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ABSTRACT 
In this project, we detect impact sounds from TV golf games with audio clues only. Relevant 
features are exploited to best represent characteristics of impact sounds. Three classifiers are 
experimented to match impact sounds with high accuracy. By modeling impact sounds with 
unimodal multivariate Gaussian featured with Mel-frequency cepstral coefficients (MFCC), an 
encouraging result was approximately around 70% success rate. 

1. INTRODUCTION 
TV has been an important information source for long decades. Evolving with the rapid development 
of Internet and video technologies, Digital TV, streaming videos deliver more visual and audio 
impacts to home users who, nevertheless, have limited time to browse all available contents. Some 
highlight extraction technologies are promising with the trends especially those sports programs. 
There are lots of golf games in TV channels. However, very few researches are mined. A sequence 
of players planning, addressing, swinging and falling of the ball could be the highlight of the games. 
The impact video shot, characterized by a clear impact sound and fast motion are the key frames of 
highlights. In our approach, we focus on detecting impact shot through audio clues only without 
relying on those time-consuming visual features. It’s a big challenge since impact sound is 
comparably short and often mixed with other signals. 

Prior work on golf impact detection is not seen in the literatures as far as we could see. A similar 
work might be [7], where 4 heuristic hit templates of baseball, described by sub-band energies, are 
used to detect the baseball hit with some distance measurements. There are also some works [2][3] 
about speech, music and non-speech classifications. In these tasks, at least a one-second window is 
required to discriminate audio types or extract some semantic meanings. On the other hand, we 
might treat impact detection as speaker recognition [4][6] concerned with extracting the identity of 
the person speaking the utterance. However, the recognition or identification task is completed 
through seconds of speech within controlled environments. As for golf impacts, with mini-seconds 
only, it’s really significantly challenging to detect those precisely. Gladly with a simple parametric 
classifier, effective post-processing and features representing the impact sound, an encouraging 
result is discovered within this project. We had constructed a framework that could detect the impact 
sound with fair performance and seems invariant to production rules and environmental noises. 

Our work differs the others since this might be the only work about golf highlights. Moreover we 
construct a framework driven by impact characteristics rather than heuristic rules and fused with 
temporal and spectral criteria of golf impacts. 

In section 2 we discuss impact characteristics and feature selections; in section 3 we investigate 
experimented classifiers: Neural Network, unimodal multivariate Gaussian distribution and Gaussian 
Mixture Model (GMM); in section 4 we outline the results; in section 5 the future works are briefly 
addressed; and section 6 concludes this report. 
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2. FEATURE SELECTION 
Before any detection tasks, we need to approximate impact sounds with right model and features. 
We have 27 MPEG-I video segments with the length ranging from 12 to 72 seconds. 25 of them are 
from Mandarin golf programs and 2 of them are Korean ones picked up from MPEG-7 testing suits. 
In each segment there is exactly an impact shot. The original audio track is 44.1 KHz, 16 bits and 
further down-sampled to 8 KHz for detection. In general the duration of impact sound is very short 
and is roughly surrounded by 3 to 27 audio frames (with 256 sample/window and 128 sample/hop). 
They approximately occupy 0.16% to 1.1% length of sample segments. With such a short duration, 
it’s rather difficult to find semantic clues to identify the impact sound. Moreover, the impact sound is 
mostly mixed with speech, music, noise and environmental sounds. No doubt, some of them are not 
salient in the sample segments. In Figure 1, some sample impact sounds marked by the rectangle 
with correspondent spectrograms and waveforms are shown for references. In Figure 1-(c), the 
impact sound is mixed with speech formants. Meanwhile, all these impacts have different 
spectrograms and waveforms. 

   
(a) (b) (c) 

Figure 1. Three impact samples. (c) is mixed with speech. 

2.1. Features 
Eight audio features have been evaluated for use in this system. The features are calculated within 
each frame except spectral flux. A frame is of windowed samples, with 256-sample window size and 
128-sample hop size, or with 128-sample overlap. Figure 2 presents the system diagram from 
windowing samples, feature extractions, normalization, classification and post-processing. Actually 
these tasks are operated with intra-frame only. To get high semantic accuracy, we need consider 
temporal characteristics of impact sounds as well. It is then applied after classification tasks. The 
details are described in section 3.5. 
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Figure 2. System diagram for golf impact detection with audio clues 
The features adopted in this project are (please reference [5] for more details): 
� Zero Crossing Rate (ZCR): The number of time-domain zero crossings within a frame. 
� Short-Time Energy (STE): The average energy of samples within each frame. In general, 

frames of an impact would have higher STE. 
� High Frequency Short-Time Energy (HFSTE): The average energy within high-frequency 

sub-bands of samples. Impact frames have high HFSTE than those of noises or minor 
collision. 

