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Abstract 

 
 
An important research problem in knowledge discovery and data mining is to 

identify abnormal instances. Finding anomalies in data has important applications in 

domains such as fraud detection and homeland security. While there are several 

existing methods to identify anomalies in numerical datasets, there has been little work 

aimed at discovering abnormal instances in large and complex relational networks 

whose nodes are richly connected with many different types of links. To address this 

problem we designed a novel, unsupervised, domain independent framework that 

utilizes the information provided by different types of links to identify abnormal nodes. 

Our approach measures the dependencies between nodes and paths in the network to 

capture what we call “semantic profiles” of nodes, and then applies a distance-based 

outlier detection method to find abnormal nodes that are significantly different from 

their closest neighbors. In a set of experiments on synthetic data about organized crime, 

our system can almost perfectly identify the hidden crime perpetrators and outperforms 

several other state-of-the-art methods that have been used to analyze the 9/11 terrorist 

network by a significant margin.  

To facilitate validation, we designed a novel explanation mechanism that can 

generate meaningful and human-understandable explanations for abnormal nodes 

discovered by our system. Such explanations not only facilitate the verification and 

screening out of false positives, but also provide directions for further investigation. 
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The explanation system uses a classification-based approach to summarize the 

characteristic features of a node together with a path-to-sentence generator to describe 

these features in natural language. In an experiment with human subjects we show that 

the explanation system allows them to identify hidden perpetrators in a complex crime 

dataset much more accurately and efficiently. We also demonstrate the generality and 

domain independence of our system by applying it to find abnormal and interesting 

instances in two representative natural datasets in the movie and bibliography domain. 

Finally, we discuss our solutions to several related applications including abnormal 

path discovery, local node discovery, automatic node description and explanation-

based outlier detection. 

 



 

 

Chapter 1   

 
Introduction 

A discovery is said to be an accident meeting a prepared mind.  

                        Albert Szent-Gyorgyi 
 
Discovery has played an important role throughout human history. It is not a 

one-time, one-place activity, but a process in which scientists have continued to come 

up with new ideas and theories for thousands of years. As a computer scientist, an 

interesting question to ask is whether there exists a way for us to model the discovery 

process, and furthermore, whether it is possible to develop an artificial intelligence 

(AI) system that can mimic or assist human beings in this process.  

To motivate our approach, let us start with the well-known story about the 

discovery of the theory of Natural Selection. During a five-week trip to the Galápagos 

Islands, Charles Darwin observed that finches on different islands usually have 

different beak sizes and shapes. As it is generally known that all finches on the 

Galápagos Islands are from the same origin, this observation inspired his idea of 

Natural Selection: finches that are better suited for the environment of a specific 

island tend to survive better than others on that island. In essence, it was the abnormal 

characteristic of the birds that triggered his deeper thinking about evolution, and it 

was the process of finding reasonable explanations for them that eventually grew into 

a novel and important theory. The cartoons in Figure 1.1 depict this discovery process 
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in four stages: problem, inspiration, reasoning, and new theory. In the first stage, one 

develops a certain question in mind (e.g. how evolution works). In the inspiration 

stage, one encounters interesting information related to the problem (e.g. different 

types of beaks). In the third reasoning stage, one tries to make sense out of the 

unusual observations by generating some hypotheses to explain them. Finally, the 

explanation or hypothesis can be tested and sharpened, and might become a new 

theory or discovery (e.g. Natural Selection). Such discovery process is not necessarily 

a linear journey through these steps–sometimes digressions to the earlier stages is 

necessary before the final goal is reached. 

 

Figure 1.1: An inspiration-driven discovery process 

1.1 Problem Definition 

The central question we will pursue throughout this thesis is whether and how an 

AI program can model such a process to perform or assist humans to perform 

automatic discovery. To be more concrete, we focus on modeling the second and part 

of the third stage in the above discovery process. We develop a general framework 
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that can automatically identify abnormal instances in data and explain them, with the 

goal to point out to humans a set of potentially interesting things in large, complex 

datasets. Note that there are three key features in this problem. First, our discovery 

targets data in the form of multi-relational networks or semantic graphs which allow 

the representation of complex relationships between objects of different types. 

Second, we are interested in abnormal nodes in these networks instead of central or 

important ones. Third, we want the discovery system to be able to explain its findings 

in a human-understandable form. We will discuss these aspects in more detail below.  

