheel, front window, or grille.

projected vehicle is 1000 pixels, which is relatively low. It
can be expected that no more than 10 eigenvectors is enough,
even there are more models. In our experiment, we use 10
eigenvectors to reconstruct the models for better quality.

V. 3D VEHICLE MODEL FITTING APPROACH

In the model fitting step, we assume that initial position
and pose of a vehicle in an image can be estimated. It is
reasonable since detecting the direction and location of the
moving vehicles or some multi-view object detection can be
derived by many promising approaches (e.g., [4][3]). Content-
based vehicle retrieval is based on the information about the
target vehicle. That is, we must detect and estimate the pose
of our target before we deal with this object.

In order to extract parts of vehicles, model fitting is essen-
tial. Therefore, we investigate and compare two different state-
of-the-art approaches in [10] and [11]. One depends on point
registration and the other solves a Jacobian system. The two
approaches have not been compared before our work, so we try
to implement them and do several sensitivity tests to see their
capabilities in different configurations. Moreover, we propose
to leverage the prior knowledge of semantic parts (e.g., grille,
lamp, and wheel) and further improve the challenging 3D
alignment problem. The results are shown in Section VII-D.

The overall model fitting steps are illustrated in Figure 6.
Given initial pose and position parameters, the 3D model is
projected into 2D image and the hidden lines are removed
by using depth map rendered from the 3D mesh. Then, a
set of hypothetic edges is generated. For each projected edge
point, we find all corresponding observed edge pixels in a
range of 20 pixels along the normal direction of the projected
edges. After iterative updates for the correspondences, the
shape and pose will converge. Both state-of-the-art methods
attempt to minimize the distance error between the observed
and projected edge points. The illustration of 3D model fitting
process is depicted in Figure 5. The main difference between
the methods lie in finding point correspondences and shape and
pose optimization stages. In [11], they apply point registration
(PR) to find more correct point correspondences and use least
square approach to iteratively optimize the shape and pose
parameters until convergence. In [10], they iteratively optimize
shape and pose parameters by solving a Jacobian system.

A. Model Fitting Methods

1) Fitting by Point Registration: Given initial orientation
and location of a vehicle in an image, we want to build a
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Fig. 5. 3D vehicle model fitting procedure. Given the initial pose and shape,
we generate the edge hypotheses by projecting the 3D model into a 2D image
and remove hidden lines by using depth map rendered from the 3D mesh.
For each projected edge point, the corresponding points are found along the
normal direction of the projected edges. Then, a 3D model fitting method is
performed to optimized pose and shape parameters. The above procedure is
repeated several times until convergence.

(d) 25th iteration (ADE = 7.7) !

(e) 40th iteration (ADE = 7.37) !

(a) Image segment! (b) Initial position (ADE = 9.66) !

(c) 10th iteration (ADE = 9.66) !

(f) 50th iteration (ADE = 6.80) !

Fig. 6. Illustration of 3D vehicle model fitting process. Given an image
segment (a), we iteratively optimize the shape and pose parameters to
minimize the distance error between the observed and projected edge points
(b) ∼ (f). Red line segments are hypothetic edges of current vehicle pose.
Green points are the points on the hypothetic edges and blue points are the
corresponding points on the observed edges. Each correspondence is linked by
a yellow line which represents the error measurement. The average distance
error (ADE) under each image indicates the average (pixel) distances between
the observed and projected edge points. Best seen in color.

3D vehicle model with our deformable model by fitting the
landmarks to the corresponding salient edge points in the
image. Here we apply point registration (PR) algorithms to find
corresponding points, solve equations, and obtain projected
weights and translations as [11].

In the beginning, given an initial pose, each landmark point
is reconstructed from the mean shape Eq. 1 and projected
according to the general camera equation Eq. 3.u(j)v(j)

1

 =

sxf 0 u0
0 syf v0
0 0 1

 [R3×3 T3×1
]
pj . (3)

u(j) and v(j) represent one 2D point with respect to an
origin in the top left corner of the image plane, and pk

j is the
corresponding 3D point reconstructed according to Eq. 2. f is
the focal length or a constant. sx and sy are scale factors on
x and y axes respectively. R is a rotation matrix and T is a
translation matrix. Eq. 3 can be reformulated:{
m̃(j)x − ũ(j)m̃(j)z = (ũ(j)ω̃(j)z − ω̃(j)x)U + [−1, 0, ũ(j)]T
m̃(j)y − ṽ(j)m̃(j)z = (ṽ(j)ω̃(j)z − ω̃(j)y)U + [−1, 0, ṽ(j)]T,

