Theory of Computer Games (Fall 2021) Homework 2

NTU CSIE

Due: 14:20 (UTC+8), December 9, 2021

Outline

Game Description

2 Homework Requirements

3 Submission and Grading Policy

Chinese Dark Chess (CDC)

• The game rule could be found here

```
https:
//homepage.iis.sinica.edu.tw/
~tshsu/tcg/2021/hwks/rules.pdf
```

Chinese Dark Chess (CDC) Special Case

• All pieces have been flipped

Chinese Dark Chess (CDC) - Score

Score

- Win: 1.0 + Bonus
- Draw: 0.2 + Bonus
- Lose: 0

Bonus

- Bonus = (Net Value / 1943) * 0.3
- Net Value = $max(0, Value_{my} Value_{oppo})$
- $Value_{mv} = Total \ value \ of \ my \ alive \ piece$
- Value_{oppo} = Total value of opponent's alive piece

Value

K/k	G/g	M/m	R/r	N/n	C/c	P/p
810	270	90	18	6	180	1

Chinese Dark Chess (CDC) - Score

- Red Value: 90(M) + 6(N) = 96
- Black Value: 810(k) = 810
- Red Score:

$$= 0.2 + (max(0, 96 - 810) / 1943) * 0.3$$

= $0.2 + 0 = 0.2$

Black Score:

$$= 0.2 + (max(0, 810 - 96) / 1943) * 0.3$$

 $\approx 0.2 + 0.11 = 0.31$

Requirements

HW Requirements

- Implement an agent of Chinese Dark Chess (CDC) using Monte-Carlo Tree Search algorithm.
- Write a report.

CDC Agent

In your CDC agent, you need to implement following requirements:

- MCTS with UCT
- Rapid Action Value Estimate (RAVE)
- At least two of the following:
 - Progressive pruning (PP)
 - Node expansion policy
 - Temperature
 - Depth-i tree search
- Time limit: 10 seconds per ply (measured by server)
- Thread limit: 1 thread
- Memory limit: 4 GB
- Pre-processing time limit: 30 minutes (TA will trace your code)

Baseline

Provide the baseline's source code and executable file Baseline's specification:

- MCS pure algorithm
- 9.5 seconds per ply

Testing

- Your CDC agent will be against the baseline on 10 specific boards.
- Take turns to move first.
- Your score is the sum of the scores of all games.

Target

Your CDC agent needs to get scores from baseline as much as possible.

Boards

- Sample boards: 10 boards (provided)
- Testing boards: 5 from sample boards and 5 hidden boards

(See the appendix for more detail information)

Game Setting

- Time limit: 10 seconds per ply
- Threefold repetition rule: A game is considered draw if the same position occurs three times.
- 60-ply rule: If no capture has occured in the last 60 ply (by both players), the game is automatically a draw

Part II: Report

Report Structure

Your report should include but not limited to:

- Implementation
 - How to compile and run your code in linux.
 - What technique did you implement.
- Experiments
 - Compare the difference between using rand(stdlib.h) and using PCG(website) as PRNG.
 - Compare the results of using different value of exploration parameter(c in UCB) and parameters in other techniques.
- Discussion
 - Pros and cons of using rand(stdlib.h) and using PCG(website) as PRNG.
 - The performance of using different value of parameters.

Submission

- Directory hierarchy:
 - ► student id // e.g. r09922026 (lowercase)
 - ★ Makefile // make your code
 - ★ src // a folder contains all your codes
 - ★ report.pdf // your report
- Compress your folder into a zip file and submit to https://www.csie.ntu.edu.tw/~tcg/2021/hw2.php
- Due to server limitation, the file size is restricted to 2 MB.

Grading Policy

Grading Policy

Your Point =
$$P \times (\frac{Your\ Score}{Boss\ Score} \times W_1 + Report\ Score \times W_2)$$

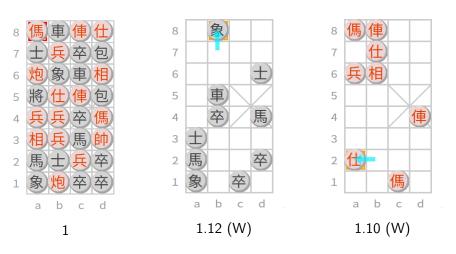
- P: 25
- *Your Score*: ∈ [0, 26]
- Boss Score: \approx 20.6 (Sample Boards)
- W₁: 0.8
- Report Score: $\in [0,1]$
- W₂: 0.2

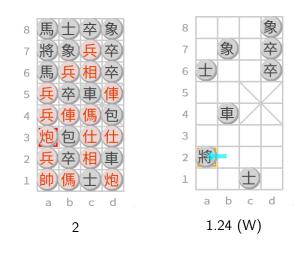
Appendix

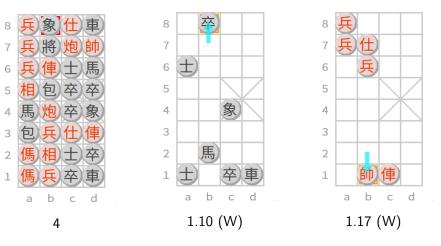
Sample Boards

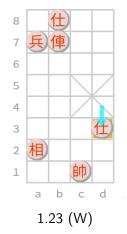
Information

- Average Score: Average score of testing CDC agents.
- Sample Boards Result: Boss CDC agent vs baseline.

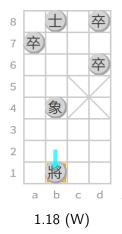

The higher the serial of the board, the more difficult. (round to two decimal places)

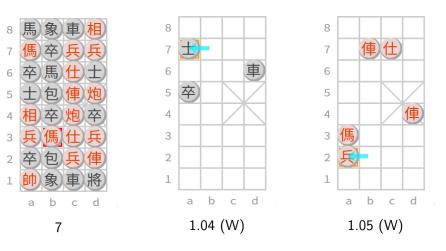

0

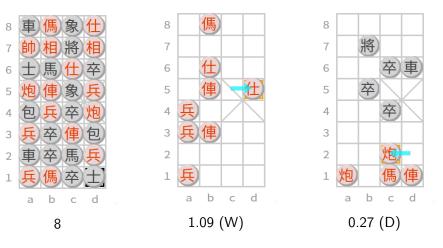




4







9