1.2 Multi-relational Networks 

The data structure we will focus on is the multi-relational network (MRN). A 

multi-relational network is a type of network where nodes represent objects of 

different types (e.g., persons, papers, organizations, etc.) and links represent binary 

relationships between those objects (e.g. friend, citation, etc.). The term multi-

relational emphasizes the fact that we focus on networks containing multiple 

different types of links. A multi-relational network is a powerful representation 

structure which can encode semantic relationships between different types of objects. 

It is conceptually similar to other representations such as semantic graphs and 

semantic networks. For example, a bibliography network such as the one shown in 

Figure 1.2 is an MRN, where the links represent multiple, different relationships 

between nodes–fro example, authorship (a link connecting a person and a paper) or 

citation (a link connecting two paper nodes). Generally, a node in an MRN might also 

have some attributes associated with it. For example, a person node might have age 
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and weight as attributes. Though the examples we use throughout this thesis assume 

there are no such attributes for simplicity reasons, the methodology we will describe 

can be easily adapted to MRN’s that contain node-associated attributes. 

Figure 1.2: A multi-relational bibliography network. The capital letter of each 
node represents its type: A(author), P(paper), O(organization), J(journal) 

MRN’s have become a popular method to capture relationship information. For 

example, a social network or semantic network can be regarded as a multi-relational 

network in that it has multiple different types of relations. The bibliography network 

in Figure 1.2 is an MRN. A kinship network is an MRN that represents human beings 

as nodes and the various kinship relationships between them as links. The Web can be 

represented as an MRN if we distinguish, for example, incoming, outgoing, and email 

links. WordNet is an MRN that captures the lexical relationships between concepts. 

Data stored in relational databases or the ground facts in a knowledge base can often 

be described via MRN’s as well (transformations might be necessary to map n-nary 

relations onto binary links). Because multi-relational networks are relatively simple 

but powerful and intuitive way to encode relational information between objects, they 
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are becoming an important representation schema for analysts in the intelligence and 

law enforcement communities (M. Sparrow 1991; T. Senator and H. Goldberg 2002; 

D. Jensen, M. Rattigan et al. 2003) highlight some of the major application domains 

for our system. Having multiple relationship types in the data is crucial, since 

different relationship types carry different kinds of semantic information, allowing us 

to capture deeper meaning of the instances in the network in order to compare and 

contrast them automatically. Unfortunately, state-of-the-art automated network 

analysis algorithms such as PageRank (S. Brin and L. Page 1998) or centrality theory 

(S. Wasserman and K. Faust 1994) cannot deal with relation types in a network, 

which makes them not as well suited for the type of problems we are trying to solve. 

1.3 The Importance of Abnormal Instances 

There are a variety of things one can discover from a network. For example, one 

can try to identify central nodes, recognize frequent subgraphs, or learn interesting 

network property. Centrality theory (S. Wasserman and K. Faust 1994), frequent 

subgraph mining (J. Ramon and T. Gaertner 2003) and small world phenomenon (J.M. 

Kleinberg 2000) are among the well-known algorithms aimed at solving these 

problems.  

The goal of this thesis is different. We do not focus on finding central instances 

or pattern-level discovery. Instead we try to discover certain individuals or instances 

in the network that look different from others. There are three reasons to focus on 

discovering these types of instances in an MRN. First, we believe that these kinds of 

instances can potentially play the “light bulb” role depicted in Figure 1.1, in the sense 
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that something that looks different from others or from its peers has a higher chance 

to attract people’s attention or suggest new hypotheses, and the explanation of them 

can potentially trigger new theories. The second reason is that there are a number of 

important applications for a system that can discover abnormal nodes in an MRN, as 

will be elaborated below. Finally, this is a very challenging problem and so far we are 

not aware of any system that can utilize the relational information in an MRN to 

perform anomaly detection.  

Application 1: Information Awareness and Homeland Security 

Some post-event analyses of the 9/11 attacks show that the implicit and explicit 

relationships of the terrorists involved do form a relatively large covert network, 

containing not only the threat individuals but also a large number of innocent people 

(V. Krebs 2001). Moreover, the persons in the network usually have a variety of 

connections with each other (e.g. friendships, kinships, business associations, etc). 