� Centroid (CTD): The balancing point of the spectral power distribution. 
� Roll-off (85%) (RLF): The 85th percentile of the spectral power distribution. 
� Frequency Deviation (FDV): Standard deviation of spectral power distribution. 
� Spectral Flux (SFX): The 2-norm of the frame-to-frame spectral amplitude difference 

vector. 
� Mel-frequency Cepstral Coefficients (MFCC): See section 2.2 for more details. 
� First Cepstral Coefficient (CP0): The zeroth coefficient of MFCC. 
� Second Cepstral Coefficient (CP1): The first coefficient of MFCC. 

Through the correlation analysis, some of those features correlate highly, as Table 1. We found 
that RLF and FDV are highly correlated with CTD and CP1 such that these two features are not 
used in the following classifications.  

 ZCR STE CTD RLF FDV SFX CP0 CP1 
ZCR 1.000 0.058 0.841 0.697 0.602 0.080 0.371 0.536 
STE 0.058 1.000 0.049 0.077 0.142 0.779 0.892 0.102 
CTD 0.841 0.049 1.000 0.921 0.830 0.096 0.415 0.770 
RLF 0.697 0.077 0.921 1.000 0.937 0.013 0.278 0.881 

… … Feature Extractions MFCC

normalization

classification/
filtering/smoothing

window
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FDV 0.602 0.142 0.830 0.937 1.000 0.092 0.161 0.951 
SFX 0.080 0.779 0.096 0.013 0.092 1.000 0.742 0.060 
CP0 0.371 0.892 0.415 0.278 0.161 0.742 1.000 0.154 
CP1 0.536 0.102 0.770 0.881 0.951 0.060 0.154 1.000 

Table 1. The covariance matrix between features  

2.2. Mel-frequency Cepstral Coefficients 
Here we adopted Mel-frequency cepstral coefficients as the major representation of impact sounds 
[8]. For each windowed sample, the log of the power spectrum is computed using a discrete Fourier 
transform. A non-linear map of the frequency scale perceptually weights the log spectral 
coefficients. This operation, called Mel-scaling, emphasizes mid-frequency bands in proportion to 
their perceptual importance. Then the Mel-weighted spectrum is transformed into cepstral 
coefficients. In our experiment the zeroth cepstral coefficient plays a vital part to detect the impact. 
It might be due to that the normalized energy level is an important characteristic for modeling golf 
impacts. 

Initially, we tried to represent golf impacts with linear predictive coding (LPC) [1] and linear 
spectral pairs (LSP) [3][4]. LSP is another representation of the inverse filter constructed by LPC 
and the zeros of the filter are mapped onto the unit circle in the Z-plane through a pair of auxiliary 
polynomials.  

Figure 3. The similarities of the same audio clip measured by LSP and MFCC. The impact 
templates are extracted directly from the same audio surrounding the impact. 

In Figure 3, LSP and MFCC are used to measure the similarity between impact sounds and 
testing data. In this test, the impact frame samples are directly extracted from the same sample 
except that they are represented in LSP and MFCC. From the result, MFCC has higher performance 
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as modeling the impact sound. From our experiment, LSP has low discriminability on noise and 
small impacts caused by other objects. The effect might be probably that LPC or LSP is a model-
based representation and could be severely affected by noise [6]. At outdoors, the recordings might 
full of all kinds of noises. 

2.3. Normolization 
Since we hope to construct a generic framework for impact detection through audio clues, a 
confusion of absolute signal level is also an important issue to avoid. At this aspect, STE, HFSTE 
and each row of MFCC are all applied with online normalization, where each data sequence is 
locally normalized to have approximately zero mean and unit variance. With our proposed approach, 
invariant to production rules, extra two Korean golf programs (described in section 4) are detected 
successful without any framework or parameter modification.  

3. CLASSIFICATION 
Along with the experiment of this project, several approaches are taken with different outcomes. A 
nonparametric classifier, Neural Network, is firstly invoked and equipped with 6 features. We also 
seek to match impact patterns stochastically by modeling impact frames and with parametric 
classifiers.  