(4)
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where m̃(j) = Rm(j) = (m̃(j)x, m̃(j)y, m̃(j)z),
ω̃(j) = Rω(j) = (ω̃(j)x, ω̃(j)y, ω̃(j)z),

ũ(j) =
u(j)−u0

sxf
, ṽ(j) =

v(j)−v0
syf

.
(5)

f U represents the vehicle shape parameter as the definition in
Eq. 2, m̃(j) and ω̃(j) are rotated mean model and eigenvec-
tors respectively. ũ(j) and ṽ(j) are adjusted coordinates from
observed points in an image. When we assume only U and
T are unknown, Eq. 4 is a least square equation [11]. As a
result, the following is the steps for solving this problem. First
of all, according to initial position and pose, we project 3D
vehicle model to a 2D image and sample points on edges as
a projected point set. Second, for each projected salient edge
point, we find all nearby points in the normal direction as a
candidate point set. Third, we apply a point registration ap-
proach, Kernel Correlation (KC) [22] or Coherent Point Drift
(CPD) [23]. The step finds a rigid or non-rigid transformation
which maximizes the correlated distribution between two point
sets. The transformation is applied to the projected point set
and outputs possible corresponding points. Finally, the model
fitting problem is now formulated as a least square problem
based on the correspondence and other known factors, and it
can be solved by repeating the steps until it converges.

2) Model Fitting by Jacobian System: As mentioned earlier,
we assume that there are initial parameters (e.g., position,
pose). Given a collection of correspondences between ob-
served and projected edges, each corresponding edge point
produces one error measurement ei.

ei = Ei(q) = E1
i (E2

i (E3
i (q)))). (6)

Each error measurement ei is defined by an error function
Ei which can be expressed by 3 subsequent functions. E3

i

generates the ith 3D points from the 3D model and parameters,
q. E2

i projects the ith 3D points into 2D image coordinates.
E1

i computes the perpendicular signed distance from the
correspondence. In a word, ei represents the signed perpen-
dicular distance from ith projected point to the corresponding
observed edge point (cf. Figure 7(c)). See more explantions
in [10]. The fitting problem can be formulated as a Jacobian
system (JS):

J∆q = e, (7)

where e is the vector of signed errors, ∆q is the vector of
parameter displacement updated at each iteration, and J is
the Jacobian matrix with current parameters. The solution is
derived by a least square method and iteratively optimizing
the parameters until convergence.

B. Model Fitting with Part Information

d Most of the model-fitting algorithms find corresponding
points by local search of the projected edges depending only
on some low-level features, such as edge intensity and edge
orientation, which are likely to fail and converge to local
maxima in common cases due to cluttered background or
complex edges on the surface of vehicles. We are interested
in whether it is possible to improve the fitting algorithm with
some prior knowledge of parts (e.g., grille, lamp, wheel). That

(a) (b) 

(c) (d) 

Fig. 7. Illustration of 3D model fitting process with part information. (a)
The input image with superjacent 3D ground truth data. (b) The synthetic
weight map of three parts, grille, lamp and wheel drawn in different colors.
For each part, the color strength represents strength of the weights. (c)
Intermediate result in 3D model fitting process. (d) Intermediate weight value
of each observed points. Higher weight values imply higher probability of the
observed point belonging to the correct part. Best seen in color.

is, we can give different weights to different correspondences
and lead to better fitting results. To validate our assumption,
we generate synthetic weight maps of parts by using annotated
ground truth data (cf. Figure 7(b)), and formulate this problem
into a weighted Jacobian system (WJS):

WJ∆q = We, (8)

where W is a diagonal weight matrix with each diagonal
element wii representing the weight of each correspondence.
We take two important weights into consideration, distance
weight wdist and part weight wpart. wii is computed by a
linear combination with λ:

wii = λ · wdist + (1− λ) · wpart. (9)

The distance weight wdist is based on the Beaton-Tukey
biweight [24]. For each projected point, the edges far from
the point will not be taken into computation. The part weight
wpart is determined by the value of the location of observed
edge point in the part weight map. Higher weight values in
the part weight map imply where the part is with higher
probability (cf. Figure 7(d)). In other words, we know that
the projected point belongs to which part in the 3D model,
and the part weight will be higher if the observed edge point
belongs to the correct part or near the location of the correct
part according to the part weight map. Our experiments show
that the 3D model fitting precision is improved with the aid
of the prior weight map (cf. Section VII-D).