Consequently, it makes sense to represent all this information in a large and complex 

MRN. This type of data usually contains primarily innocent and benign persons who 

do not need to perform certain special actions to pursue threat missions. That is to say, 

it is reasonable to infer that people who look typical (i.e., who have a lot similar peers) 

are not likely to be malicious. Although threat individuals might try to disguise their 

actions to avoid detection, it is likely that subtle differences still exist, since they still 

need to perform unusual actions in order to execute their mission. Such behavior is 

more likely to create unusual evidence, and, therefore, a node with an abnormal 

evidence profile has a higher chance to be suspicious compared with ones that have 
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many similar peers. Our model exploits the deeper information provided by the MRN 

with the goal to identify the suspicious individuals. Furthermore, since false positives 

generated by a security and information awareness system (i.e., marking innocent 

people as suspects) can cause a lot of damage to blameless people, an explanation 

mechanism which describes why one is chosen becomes very important because it 

provides investigators with a way to validate the results.  

Application 2: Fraud Detection and Law Enforcement 

Similar to the previous application, the fraud detection and law enforcement 

domains also offer huge amount of information about the relationships and 

transactions among persons, companies or organizations. Being able to identify and 

explain abnormal instances in such a network could be an important tool for police or 

investigators to detect criminals and fraudsters. In one of our experiments, we show 

that our system can successfully identify hidden crime organizers in a complex 

dataset which other state-of-the-art network algorithms failed to find. 

Application 3: General Scientific Discovery  

As described in Figure 1.1, abnormal instances and their explanations may also 

provide some interesting ideas or hints for scientists. In the domain of biology or 

chemistry, for example, genes, proteins and chemicals can interact with each other in 

a number of ways, and these interactions can be described by a multi-relational 

network. One application for our system is to provide new insights to scientists by 

pointing out unusual biological or chemical connections or individuals. In an ongoing 

collaboration with biologists, we have created a tuberculosis network where the nodes 
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are tuberculosis-related genes and the links correspond with how they interact with 

each other (e.g. activate, depress, etc). The goal is to identify specific genes or 

proteins whose roles in the network are different from the others, and then provide 

the system’s findings to the domain experts to see if they can lead to further 

discovery. 

Application 4: Data Cleaning 

An abnormal record in a fairly accurate database can also be interesting because 

it might represent an error, missing record, or certain inconsistency. We can apply our 

system to a relational dataset (which can be represented by a relational graph), to 

mine for potential errors. For example, in one of our experiments on a movie dataset, 

the system found that the node “Anjelica Huston” was abnormal. The explanation 

automatically produced by our system indicated that what makes her abnormal is that 

she is a parent of some movie person but she never had a child working in the movie 

industry. The explanation indicated a contradiction, and it turns out that there was a 

missing record in the “child” relation for this node.  

1.4 Explanation 

One major concern for a knowledge discovery system rests in the difficulty of 

verification. Unlike a learning system, a discovery system by definition aims at 

finding something that was previously unknown. Since the discoveries are previously 

unknown, it is generally not clear how they can be verified (S. Lin and H. Chalupsky 

2004). This concern becomes even more serious for systems applied to security-

related problems. As pointed out by (B. Simons and E. H. Spafford 2003), false 
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positives are a very serious issue for any homeland security system, since even a 

system with almost perfect 99% accuracy can still result in the mislabeling of 

millions of innocent individuals when applied to a large population. 

Achieving 99% precision without completely sacrificing recall is already an 

extremely difficult goal for any automated data analysis system, yet it still does not 

answer the false positive problem. While an unsupervised discovery system like ours 

has the potential of being able to identify suspicious individuals whose characteristics 

were previously unknown, it runs an even higher risk of increasing the number of 

false positives, since there is no pre-existing knowledge to learn from. To deal with 

this problem we propose the concept of explanation-based discovery, where an 

explanation mechanism is attached to the discovery framework that enables it to 

produce human-understandable explanations for its findings. With these explanations, 

users can more intuitively judge the validity of the generated discoveries. An 

explanation-based discovery system can therefore not only discover things of interest, 

but also provide a certain amount of information for users to verify the results as well 

as guide further investigation. This significantly improves such a system’s usability 

and credibility for real-world problems. 

1.5 Design Considerations  

Until to now we have briefly described the goal and the motivation for our work. 