3.1. Neural Network (NN) 
A simple NN featured with ZCR, STE, CTD, SFX, CP0 and CP1 is firstly experimented to classify 
the samples, where the impact frames are marked with 1 and the other are labeled with 0. This 
classifier could somehow discriminate impact frames with other environmental sounds. However, it 
mixes with speeches that perceptually are easy to differentiate from impact sounds. According to the 
Figure 4, NN with those features does not perform well. The reason is that our positive training 
samples are very few (<1% of audio frames) and thus overcome by negative samples. 

Figure 4. NN classifier featured with ZCR, STE, CTD, SFX, CP0 and CP1. The red line mark impact frames 
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3.2. Model Impact Sound 
We further adopt pattern matching in this project, which requires a measurement of the similarity 
between the input feature vectors and impact models. Generally, template matching is categorized as 
template models and stochastic models. In early stage of speech processing, template matching was 
used intuitively. Here a stochastic model is used since it has more flexibility and results in a more 
theoretically meaningful probabilistic likelihood score. 

The most promising result comes as we model MFCC coefficients as a unimodal, multivariate 
Gaussian distribution. The sample audio frames covered by an impact sound was collected and form 
the template, which was further used to calculate the similarity by way of Mahalanobis distance. The 
first coefficient of cepstrum, C0, plays a vital part in discriminating impact with other waves. We did 
experiment to use coefficients 2 to 13 only. The result is quite poor comparing with those of 
coefficients of 1 to 13.  

3.3. Euclidean Distance Measurements 
In pattern matting, we have to define a similarity between the target and testing samples. The 
similarity is generally interpreted as the inverse of metric distance by some measurements. We 
adopted the Euclidean distance for the first trial, which turns out to provide poor discriminability, 
however. The Euclidean distance has an intuitive appeal as it is commonly used to evaluate the 
proximity of objects in two or three-dimensional space. It works well when a data set has “compact” 
or “isolated” clusters. The drawback is the tendency of the largest-scaled features to dominate the 
others such as C0 of this project. 

3.4. Unimodal Multivariate Gaussian 
For stochastic model, we approximate the impact sound with unimodal multivariate Gaussian 
distribution, which is characterized by a mean vector µ and covariance matrix Σ . The likelihood of 
a feature vector and the impact could be represented as the following: 





 −Σ−−Σ= −−− )()(

2
1exp||)2(impact)|( 12/12/ µµπ xxxp Tn . 

Taking the log of the likelihood, we further got, 

{ } )()(
2
1||log

2
12log

2
impact)|(log 1 µµπ −Σ−−−Σ−−= − xxnxp T . 

Since the first two terms of the right part of the previous equation are constants, it often takes the 
remaining part as a measurement of distance between the feature vector x  and the mean of the 
model. This is often referred as the Mahalanobis distance 2

Md , where 

)()( 12 µµ −Σ−= − xxd T
M . 

Actually, 1−Σ is used to normalize each dimension of features by its correspondent variance in 
order to prevent from being predominated by specific features with large quantities. Empirical 
results [9] suggest that covariance matrix Σ  could be simplified as a diagonal matrix carrying 
variance of each dimension and leaving the other parts zero. 

The higher 2
Md , the lower is the similarity between a sample with features x  and the impact 

model. Here we further define the similarity of each frame measured with Mahalanobis distance as: 
2/1)( MM dxSim = . 
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3.5. Filtering and Smoothing 
The similarity measurement with Mahalanobis distance is then filtered with thresholds of STE or 
HFSTE. The similarity of a specific audio frame is reduced to zero if its STE or HFSTE value is 
lower than a specific threshold, meaning that it might not be a right impact but some miscellaneous 
hits caused by object collisions, cough or other noises. The “open” Morphological operation is 
further invoked to remove outliers that have just 1, 2 or 3 successive frames and impossibly form a 
solid impact sound. This operation guarantees the temporal continuity or length of golf impacts.  
Through Figure 5, we could see that HFSTE plus Morphological operations perform very well 
because HFSTE does remove those noises with high similarity with impact sounds but having low 
energy or continuity at high frequency sub-bands. 