VI. PART RECTIFICATION

Depending on the estimated pose of each vehicle (cf. Figure
1(b)), we extract the parts after the state-of-the-art 3D model
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Fig. 8. Illustration of part rectification. (a) The original extracted frontal
regions after 3D fitting. (b) The frontal parts flipped to the same side. (c)
The flipped parts rectified to specific pose and retaining 70% and 50% width
respectively.
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Fig. 9. Two warping approaches. (a) An input vehicle image. (b) For some
specific grille and lamp meshes, applying warping by barycentric coordinates.
(c) Computing a projective matrix by solving a least square equation and
applying the matrix to warp the vehicle image. (The license plate is whiten
for the privacy issue.)

fitting approach. Next, we rectify the parts by projecting them
into specific angles, such as the frontal view or the side view,
before feature extraction and feature comparison. We try to use
two image warping methods, that is, barycentric coordinates
(cf. Figure 9(b)) and projective matrix (cf. Figure 9(c)). We
find that applying one global projective matrix is not suitable
to rectify a vehicle from one view to the other. So we adopt
barycentric coordinates to do image warping in our work.

Barycentric coordinates are triples of numbers correspond-
ing to masses placed at the vertices of a reference triangle.
That is, a triangle can be defined by three vertices a, b, and
c. A point t in this triangle is uniquely represented as

t = α · a + β · b + γ · c, (10)

where α + β + γ = 1. If we get the barycentric coordinates
of a, b, and c, it is able to calculate α, β, and γ. Hence, by
bilinear interpolation and inverted mapping, each point in the
projected view can find the corresponding point in the original
image and get the mapped pixel value. Furthermore, we can
remove background pixels which are out of projected triangles.
By this way, we can obtain rectified semantic parts. (cf. Figure
8(a))

Due to viewpoint variation, parts may be contrary in differ-
ent vehicle images. Therefore, utilizing symmetry of vehicle
shape, we flip the visible parts into the same side before
applying feature extractionx (cf. Figure 8(b)). The step turns
out to be essential for good performance. Moreover, the visible
parts are under different poses, so there are some distorted
regions after rectification. In other words, warping may enlarge

Fig. 10. Some examples in NetCarShow300 dataset.

originally small regions and cause distortion. As a result,
trimming the non-informative regions is shown effective to
improve the performance. Empirically, we retain 70% and 50%
ratio of width to investigate the influence. (cf. Figure 8(c))

VII. EXPERIMENTS

In the following, we conduct several experiments on a
challenging dataset to show the performance of our content-
based vehicle retrieval approach. We also do the comparison
between different 3D model fitting methods. It is obvious
that fitting precision may influence the part extraction. To
prove our idea and remove uncertain factors in content-based
vehicle retrieval for leveraging informative parts, our retrieval
experiments are initially based on extracted parts from the
ground truth. We will further show the retrieval results based
on those parts extracted by model fitting in Section VII-D.
Similarly, in order to evaluate the influence of knowledge of
part information for 3D vehicle model fitting, weight maps are
generated from the ground truth.

A. NetCarShow300 Dataset

To investigate our approach on retrieving vehicle images un-
der different conditions and in various viewpoints, we collect
300 images from NetCarShow.com1, the NetCarShow300 2

dataset, where the size is comparable to commonly used
vehicle type recognition datasets [17][20] which are com-
posed of only frontal cropped grayscale vehicle images. Net-
CarShow300 dataset comprises 30 vehicle instances, such as
Acura ZDX, Honda Odyssey, Honda Pilot, Opel Corsa, Volvo
V70. Each instance has 10 images respectively. All images are
800×600 color images. Each image contains one main vehicle
of which the frontal part is visible. The vehicles are presented
in different environments, including noisy background, little
occlusion, different illumination, and shadows. Moreover, a
vehicle may be extremely projective, and the surface has

1http://www.netcarshow.com
2We will make the dataset public.
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Fig. 11. Illustration of ground truth generation. Red lines represent a
projected vehicle model. Green dots are hard-constrained projected points
and purple dots are corresponding points. After several iterations, we get a
well fitted model as the final result which can be reconstructed as a 3D model.
Best seen in color.