In this section we discuss several critical decisions we made while designing the 

system as well as the requirements we plan to address. 
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1.5.1 Rule-based and Supervised Systems vs. Unsupervised Systems 

There are three major strategies one can apply to identify abnormal instances in 

MRN’s: rule-based learning, supervised learning, and unsupervised learning. Rule-

based systems perform some type of pattern-matching based on rules to identify 

abnormal or suspicious instances. To elaborate on the bibliography MRN example, 

one could write a rule like “an author node is abnormal if it does not cite any other 

people’s papers”. Supervised learning systems take a set of manually labeled 

abnormal example individuals as inputs, and then try to learn patterns or other 

descriptions to classify new individuals. One can use known criminal individuals as 

training examples to learn a classifier for abnormal instances. The advantage of these 

approaches is that they can achieve relatively high precision due to the manual 

crafting of rules or selection of training examples. Their main disadvantages are that 

they are domain dependent, the rules or examples are expensive to create, and, most 

importantly, that they are very sensitive to human bias. To further elaborate, the only 

abnormal instances such a system can find are those already in the rule writers or 

human annotators’ mind, which might not be very novel and have less chance to 

trigger further discovery. We argue that these kinds of abnormal instances are not the 

ideal candidates to serve as the “light bulb” in stage II of Figure 1.1. Note that 

Darwin did not foresee in advance that it is the variance of beaks that triggers the idea 

of Natural Selection.  

For these reasons, this thesis focuses on finding another type of abnormal 

instance– is a node that plays different roles in the semantic graph when compared 
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with others. Because we now define abnormality by comparing and contrasting nodes 

in the graph, it is possible to design an unsupervised system to identify abnormal 

nodes. An important advantage of an unsupervised system is that it can be easily 

adapted to a new domain, with no need to produce a completely new set of rules or 

training examples (which could be very expensive and time consuming). Another 

advantage is that such a system is more suitable for security-related problems where 

the malicious individuals constantly adapt their behavior and methods to avoid 

capture. 

1.5.2 System Requirements 

To achieve the goals described above, we believe such an unsupervised, 

discovery-driven system should satisfy the following requirements: 

1. It must utilize as much information provided in the MRN as possible 

such as the type information of links.  

2. It must not rely on manually crafted rules or training examples, and 

should preferably be easily adapted to new, different domains. 

3. Its discoveries and discovering mechanism must be explainable in a 

meaningful and human understandable manner. 

4. It must be scalable enough to handle networks that contain large numbers 

of nodes, links and link types.  

Besides these requirements, there are also some optional features we would like 

our system to have: 
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5. It should allow the expression of high-level bias from users. For example, 

we might want the system to only look for abnormal nodes that are 

involved in at least one murder event.  

6. It should support different levels of detail in its explanations, trading 

simplicity with informativeness.  

1.6 Research Objective and Challenges 

The research goal of this thesis is twofold. The first part, which we refer to as the 

discovery stage, is to design a framework that is capable of identifying abnormal 

nodes in large and complex networks. The second, which we call the explanation 

stage, focuses on designing an explanation mechanism to produce human 

understandable descriptions (e.g. English) for the discovered nodes. For example, in 

one our experiments, the system takes an organized crime network as input and then 

identifies abnormal individuals that are likely to involve in high-level events of 

interests. It also produces explanations for them such as “X is abnormal, because it is 

the only Mafiya group in the dataset that has a member who ordered a contract 

murder”. 

The main challenge of this task is to design an anomaly detection system for 

MRN’s that can achieve all the requirements discussed previously. To our knowledge, 

there is no existing algorithm that can simultaneously satisfy both requirements 1 and 

2, not to mention the other requirements such as explanation generation. While there 

are systems aimed at identifying suspicious instances in MRN’s (D. Jensen, M. 

Rattigan et al. 2003; J. Wang, F. Wang et al. 2006), all of them are either rule-based 
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or supervised classification systems. Conventional outlier and anomaly detection 

algorithms are unsupervised, but they can only deal with propositional or numerical 

data, and not MRN’s. State-of-the-art unsupervised network algorithms such as 

PageRank (S. Brin and L. Page 1998), HITS (J.M. Kleinberg 1999), and random walk 

(B. D. Hughes 1995) are not suitable because they do not take link types into account. 

We will show in the experiment that the information provided by link type is very 

important for both identifying the suspicious nodes  also for generating explanations. 

As a result, our system outperforms those unsupervised network algorithms by a large 

margin in terms of identifying suspicious hidden crime organizers. 

Another challenge lies in the fact that it is necessary to consider explanations for 

the discovered results. That is to say, while designing the discovery system, one 

needs to take into account how human understandable explanations for them can be 

generated. We need a model that is complex enough to utilize all the information 

provided in the semantic graph but not so overly complicated or opaque that it 

prevents generating human understandable explanations. 

