Lesson 2: Deterministic finite state automata

Theme: Deterministic finite state automata.

1 The notion of alphabets and languages

- An alphabet is a finite set of symbols. We usually use the symbol Σ to denote an alphabet.
- A (finite) string/word over Σ is a finite sequence of symbols from Σ.
- We will usually write $w = a_1 \ldots a_n$ to denote a word whose label in position i is a_i. The length of w is denoted by $|w|$.
- We write ε to denote the empty string/word, i.e., word of length 0.
- For an integer $n \geq 0$, Σ^n denotes all the words over Σ of length n.
- Σ^* denotes the set of all finite words over Σ, i.e., $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$.
- A language L over Σ is a subset of Σ^*.

2 Deterministic finite state automata

A deterministic finite state automaton (DFA) is a system $A = (\Sigma, Q, q_0, F, \delta)$, where each component is as follows.

- Σ is the alphabet.
- Q is a finite set of states.
- $q_0 \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final states.
- $\delta : Q \times \Sigma \to Q$ is the transition function.

Remark 2.1 A DFA $A = (\Sigma, Q, q_0, F, \delta)$ can be visualised as a directed graph as follows.

- The vertices are elements of Q.
- There is an edge from p to p' labeled with a, if $\delta(p, a) = p'$.

On input word $w = a_1 \ldots a_n$, the run of A on w is the sequence:

$$q_0 \ a_1 \ q_1 \ a_2 \ q_2 \ \cdots \ a_n \ q_n,$$

where $\delta(q_i, a_{i+1}) = q_{i+1}$, for each $i = 0, \ldots, n - 1$. It is called accepting run, if $q_n \in F$. We say that A accepts w, if there is an accepting run of A on w. The language of all words accepted by A is denoted by $L(A)$.

A language L is called a regular language, if there is a DFA A such that $L(A) = L$.

Remark 2.2 Let $A = (\Sigma, Q, q_0, F, \delta)$ be a DFA.

- The empty string ε is accepted by A if and only if $q_0 \in F$.
- For every word w, there is exactly one run of A on w.

1/2
Theorem 2.3 Regular languages are closed under boolean operations, i.e., intersection, union, and complementation. More formally, it can be stated as follows.

- For every DFA A, there is a DFA A' such that $L(A') = \Sigma^* - L(A)$.
- For every two DFA A_1 and A_2, there is a DFA A' such that $L(A') = L(A_1) \cap L(A_2)$.
- For every two DFA A_1 and A_2, there is a DFA A' such that $L(A') = L(A_1) \cup L(A_2)$.