reflection. The pose variation is not only on the up-axis but
also on the other axes. Some examples are shown in Figure
10. No doubt the diversity challenges the model fitting and
the recognition. Also, vehicle instances made by the same
manufacturer, for example, Honda Odyssey, Honda Pilot, and
Honda CR-V shown in the second row of Figure 10, may
influence the performance if we focus on retrieving vehicle
images which belong to the same instance as the input image.
We have generated ground truth for this dataset. The ground
truth of each image includes reconstructed 3D vehicle model,
2D vehicle mask in the image, and parameters of perspective
matrix and shape. The grouth truth generation process is
described in the next section.

B. Ground Truth Generation

The ground truth of NetCarShow300 is obtained by aligning
the projected models manually as Figure 11. In other words,
we implement an annotation tool which lets annotators be able
to adjust the location and pose of each 3D model, and we
can set several hard-constrained corresponding points between
a projected model and a vehicle image. According to our
experience, the points on the corners, silhouette, and especially
rear parts of a vehicle are mostly needed to be selected. Given
those hard-constrained correspondence, we can update the
shape distribution iteratively by point registration approach.
Finally, we get a good fitting result which can be used to
reconstruct an approximate 3D vehicle model as the ground
truth.

C. Vehicle Retrieval Performance

In this experiment, we apply several descriptors on extracted
parts which are resized to the same number of pixels while
keeping the ratio between height and width. Those retrieved
vehicle instances which have the same label as the query
instance are correct. We compare the mean average precision
(MAP) performance on different sources including a whole
vehicle image and three parts, grilles, lamps, and the most
visible wheel. Then, we do sensitivity tests to select the late

fusion weights and obtain the best parameters. We test on
three state-of-the-art feature descriptors. Firstly, Difference
of Gaussian (DoG) detector and SIFT descriptor are used
[25]. For constructing the visual word vocabulary, we start by
applying SIFT descriptor on the images of three informative
parts. Each descriptor contains 4 × 4 cells with 8 orientation
bins, resulting in 128-dimensional feature vectors. The average
number of feature descriptors for grille, wheel and lamp parts
are 44.8, 62.43 and 56.75 respectively. We then group these
visually similar descriptors by hierarchical clustering method
to create a general 512-visual word vocabulary of prototypical
local appearances. This visual word vocabulary will be used
for all different sources (each row in TABLE I represents a
different source) in the following experiments. In Section VIII,
we further discuss the effect of using different vocabulary set
and different vocabulary sizes for each source. Secondly, we
use Pyramid Histogram of Oriented Gradients (PHOG) [26]
which computes the histogram of oriented gradients in a region
with several levels. Here we let the number of level be 3
and concatenate the vectors into a 168-dimension descriptor.
Thirdly, we adopt the rotation-invariant feature, Local Binary
Pattern Histogram Fourier (LBPHF) [27]. the descriptor ap-
plies to a whole region and is computed from discrete Fourier
transforms of local binary pattern (LBP) histograms. In other
words, the descriptor describes the appearance locally based
on the signs of differences of neighboring pixels. We use three
different radiuses of the circular neighborhoods and obtain
478-dimension descriptors.

We collect the leave-one-out results with these descriptors
combined with L1 or cosine distance (cf. Table I). Distance
metric is complementary to our part-based model; other dis-
tance metrics are also adoptable in this framework. To compare
our part-based method, the baseline is set as the state-of-the-
art approach in content-based image retrieval (please refer to
#1 row: “Original Body Original Side” in Table I), which is
based on the un-rectified and segmented whole vehicle image
described by several state-of-the-art feature descriptors. To
be fair, the whole vehicles of our baseline are segmented
from background (cf. segmented vehicle image in Fig. 1(a)).
Comparing these local or global descriptors combined with
two measurements, we find that L1 distance is superior to
cosine similarity, SIFT feature is better on the whole image or
original parts, PHOG feature is more competitive on rectified
parts, and LBPHF feature has moderate precision. Obviously,
PHOG maintains the structural consistency which is important
to distinguish different vehicle instances so it is benefited a
lot by part rectification. LBPHF feature considers neighboring
pixels and local distribution so it gains a little with rectifica-
tion.