1.7 Approach 

To deal with these problems, we first need to design a model that can capture the 

semantics of nodes, based on which the system can then find nodes with abnormal 

semantics and explain them. We apply both symbolic and statistical methods to 

exploit the concept of syntactic semantics (W.J. Rapaport 2002) and exploit the 

complex structure of the network to model the semantics of nodes in an unsupervised 

manner. This is done by automatically selecting a set of relevant path types in the 
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network to use as semantic features, and then computing statistical dependency 

measures between nodes and path types to use as feature values. 

Given the features of nodes (which we refer to as semantic profiles), we then 

apply a distance-based outlier detection to identify the abnormal nodes. An 

explanation of an abnormal node is then generated by applying a classification 

method to separate if from the other nodes in the network, and then translating the 

resulting classification procedure (i.e., rules generated by the classifier) into a natural 

language description.  

1.8 Contributions 

The major contributions of this thesis are: 

1. A novel unsupervised framework to identify abnormal instances in a multi-

relational network that satisfies the requirements stated above.  

2. A set of evaluations of our discovery system showing that it outperforms 

state-of-the-art unsupervised network algorithms by a large margin. 

3. A novel mechanism to generate meaningful and understandable explanations 

for abnormal instances in multi-relational networks.  

4. A human study to evaluate the explanation system which shows that our 

system allowed human subjects to perform complex data analysis in a 

significantly more accurate and efficient manner. 

5. Demonstration of the generality and applicability of our system by showing 

that it can identify abnormal and sometimes interesting individuals on a set of 

representative natural datasets.  
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As our design has prioritized generalization and domain independence, the 

individual technologies we created can typically be applied to other problems. 

This leads to several additional, supplemental contributions for this thesis. 

Specifically, we will discuss four related problems or applications along with our 

solutions to them and some experimental results: identifying abnormal local 

nodes, finding abnormal paths, feature identification and explanation for arbitrary 

nodes, and explanation-based outlier ranking.  

1.9 Thesis Outline 

The remainder of the dissertation is organized as follows: Chapter 2 presents a 

framework to identify abnormal nodes in an MRN based on a hybrid approach that 

integrates symbolic and statistical methods. Chapter 3 describes experiments to 

evaluate the framework on a synthetic organized crime dataset. Chapter 4 describes 

our explanation mechanism for discovered nodes and a human study evaluating the 

mechanism. Chapter 5 demonstrates a set of abnormal and interesting results our 

system finds in two representative natural datasets. Chapter 6 discusses several issues 

such as complexity, incremental and sampling versions of our algorithms and 

additional applications. Chapter 7 describes related work and Chapter 8 concludes 

and proposes future research directions. 
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Chapter 2  

 
Modeling and Finding Abnormal Nodes 

 
In this chapter we describe a framework for identifying abnormal nodes in a 

multi-relational network. Our goal is to develop an unsupervised framework that 

utilizes the information provided by the MRN to identify abnormal instances. The 

central question we need to ask regarding this is the following: how can we define 

and measure abnormality in a context where each node is different from every other 

(in the sense that they have different names, occupy different positions and connect to 

different nodes through different links in the network)?  

One plausible answer for this question is: a node is abnormal if there are no or 

very few nodes in the network similar to it based on some similarity measure. Given 

this definition, the next question that needs to be answered is: how do we measure the 

similarity of nodes? The following is a list of possible proposals that node similarity 

could be based on using the information provided by an MRN: 

• The type of the nodes (e.g. two nodes are similar if they are of the same or 

similar type) 

• The type of directly connected nodes (e.g. two nodes are similar if they are 

connected to similar types of nodes) 
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• The type of indirectly connected nodes via path of certain length (e.g. two 

nodes can be similar if the sets of the nodes that are within three steps away are 

similar)  

• The type of their links or edges (e.g. two nodes are similar if they have the same 

types of links) 

• The type of indirectly connected links via path of certain length (e.g. two nodes 

can be similar if the sets of links that are within three steps away are similar) 

• The network statistics of the nodes (e.g. two nodes are similar if they have the 

same degree, or connect to the same amount of nodes) 

However, this above proposal seems to be capture only partial connectivity 

information about the nodes and might not be able to capture the deeper meaning of 

the nodes. Our real interest is to find the nodes that contain abnormal semantics or 

play different roles in the network. Given that our goal is to build a domain-

independent and unsupervised system, we believe the best way for us to model the 

semantics of the nodes is to adopt the concept of syntactic semantics. This concept 

was proposed by Rapaport (W.J. Rapaport 2002), who claims that the semantics is 

embedded inside syntax (i.e., the study of relations among symbols), and, hence, 

syntax can suffice for the semantic enterprise. To extend this concept to our domain, 

we claim that the semantics of a node is not determined by its label or name, instead 

can be represented by the role it plays in the network or its surrounding network 

structure. This idea is also conceptually similar to social position analysis (S. 

