Lesson 8: Turing machines

Theme: Turing machines as a model of general computation.

We reserve a special symbol ⊥, called the *blank* symbol.

A Turing machine (TM) is a system \(M = (\Sigma, \Gamma, Q, q_0, q_{\text{acc}}, q_{\text{ rej}}, \delta) \), where each component is as follows.

- \(\Sigma \) is a finite alphabet, called the *input* alphabet, where \(\sqcup \notin \Sigma \).
- \(\Gamma \) is a finite alphabet, called the *tape* alphabet, where \(\Sigma \cup \Gamma \) and \(\sqcup \in \Gamma \).
- \(Q \) is a finite set of states.
- \(q_0 \in Q \) is the initial state.
- \(q_{\text{acc}}, q_{\text{ rej}} \in Q \) are two special states called the *accept* and *reject* states, respectively.
- \(\delta : Q - \{q_{\text{acc}}, q_{\text{ rej}}\} \times \Gamma \to Q \times \Gamma \times \{\text{Left}, \text{Right}\} \) is the transition function.

Intuitively, the intuitive meaning of \(\delta(p, a) = (q, b, \alpha) \) is as follows. When the head reads a symbol \(a \), if \(M \) is in state \(p \), it “writes” symbol \(b \) on top of \(a \), enters state \(q \), and the head moves left, if \(\alpha = \text{Left} \), or moves right, if \(\alpha = \text{Right} \).

To describe how a TM computes, we need a few terminologies. A configuration of \(M \) is a string \(C \) from \((Q \cup \Gamma)^* \) which contains *exactly one symbol* from \(Q \). We call such symbol the state of \(C \). Intuitively, a configuration \(C = a_1 \cdots a_{i-1} \text{pa}_i \cdots a_m \) means the content of the tape \(a_1 \cdots a_m \) and that \(M \) is in state \(p \) with the head in position \(i \).

On input word \(w \in \Sigma^* \), the *initial* configuration of \(M \) on \(w \) is the string \(q_0w \). A configuration is called *accepting*, if it contains \(q_{\text{ acc}} \), and it is called *rejecting*, if it contains \(q_{\text{ rej}} \). A halting configuration is either an accepting or a rejecting configuration.

Let \(C = a_1 \cdots a_{i-1} \text{pa}_i \cdots a_m \) be a configuration, where \(a_1, \ldots, a_m \in \Gamma \) and \(p \in Q \) such that \(p \neq q_{\text{ acc}}, q_{\text{ rej}} \). The transition \(\delta \) yields the subsequent configuration \(C' \), denoted by \(C \vdash C' \), as follows.

- If \(\delta(p, a_i) = (q, b, \text{ Left}) \) and \(i \geq 2 \), then \(C' = a_1 \cdots a_{i-2} q a_{i-1} b a_{i+1} \cdots a_m \).
- If \(\delta(p, a_i) = (q, b, \text{ Right}) \) and \(i \leq m - 1 \), then \(C' = a_1 \cdots a_{i-1} b q a_{i+1} \cdots a_m \).
- If \(\delta(p, a_i) = (q, b, \text{ Right}) \) and \(i = m \), then \(C' = a_1 \cdots a_{m-1} b q \sqcup \).

The *run* of \(M \) on \(w \) is the (possibly infinite) sequence:

\[
C_0 \vdash C_1 \vdash C_2 \vdash \cdots, \tag{1}
\]

where \(C_0 \) is the initial configuration of \(M \) on \(w \).

\(M \) stops when it reaches a configuration \(C = a_1 \cdots a_{i-1} \text{pa}_i \cdots a_m \) where there is no \(C' \) where \(C \vdash C' \). For such case, we say that \(M \) *halts on* \(w \) *in configuration* \(C \) and \(C \) must satisfy one of the two conditions below holds.

- \(C \) is a halting configuration.
- \(i = 1 \) and \(\delta(p, a_i) = (q, b, \text{ Left}) \), i.e., the head still moves left when it is already on the leftmost position of the tape and “falls” off the tape.
If M halts in an accepting configuration, then we say that M accepts w. If it halts in a rejecting configuration, then we say that M rejects w. Proposition 8.1 below states that we can always assume that when a Turing machine halts, it halts in either an accepting or rejecting configuration.

Proposition 8.1 For every Turing machine M, there is another Turing machine M' such that for every $w \in \Sigma^*$ the following holds.

- M accepts w if and only if M' accepts w.
- M rejects w if and only if M' rejects w.

For all w neither accepted nor rejected by M, M' does not halt on w.

In other words, Proposition 8.1 implies that we can assume that on any input, the head of M' never falls off the tape.