Intuitively, flipping alignment which mirrors the opposite
structures makes vehicle images which are primarily in differ-
ent viewpoints become similar. In Table I, the pair of the 3rd
and 4th rows indicates that flipping alignment from “Original
Side” to “Same Side” improves the performance by about 2–
10%.

After we rectify parts into the frontal view, the pair of the
4th and 5th rows, the pair of the 7th and 8th rows, and the
pair of the 9th and 10th rows illustrate that this step from
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TABLE I
THE PERFORMANCE (IN MAP) FOR VEHICLE RETRIEVAL EXPERIMENTS.“FUSION OF 70% GRILLE, LAMP, AND WHEEL” OBTAINS THE BEST MAP OF

63.08% AND IS MUCH BETTER THAN THE BASELINE “ORIGINAL BODY ORIGINAL SID” (18.77% WITH SIFT+L1) REFERRING TO THE VEHICLE IMAGE
WITHIN THE BOUNDING BOX IN FIGURE. 1(A).“RECTIFIED BODY SAME SIDE” REFERS TO FIGURE 1(C),“ORIGINAL FRONT ORIGINAL SIDE” AND

“ORIGINAL FRONT SAME SIDE” REFER TO THE FIGURE 8(A) AND (B) RESPECTIVELY.“RECTIFIED SAME SIDE” WITH “100% FRONT”, “70% FRONT”
AND “50% FRONT” REFER TO FIGURE 8(C). THE MEANINGS OF THE REST ROWS ARE SIMILAR. THE SIFT FEATURES IN THIS TABLE IS BASED ON A

GENERAL 512-VISUAL VOCABULARY CONSTRUCTED FROM THREE INFORMATIVE PARTS.

# Descriptor+Distance Measure SIFT+L1 SIFT+COS LBPHF+L1 LBPHF+COS PHOG+L1 PHOG+COS WJS+PHOG+L1
1 Original Body Original Side (baseline) 18.77% 18.21% 11.06% 9.71% 10.44% 9.30% 10.81%
2 Original Front Original Side 36.96% 32.98% 20.17% 17.54% 22.87% 20.02% 18.14%
3 Rectified Body Same Side 32.01% 29.30% 21.10% 17.47% 31.61% 23.76% 25.26%
4 Original Front Same Side 39.42% 34.63% 20.08% 17.40% 35.63% 29.87% 29.22%
5 Rectified Front Same Side 37.95% 34.00% 25.27% 21.23% 48.99% 38.87% 37.80%
6 Rectified 70% Front Same Side 38.95% 32.99% 26.89% 22.77% 51.76% 41.16% 41.88%
7 Rectified 50% Front Same Side 29.27% 26.48% 25.58% 22.66% 54.84% 45.05% 44.58%
8 Original 50% Front Same Side 30.98% 26.88% 20.83% 18.39% 44.96% 35.19% 36.93%
9 Original Grille Same Side 36.26% 27.74% 24.10% 21.49% 38.01% 29.50% 28.90%
10 Rectified Grille Same Side 31.85% 27.17% 35.57% 31.64% 45.13% 34.53% 34.40%
11 Rectified 70% Grille Same Side 30.72% 27.55% 34.30% 30.99% 47.38% 36.87% 31.66%
12 Rectified 50% Grille Same Side 22.36% 20.61% 35.09% 32.69% 47.26% 37.91% 28.79%
13 Rectified Lamp Same Side 13.17% 12.24% 25.77% 23.78% 47.31% 42.21% 28.93%
14 Rectified Wheel Same Side 13.78% 11.87% 10.80% 9.62% 14.00% 12.13% 9.86%
15 Fusion of 70% Grille, Lamp, Wheel 34.26% 30.23% 43.24% 38.54 63.08% 53.79% 42.89%

“Original” to “Rectified” improves the performance by about
5–13%. We see that rectifying parts into a specific view deals
with various viewpoints and makes parts more comparable
physically.

Refer to the 6th or 7th row, “Rectified 70% Front Same
Side” or “Rectified 50% Front Same Side,” in Table I, retaining
70% or 50% part regions which are more undistorted increases
MAP by around 2–6% compared with the 5th row, “Rectified
Front Same Side.” It shows that if we retain only informative
regions, the performance will be improved.