Wasserman and K. Faust 1994), which claims that it is the role a node plays in the 
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network, instead of its label, that determines its meaning. Using this idea, we propose 

to judge whether two nodes are similar by checking if they play similar roles in the 

network, and determine these roles, in turn, by analyzing the different combinations 

of surrounding nodes and links together with their network statistics. Consequently, 

two nodes that are physically far away from each other in the network can still be 

treated as similar given a similarity in their surrounding environments. We believe 

this syntactic semantic model for the meaning of the nodes is an adequate choice for 

an unsupervised system which tries to avoid using domain knowledge and 

introducing human biases.  

 The following sections described how we can model the role of the nodes in an 

MRN and identify abnormal nodes. We decompose the whole process into three 

stages. The first stage is structure modeling or feature selection. In this stage, the 

system automatically selects a set of features to represent the surrounding network 

structure of nodes. The second stage is a dependency computation or feature value 

generation stage. For this stage we design a set of different models to compute the 

dependency between the features and the nodes in the MRN. A semantic profile of a 

node is constructed by a set of features and their feature values. In the third stage the 

system tries to find the abnormal nodes by looking for those with abnormal semantic 

profiles. 

2.1 Feature Selection Stage 

To elucidate the feature selection stage, we start with a motivating example 

derived from Figure 1.2. There are four authors (A1, A2, A3, A4) in this MRN, and 
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let us assume our goal is to find out which author is most abnormal (i.e., plays 

different roles compared with others). After examining these nodes based on their 

connections (i.e., neighbor nodes and links), we can conclude several things about 

each of them: 

A1 published two journal papers (P1, P3) and one of them cites the other. A1 belongs 

to organization O1, has a colleague A3, and co-authored one paper with A4. 

A2 published two journal papers (P4, P5) and one of them cites the other. A2 belongs 

to organization O2, has a colleague A3, and co-authored one paper with A4. 

A3 published one paper P2 (no citation). A3 belongs to two organizations O1 and O2, 

and has two colleagues A1 and A2. 

A4 published two journal papers (P3, P4), one of them cites another paper and the 

other is cited by another paper. A4 co-authored with two persons (A1 and A2). 

Based on the above description, it is not very hard to recognize that A3 has the 

most abnormal semantics, since A1 seems very similar to A2, and A4 is still 

somewhat similar to both A1 and A2. A3 is not as similar to the others, since it 

published only one paper which has neither incoming nor outgoing citations. Unlike 

the others, it does not have any co-authors. Furthermore, it belongs to multiple 

organizations and others do not. 

The above example shows that it is possible for humans to successfully identify 

abnormal nodes if we can somehow summarize the roles (or the surrounding structure) 

of them. However, our ultimate goal is to design an automatic mechanism to perform 
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this comparison. Therefore, we need a systematic method to model the semantics or 

roles of the nodes to make them comparable and contrastable automatically.  

To realize this idea, we start by systematically listing the one and two-step paths 

of the four author nodes with their corresponding natural language interpretation (we 

omit one-step paths if they are already covered in a longer path): 

A1:  

A1—writes—P1—published_in—J1 (A1 writes P1 which is published in J1) 

A1—writes—P3—published_in—J1 (A1 writes P3 which is published in J1) 

A1—writes—P1—cites-1—P3 (A1 writes P1 which is cited by P3, note that relation-1 

stands for the inverse of relation) 

A1—writes—P3—cites—P1 (A1 writes P3 which cites P1) 

A1—writes—P3—writes-1—A4 (A1 writes P3 which is written by A4) 

A1—belongs—O1—belongs -1 –A3 (A1 belongs to O1 which is the organization of A3) 

A2:  

A2—writes—P4—published_in—J1 (A2 writes P4 which is published in J1) 

A2—writes—P5—published_in—J2 (A2 writes P5 which is published in J2) 

A2—writes—P4—cites-1—P5 (A1 writes P1 which is cited by P3) 

A2—writes—P5—cites—P4 (A2 writes P5 which cites P4) 

A2—writes—P4—writes-1—A4 (A2 writes P4 which is written by A4) 