Some important terminologies.

- We say that M recognizes a language L, if:
 1. for every word $w \in L$, M accepts w;
 2. for every word $w \notin L$, M does not accept w.

 Note that M does not accept w can have two meanings: either M rejects w, or M does not halt on w.

- We say that M decides a language L, if for every word w,
 1. if $w \in L$, M accepts w,
 2. if $w \notin L$, M rejects w.

 Note that this implies M halts on every word $w \in \Sigma^*$.

- A language L is recognizable/recursively enumerable (r.e.), if there is a TM M that recognizes L.

- A language L is decidable/recursive, if there is a TM M that decides L.

 Otherwise, it is called undecidable.

Appendix

A Turing machines with Stay option

In some textbooks, Turing machines are defined such that the head can stay put, instead of moving Left or Right. Formally, a transition can be of the form:

$$(q, a) \rightarrow (p, b, \alpha), \quad \text{where } \alpha \in \{\text{Left, Right, Stay}\}$$

If $\alpha = \text{Stay}$, then the head stays where it is. Such Stay option is obviously equivalent to making two moves: Right, and followed by Left, thus, does not add any power of computation.
B Putting a marker on the leftmost cell of the tape

To prevent the head falls off the tape, we reserve a special symbol \triangleleft that can be used to mark the leftmost cell of the tape of Turing machines. We describe a TM, denoted by M_{sr}, that on input $w \in \Sigma^*$, it will always halt in the accepting configuration $q_{acc}w$.

The following is $M_{sr} = \langle \Sigma, \Gamma, Q, q_0, q_{acc}, q_{rej}, \delta \rangle$ for the case of $\Sigma = \{0, 1\}$.

- $\Sigma = \{0, 1\}$.
- $\Gamma = \{\triangleleft, 0, 1, \sqcup\}$.
- $Q = \{q_0, p, r, s, q_{acc}, q_{rej}\}$.
- δ consists of the following:

\[
\begin{align*}
(q_0, 1) & \rightarrow (p, \triangleleft, \text{Right}) & (p, 1) & \rightarrow (p, 1, \text{Right}) \\
(q_0, 0) & \rightarrow (r, \triangleleft, \text{Right}) & (p, 0) & \rightarrow (r, 0, \text{Right}) \\
(q_0, \sqcup) & \rightarrow (q_{acc}, \triangleleft, \text{Right}) & (p, \sqcup) & \rightarrow (s, \sqcup, \text{Left}) \\
(q_0, \triangleleft) & \rightarrow (q_{rej}, \triangleleft, \text{Right}) & (p, \triangleleft) & \rightarrow (q_{rej}, \triangleleft, \text{Right}) \\
(r, 1) & \rightarrow (p, 1, \text{Right}) & (s, 0) & \rightarrow (s, 0, \text{Left}) \\
(r, 0) & \rightarrow (r, 0, \text{Right}) & (s, 1) & \rightarrow (s, 1, \text{Left}) \\
(r, \sqcup) & \rightarrow (s, \sqcup, \text{Left}) & (s, \triangleleft) & \rightarrow (q_{acc}, \triangleleft, \text{Right}) \\
(r, \triangleleft) & \rightarrow (q_{rej}, \triangleleft, \text{Right}) & (s, \sqcup) & \rightarrow (q_{rej}, \triangleleft, \text{Right})
\end{align*}
\]

The construction above can be easily generalized for arbitrary Σ.

This M_{sr} can now be run as a precursor of an arbitrary Turing machine whose head never moves left whenever it reads the marker \triangleleft. Thus, we can always assume that the head never falls off the tape.

C Encoding an arbitrary alphabet into the binary alphabet $\{0, 1\}$

Turing machines are usually defined with arbitrary input and tape alphabets. It is not difficult to show that any alphabet can be “encoded” with binary alphabet.

Suppose $\Gamma = \{a_1, \ldots, a_n, \sqcup\}$. Each symbol a_i can then be encoded with a 0-1 string of length $\lceil \log_2 n \rceil$. For example, if $\Gamma = \{a_1, \ldots, a_5, \sqcup\}$, we can encode a_1 with 000, a_2 with 001, a_3 with 010, a_4 with 011, and a_5 with 100. We denote by $\langle a_i \rangle$ the encoding of the symbol a_i. For a word $w \in \Gamma^*$, $\langle w \rangle$ denotes the encoding of w by replacing each symbol a_i in w with $\langle a_i \rangle$. For example, if $w = a_1a_2a_3a_4$, $\langle w \rangle = \langle a_1 \rangle \langle a_3 \rangle \langle a_2 \rangle \langle a_1 \rangle = 000100001000$.