The 7th row, “Rectified 50% Front Same Side,” in Table I
reveals that PHOG descriptor with L1 measure (PHOG+L1)
outperforms other descriptors and achieves an MAP of 54.84%
with 50% frontal parts composed of half grille and a lamp.
The MAP is higher than our baselines (32.01% and 36.96%).
Considering each parts, the grille and lamp are more discrimi-
native than the wheel. It is shown in the 11th and 13th rows of
Table I that the grille part has an MAP of 47% when retaining
70% rectified region, and the lamp part also achieves 47% with
PHOG. Clearly, the composition of grilles and lamps is distinct
between vehicle instances, but wheels are not very helpful
when distinguishing the vehicle instances. One explanation is
that the wheel structure may be not consistent in one vehicle
instance. The other reason is that the internal structure of
wheel parts may be blurred and unidentifiable when the vehicle
is in motion.

Furthermore, the last row in Table I shows the result when
we combine the three parts, grille, lamp, and wheel, to do late
fusion:

Sfusion = wgrille·Sgrille + wlamp · Slamp+

max(1− wgrille − wlamp, 0) · Swheel,
(11)

where S means the similarity score, and wgrille and wlamp are
the weights of the grille and lamp respectively. For determining
the weights, we exhaustively search different weight combi-

TABLE II
FITTING PRECISION.

Method APD STD
Initial Location 47.15 6.06
PR(KC) 39.26 9.90
PR(Rigid CPD) 29.59 6.91
PR(Non-rigid CPD) 26.53 6.84
JS 34.19 6.31

TABLE III
SENSITIVITY TEST WITH WEIGHTED JACOBIAN SYSTEM (WJS).

λ APD STD
0 20.29 5.97
0.1 19.75 5.09
0.2 19.22 4.84
0.3 18.73 4.66
0.4 18.98 4.71
0.5 19.25 4.79
0.6 19.86 4.94
0.7 22.83 5.54
0.8 26.59 6.38
0.9 30.60 7.40
1 34.19 7.91

nations over the range 0 ∼ 1 and evaluate them by leave-one-
out cross validation. We then select the weight combination
that leads the best MAP. The achieved MAP revealed in the
last row is 63.08% on wgrille = 0.4 and wlamp = 0.5, and
it significantly outperforms the previous unfused results and
our baselines. Some retrieved results are shown in Figure
12. Besides, the discussion about the fusion of fitted parts
is described in the next section.

D. Model Fitting Comparison

To compare the differences between model fitting ap-
proaches, we generate a testing data with noisy initial position
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Fig. 12. Content-based vehicle retrieval results by ”Fusion of 70% Grille, Lamp, Wheel” and ”PHOG+L1.” The number represents its retrieval ranking.
The images with red border are wrong. The results show that proposed vehicle retrieval approach using part information and 3D model can retrieve the same
instances under different environments. Best seen in color.

by adding random noises to ground truth. Then, we measure
average pixel distance (APD) and standard deviation (STD) of
visible vertices between fitted models and ground truth.

For CPD parameters, we have done sensitivity test to select
the parameters. The parameters we used are noise weight =
0.9, width of Gaussian Kernel = 5, regularization weight = 10.
In Table II, Rigid CPD (29.59 in APD) is better than other
approaches (39.2 and 34.19), and non-rigid transformation
improves the performance (26.53) because deformation possi-
bility is considered even the model does not actually change
the shape. In fact, we find that translating to good location is
an important key for good fitting performance because worse
translation may increase overall distance. Rotation and shape
deformation then adjust the position of each vertex locally and
lead to minor improvement. Furthermore, with the knowledge

of the salient parts, we can utilize these weight maps to
facilitate the 3D model fitting precision. In the sensitivity
test shown in Table III, λ = 0.3 has the lowest error 18.73
which surpasses the non-rigid point registration result. Figure
13 depicts the some fitting results. Comparing these 3D model
fitting approaches, weighted Jacobian System (WJS) approach
shows the best performance.

The retrieval performance corresponding to the fitting result
“WJS+PHOG+L1” is shown in the last column of Table I. It
gets lower MAP (42.89%) than the ideal case (63.08%), but it
still achieves relatively better performance than our baselines
which are based on the segmented vehicle images, “Original
Body Original Side” (18.77%) and “Original Front Original
Side,” (36.96%) and validates the impact of vehicle retrieval
using part information and 3D model.
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Fig. 13. 3D model fitting results. Proposed weighted Jacobian system (WJS) approach leveraging weight maps of informative parts outperforms other fitting
approaches. Best seen in color.