A2—belongs—O2—belongs -1 –A3 (A2 belongs to O2 which is the organization of A3) 

A3: 

A3—writes—P2 (A3 writes P2) 

A3—belongs—O1—belongs -1 –A1 (A3 belongs to O1 which is the organization of A1) 

A3—belongs—O2—belongs -1 –A2 (A3 belongs to O2 which is the organization of A2) 

A4:  

A4—writes—P3—published_in—J1 (A4 writes P3 which is published in J1) 

A4—writes—P4—published_in—J1 (A4 writes P4 which is published in J1) 



 

21

A4—writes—P3—cites—P1 (A4 writes P3 which cites P1) 

A4—writes—P4—cites-1—P5 (A4 writes P4 which cites P5) 

A4—writes—P3—writes-1—A1 (A4 writes P3 which is written by A1) 

A4—writes—P4—writes-1—A2 (A4 writes P4 which is written by A2) 

In general one should be able to come up with descriptions of nodes similar to 

the ones we have provided in the motivating example by combining and maybe 

condensing the information provided by those paths. For example, in the case of A1, 

the first two paths tell us that A1 wrote two journal papers. The next two paths tell us 

that one paper cites the other. The fifth path reveals that A1 co-authored with A4 

while the last path shows that A1 belongs to organization O1 and has a colleague.  

This observation motivates a key idea of our approach: of using those paths to 

capture the semantics of the nodes. Another justification is that each path in a 

network can be translated into a standard logical notation by representing nodes as 

constants and links via binary predicates. Those predicates contain meanings and can 

be translated into natural language, as we did for the above paths. For example, in 

Figure 1.2 the path A1—writes—P3—cites—P1 can be represented as the conjunction 

writes(A1,P3) ∧ cites(P3,P1). This logical expression partly characterizes the meaning 

of the nodes A1, P1 and P3. It only partially characterizes meaning, of course, since 

there are many other paths (or logical expressions) that also involve these nodes. In 

our view, it is the combination of all paths a node participates in that determines its 

semantics. This differs from standard denotational semantics in which a node’s 

interpretation is the object it denotes (R. K. Hill 1995). 
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Given these observations, one naïve approach to capture a semantic profile of a 

node is by treating all paths in the network as binary features, assigning true to the 

paths the given node participates in and false to the ones it does not. Thus, in a 

network of k different paths, each node can be represented by a k-dimensional binary 

feature vector. By doing this we have essentially transformed a multi-relational 

network into a propositional representation, where each node is a point in a high-

dimensional space with attributes identifying its semantics based on its position and 

role in the network.  

The previous paragraphs describe the central idea underlying the approach used 

for representing the semantic profile of a node, but there are still some problems that 

we must address. The first problem is that treating each path as a different feature 

generates an overfitting problem. Since each path is unique, the only nodes sharing a 

particular path feature would be those participating in the path, which would make 

these profiles useless for comparing nodes inside the path with the ones outside of it. 

For example, given the two paths cites(P2,P1) ∧ published_in(P1,J1) and cites(P2,P1) ∧ 

published_in(P1,J2), it might be important to compare and contrast J1 and J2. However, 

because these features would be considered independent, they could not really 

contribute to a meaningful comparison. A second problem relates to time and space 

complexity: a large semantic graph can easily contain millions of paths, and 

computation/storage in such high dimensional space would be costly. 

These issues motivate the search for a more condensed feature set without losing 

the spirit of capturing the role semantics of instances. We do this by defining 
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equivalence classes between different paths that we call path types and then use these 

path types instead of individual paths as features. Whether two individual paths are 

considered to be of the same type will depend on one of several similarity measures 

we can choose. For example, we can view a set of paths as equivalent (or similar, or 

of the same type) if they use the same order of relations (called the relation-only 

constraint described in the Section 2.3). This view would consider the following three 

paths as equivalent:  

 cites(P2,P1) ∧ published_in(P1,J1) 

 cites(P2,P1) ∧ published_in(P1,J2) 

 cites(P2,P3) ∧ published_in(P3,J1) 

Alternatively, we can consider two paths as equivalent if they go through the same 

nodes. This view would consider the following two paths as equivalent: 

friends(Person1,Person2) ∧ direct(Person2,Movie1) 

colleagues(Person1,Person2) ∧ act(Person2,Movie1) 