We have the following proposition that shows that we can always assume that the Turing machines under consideration always work on tape alphabet $\Gamma = \{\triangleleft, 0, 1, \sqcup\}$, where \triangleleft is the marker that marks the leftmost cell of the tape.

Proposition 8.2 Let $M = \langle \Sigma, \Gamma, Q, q_0, q_{acc}, q_{rej}, \delta \rangle$ be a TM, where $\Gamma = \{a_1, \ldots, a_n, \sqcup\}$. Let $K = \lceil \log_2 n \rceil$. Let $\langle a_i \rangle$ be an encoding of symbol a_i with 0-1 string of length K. There is a TM $M' = \langle \{0, 1\}, \{\triangleleft, 0, 1, \sqcup\}, Q', q_0', q_{acc}, q_{rej}, \delta' \rangle$ such that for every word $w \in \Sigma^*$, the following holds.

M accepts w if and only if M' accepts $\langle w \rangle$.

Intuitively, M' simulates M by reading the tapes by blocks of $\lceil \log_2 n \rceil$ cells. It then remembers the block that it reads in its states, and “simulates” the transitions of M accordingly.

Formally, $M = \langle \{0, 1\}, \{0, 1, \sqcup\}, Q, q_0, q_{acc}, q_{rej}, \delta \rangle$ is defined as follows. Let $\{0, 1\} \subseteq K$, i.e., the set of all 0-1 strings of length less than or equal to $K = \lceil \log_2 n \rceil$.

3/4
Lesson 8: Turing machines

\[Q' = (Q \times \{0,1\}^{<K}) \cup (Q \times \{L_1, \ldots, L_K, R_1, \ldots, R_K\}) \]
\[\cup (Q \times \{L, R\} \times \{W\} \times \{0,1\}^{<K}). \]

\[q_0' = (q_0, \epsilon). \]

\[\delta' \] is defined as follows.

- For every \(u \in \{0,1\}^{<K-1} \), for every \(p \in Q - \{q_{acc}, q_{rej}\} \), \(\delta' \) consists of the following transitions.

\[((p, u), 0) \rightarrow ((p, u0), 0, \text{Right}) \]
\[((p, u), 1) \rightarrow ((p, u1), 1, \text{Right}) \]

- For every \((q, a) \rightarrow (p, b, \text{Left}) \in \delta \), for every \(d \in \{0,1,\} \), \(\delta' \) consists of the following transitions.

\[((q, a), d) \rightarrow ((p, L, W, b), d, \text{Left}) \]

- For every \((q, a) \rightarrow (p, b, \text{Right}) \in \delta \), for every \(d \in \{0,1,\} \), \(\delta' \) consists of the following transitions.

\[((q, a), d) \rightarrow ((p, R, W, b), d, \text{Left}) \]

- For every \(p \in Q \), for every \(c \in \{0,1\} \), for every \(v \in \{0,1\}^{<K-1} \) and \(v \neq \epsilon \), for every \(d \in \{0,1,\} \), for every \(\beta \in \{L, R\} \), \(\delta' \) consists of the following transitions.

\[((p, \beta, W, vc), d) \rightarrow ((p, \beta, W, v), c, \text{Left}) \]

- For every \(p \in Q \), for every \(d \in \{<,0,1,\} \), \(\delta' \) consists of the following transitions.

\[((p, L, W, \epsilon), d) \rightarrow ((p, L_1), d, \text{Right}) \]

- For every \(p \in Q \), for every \(d \in \{<,0,1,\} \), \(\delta' \) consists of the following transitions.

\[((p, R, W, \epsilon), d) \rightarrow ((p, R_k), d, \text{Right}) \]

- For every \(p \in Q \), for every \(d \in \{0,1,\} \), \(\delta' \) consists of the following transitions.

\[((p, L, W, \epsilon), d) \rightarrow ((p, L_k), d, \text{Right}) \]

- For every \(p \in Q \), for every \(i \in \{2, \ldots, k\} \), for every \(d \in \{0,1,\} \), \(\delta' \) consists of the following transitions.

\[((p, R_i), d) \rightarrow ((p, R_{i-1}), d, \text{Right}) \]
\[((p, L_i), d) \rightarrow ((p, L_{i-1}), d, \text{Left}) \]

- For every \(p \in Q \), for every \(d \in \{0,1,\} \), \(\delta' \) consists of the following transitions.

\[((p, R_1), d) \rightarrow ((p, \epsilon), d, \text{Right}) \]
\[((p, L_1), d) \rightarrow ((p, \epsilon), d, \text{Left}) \]

All the other transitions not specified above are assumed to enter \(q_{rej} \).