VIII. DISCUSSIONS

A. Visual Word

To examine the effect of a specific visual vocabulary and
different vocabulary sizes for each source (each row in Table
I represents a different source), we experimented on some
representative sources selected from Table I. The results are
shown in Table V. The performance is improved as using
a different visual vocabulary for each source compared to a
general visual vocabulary for all sources (comparing “512”
column in Table V and “SIFT+L1” column in Table I).
In addition, as the vocabulary size increases, the retrieval
performance gets better, but saturates at certain point, as the
similar observations in [28]. The proposed weighted Jacobian
System (WJS) (MAP = 42.89%) still outperforms the baseline
method, whose best MAP = 40.15% is achieved on 8192
vocabulary size.

We also find that “Rectified Body Same Side” achieves
considerably good result (MAP = 55.18%) on 4096 vocabulary
size, which demonstrates the effectiveness on rectification of
the whole vehicle body (cf. Table V). This result also inspires
us to take the advantages for both local informative parts
with PHOG and global rectified body with SIFT. We conduct
late fusion over the results from detailed part model: “Fusion
of 70% Grille, Lamp, Wheel + PHOG” and global model:
“Rectified Body Same Side + SIFT” in an average way to
further boost the final performance to MAP 72.85% (cf. Table
VI) by marrying the global context and local informative parts.
The improvement is significant comparing with the prior CBIR
methods, which generally ignore 3D alignment or informative
parts.

B. Part Weight

In the section VII-C, we have demonstrated the effectiveness
of rectifying parts into a specific view. However, the distortion
areas of parts maybe increased as we rectify the parts from
a large angle (e.g., rectifying the wheel region from side to
frontal view). To further boost the performance and investigate

the effects of view-dependent fusion, we categorize each input
vehicle image into different view categories according to the
pose parameters obtained after 3D model fitting step and apply
different part weights on each view category. Because of the
aid of the rectification technique, we only need a small set of
view categories and thus speed up the computation.

We conduct an experiment to analyze the effect of part
weights for different view categories. We categorize the train-
ing samples into two different categories according to their
rotating angles of up axis (e.g., y axis) relative to frontal pose.
Figure 14 shows the pose distribution of our dataset images.
Due to the symmetric property of vehicles and the aid of
the rectification technique, two categories are enough on our
dataset for training the part weights. The ranges of angles on
the two categories are {[−30, 30]} and {[−60, 30), (30, 60]}
respectively. For each category, we select the weight combi-
nation that leads the best MAP as the same approach described
in section VII-C. Table IV shows the performance results on
two categories using the same experimental settings as our best
part model: “Fusion of 70% Grille, Lamp, Wheel + PHOG +
L1.” We further boost the performance (MAP = 68.54% and
65.06%) compared to the best MAP (63.08%) in Table I. Grille
and lamp are still more discriminative than wheel on both
categories due to the range of viewing angles of our dataset.
However, wheel gets higher weight as the rotating angles
increase. Since it is common to have occlusions or certain
rectification errors in the parts, we leverage multiple parts for
ensuring more robust retrieval accuracy. That is why the view-
dependent weights further boost the fusion performance. We
believe more improvement will be gained as deriving the view-
dependent fusion weights in more fine granularities.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we effectively utilize 3D vehicle models for
novel image-based vehicle retrieval. When robust 3D model
fitting approaches are applied, it is possible to extract some
discriminative parts. After part rectification, we demonstrate
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TABLE IV
LEARNING PART WEIGHTS ON DIFFERENT VIEW CATEGORIES.THE EXPERIMENTAL SETTINGS ARE THE SAME AS OUR BEST PART MODEL: “FUSION OF

70% GRILLE, LAMP, WHEEL + PHOG + L1.” BY VIEW-DEPENDENT FUSION, WE CAN FURTHER BOOST PERFORMANCE (MAP = 68.53% AND 65.06%)
COMPARED TO THE BEST MAP 63.8% IN TABLE I. ALTHOUGH GRILLE AND LAMP ARE STILL MORE DISCRIMINATIVE THAN WHEEL ON BOTH

CATEGORIES, WHEEL GETS THE HIGHER WEIGHT AS THE VIEWING ANGLES GET CLOSER TO SIDE VIEW.