(a) 

(b) 

(c) 

(d) 

Figure 5. (a) Spectrogram of a Korean golf segment. (b) MFCC similarity measured with Mahalanobis 
distance. (c) Filter with STE threshold and smooth with Morphological operations. (d) Filter with HFSTE 
threshold and smooth with Morphological operations. 

3.6. GMM 
In [6], a Gaussian mixture model is suggested and derived from weighted sum of M Gaussian 

components and given by the equation: 

)(impact)|(
1

xbpxp i

M

i
i∑

=

= , 

where )(xbi  is the Gaussian component density; ip is the mixture weight with 1
1

=∑
=

M

i
ip  and 
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with mean vector iµ  and covariance matrix iΣ . The mean vectors, covariance matrices and mixture 
weights from all component densities parameterize the complete Gaussian mixture model. These 
parameters are collectively represented by the notation,  

},...,1|,,{ Mip iii =Σ=Θ µ . 

There are some advantages of using GMM to model impact sounds. Firstly it has the ability to 
form smooth approximations to arbitrarily shaped densities. Meanwhile the impact samples might be 
caused by varieties of clubs, swinging power, weather, noise…etc. We might have more precise 
result by modeling impact sounds with this model. However, it requires a comparable amount of 
samples to train the GMM. Meanwhile, during the training, the singularities of the covariance matrix 
might arise when there is not enough data to sufficiently train a component’s variance vector or 
when using noise-corrupted data. Due to time limitation and sample counts, this part is not 
completed but believed to bring great performance improvement. 

4. RESULTS AND DISCUSSIONS 
To measure the performance, we define two measurements, rigid hit and fuzzy hit: 

� Rigid hit: the impact frames have the highest similarity with 
training samples. The result is apparently a hit. 

� Fuzzy hit: the impact frames are not necessarily a rigid hit but 
not 30% smaller than highest similarity frames. This 
measurement approaches non-optimal solutions. It provides 
candidates of prospective impacts which is much more few than 
raw audio frames. If intending to apply expensive visual 
classifications, we might work on these fuzzy hits only. 

 
In our evaluation phase, 7 video segments are used for impact modeling; 21 video segments are 

collected for testing, two of which are from Korean golf programs. Then the performance is as the 
following: 

� Rigid hit: 14 hit among 21 video segments (67%), where Korean games are successfully 
hit. 

� Fuzzy hit: 16 hit among 21 video segments (76%).  
The result is quite encouraging and much better than we expected as initializing the project. More 

promisingly, it approaches the other work that detects baseball impacts. Till now, our proposed 
approach still has large rooms to improve by increasing testing samples, modeling with GMM or 
investigating other smoothing filters and thresholds.  

Those missed segments all have short duration of impact time or with very low energy level. 3 of 
the impacts are hardly recognizable if listening to audio tracks only. Those low energy impact 
frames are truncated after HFSTE filtering or Morphological operations characterized with spectral 
and temporal thresholds. This might be the major reason why some impacts not detected by our 
approach. 

Figure 6. Rigid hit v.s. Fuzzy hit

30%
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More interestingly, those two Korean video segments are “rigid hit” meaning that those impact 
frames are with the highest similarity. Our golf samples and thresholds are all trained from the other 
set of video segments with different production rules and energy levels. However, we still get the 
promising result suggesting that our classification framework might really catch true characteristics 
of golf impacts but based on few assumptions. 

5. FUTURE WORKS 
Our current result is encouraging and leads to the right way that models golf impact with MFCC 
features and applies pattern matching with stochastic models. The result is believed to improve a lot 
if more testing samples are drawn. Furthermore, with more samples, we could decide better 
thresholds and filtering rules. Moreover, a GMM could approximate golf impact sounds mixed with 
environment sounds and caused by different clubs. This approach is also subjected to few training 
samples. Besides, further incorporated with visual clues by applying on those small amounts of 
candidate frames of fuzzy hit could also increase the precision and recall rate, however, still preserve 
the simplicity and reduce cost of computing power. 

6. CONCLUSION 
Modeling and detecting a specific audio event with short duration and mixed with noise is 
challenging. In this work, golf impact detection with audio clues, we had constructed a simple but 
not poor classification framework that could detect golf impact and further used as relevant clues for 
highlight detection in TV golf programs. It’s computation-inexpensive. Moreover, by exploiting 
characteristics of golf impacts, this approach is almost invariant to product rules and insensitive to 
interferences of noise, environmental sounds and speeches.  
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