Category Part weights MAP
{[−30, 30]} ωgrille = 0.5, ωlamp = 0.8, ωwheel = 0 68.54%

{[−60, 30), (30, 60]} ωgrille = 0.4, ωlamp = 0.4, ωwheel = 0.2 65.06%

TABLE V
THE PERFORMANCE (IN MAP) OF USING AN INDIVIDUAL VOCABULARY FOR EACH SOURCE (EACH ROW REPRESENTS A DIFFERENT SOURCE) VARIED

WITH DIFFERENT VOCABULARY SIZE. “RECTIFIED BODY SAME SIDE” ACHIEVES CONSIDERABLE GOOD RESULT (MAP = 55.18%) ON 4096
VOCABULARY SIZE DEMONSTRATING THE EFFECTIVENESS ON RECTIFICATION OF WHOLE VEHICLE BODY IMAGE.AS IT PROVIDES GLOBAL CONTEXT

FOR THE VEHICLE. MORE VOCABULARY DIMENSION IN SIFT VISUAL WORD DOES HELP BUT SATURATES AT 8192 AND BEYOND.

# Vocabulary Size 256 512 1024 2048 4096 8192
1 Original Body Original Side(baseline) 19.92% 23.96% 28.45% 33.88% 37.21% 40.15%
3 Rectified Body Same Side 35.27% 39.80% 47.26% 52.78% 55.18% 54.78%

11 Rectified 70% Grille Same Side 32.94% 36.21% 39.09% 41.53% 40.47% 34.38%
13 Rectified Lamp Same Side 15.82% 17.36% 17.91% 19.76% 22.78% 21.66%
14 Rectified Wheel Same Side 16.75% 20.01% 21.76% 24.53% 25.11% 24.03%

TABLE VI
THE PERFORMANCE IS BOOSTED TO MAP 72.85 % BY LATE FUSION OVER THE RESULTS OF “FUSION OF 70% GRILLE, LAMP, WHEE” AND “RECTIFIED

BODY SAME SIDE” BY MARRYING THE GLOBAL CONTEXT AND LOCAL INFORMATIVE PARTS.

Experimental Setting MAP
Fusion of 70% Grille, Lamp, Wheel + PHOG + L1 + general 512-vocabulary 63.08%

Rectified Body Same Side + SIFT + L1 + individual 4096-vocabulary 55.18%
Fusion (average) 72.85%

Fig. 14. The circular histogram shows the distribution of vehicle poses in
our dataset. We compute the rotation angle on up axis for each image with
respect to the frontal pose.

remarkable performance on a challenging dataset. The pre-
cision is surely notable and supports our idea on vehicle
part information fusion. Besides, finding corresponding points
during model fitting is such a challenging problem that a
lot of researchers are investigating it. Here our investigation
shows that the prior knowledge regarding certain parts has
noteworthy impacts on 3D model fitting. While our current
application is based on given initial pose and location, we
are undergoing an approach to automatically generate the
information. The computational cost of our method depends

on two major components, 3D model alignment and image
retrieval. For 3D model alignment, we currently implement
two state-of-the-art approaches [10][11] on a laptop with 1.7
GHz Intel Core i5 CPU and 4G 1333 MHz memory, it takes
about 1.5 seconds on average to align a 3D model for an
image. In the future, we will try to improve the speed by
using some parallel processing techniques (e.g., GPU). For
image retrieval efficiency, two state-of-the-art techniques can
be used: locality sensitive hashing [29] and inverted index [25].
When the feature vector is dense, locality sensitive hashing
might be more efficient than inverted index. We conduct an
experiment on our best part model: “Fusion of 70% Grille,
Lamp, Wheel + PHOG + L1” to measure the required time for
the retrieval step. PHOG is a 168-dimensional dense feature,
we leverage Random Project (RP) [30] to speed up the image
retrieval task since RP had been shown very effective in
retrieving high-dimensional data [31][32][33][34]. We project
the dense features to 500 bits and then compare the query and
database images in the hamming space. In our experiment, the
average response time is about 0.01 second on our dataset.
Also, from our past experiences on CBIR systems [35][36],
we believe these two techniques can still achieve real-time
performance in the million-scale dataset. We expect to include
vehicle detection and pose estimation steps, and we can build
a structural content-based vehicle retrieval system on more
difficult natural images without human annotation and leverage
more informative parts to improve the performance.
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