Given these generalization strategies, then, the next question becomes how we 

can generate a meaningful and representative set of path types? One way is to apply a 

variable relaxation approach. Regarding the path cites(P2,P1) ∧ published_in(P1,J1) as 

an example, we find there are five ground elements in this path: cites, P1, P2, 

published_in and J1. If we relax one of its elements, say J1, to a variable ?X, then we 

get a new relaxed path type cites(P2,P1) ∧ published_in(P1,?X) which now represents a 

more general concept: “paper P2 cites paper P1 that is published in some journal”. 
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Further relaxing, we could also generalize a link such as published_in which would 

give us cites(P2,P1) ∧ ?Y(P1,?X) or “paper P2 cites paper P1 that has something to do 

with some journal”. In fact we can generalize any combination of nodes or links in a 

path to arrive at a more general path type. These path types still convey meaning but 

do so at a more abstract level. This makes them more useful as features to compare or 

contrast different instances or nodes. In Section 2.3, we will discuss a set of high-

level constraints that allow our system to select path types automatically. 

2.2 Feature Value Computation 

A major advantage of using path types is that we do not limit ourselves to binary 

features (i.e., whether a node does or does not participate in a path). Instead, we can 

apply statistical methods to determine the dependence between a path and a node and 

use it as the corresponding feature value. This realizes one of the ideas proposed in 

the previous section, which is to employ statistical analyses of nodes and links as the 

basis of a similarity measure. 

2.2.1 Performing Random Experiments on an MRN 

General statistical correlation measures such as mutual information (MI) or 

pointwise mutual information (PMI) have been successfully applied to problems in a 

variety of areas. These measures rely on the existence of nondeterministic 

dependency between random variables. However, a normal multi-relational network, 

unlike a Bayesian network or general belief network, is a deterministic graph 

structure instead of a probabilistic one. It represents the relationships between nodes 

and normally there are no probabilities associated with these nodes and links. 
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Furthermore, the problem we face is different from, say, a typical natural language 

processing task in which one can learn the dependencies of words (i.e., the language 

model) from large corpora, since our task has no such corpora to take advantage of. 

As a result, questions such as “what is the MI between a node x and a node y” or 

“what is the PMI between a node x and a path type p” are ill-defined, because not 

only is there no uncertainty associated with x and y, neither are they random variables. 

To apply statistical dependency measures to a deterministic MRN in order to 

compute the correlation between nodes and paths, we introduce a set of random 

experiments carried out on the MRN. A random experiment is an experiment, trial, or 

observation that can be repeated numerous times under the same conditions. The 

outcome of an individual random experiment has to be independent and identically 

distributed (i.e., it must not be affected by any previous outcome and cannot be 

predicted with certainty). Based on the results of these random experiments, we can 

create certain random variables and use them to measure the dependency between a 

node and a path type. 

To elaborate this idea, we first introduce three simple random experiments to 

select a path in an MRN: 

Random Experiment 1 (RE1): Randomly pick a path from the MRN. One can easily 

see that the probability of each path to be selected is 1/|Path|, where |Path| is the total 

number of paths in the MRN. 

Random Experiment 2 (RE2): First randomly pick a node in the MRN, and then 

randomly pick a path that starts from the selected node.  
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Random Experiment 3 (RE3): First randomly pick a path type in the MRN, and 

then randomly pick a path among the ones that are of that path type.  

Any of these three random experiments produces a single path as the output. 

However, the probability of each path to be selected varies for these three 

experiments, depending on the selection policy. 

Based on the single path output of a random experiment, we can then introduce 

two random variables S and PT: 

S: The starting node of this selected path 

PT: The path type of this selected path 

Note that both S and PT are discrete random variables, where the number of 

possible realizations in S equals the total number of nodes in the MRN and that of PT 

equals the total number of path types. Given these random variables, we can now 

compute dependencies between nodes and path types in a variety of ways which is 

described in the next sections. 

2.2.2 Measuring Node/Path Dependence via Contribution 

We start by an observation that each path type contains multiple realizations in 

the dataset. Take the path type writes(?X, ?Y) as an example: an instance A1 might 

occur in many paths of this type (say writes(A1, P1)…writes(A1,P99) representing that 

A1 wrote 99 papers), while another instance A2 might occur only in a few (say 1 time). 

Assuming that in the whole dataset only A1 and A2 write papers, we can say that A1 

contributes 99%, A2 1% and the rest 0% to this “writing a paper” path type. That is, if 

a path is selected randomly with equal probability, then the conditional probability is 
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99% that given the path is of type writes, then the starting node is A1. In this case we 

can say that the dependency measure between the node A1 and path type writes is 0.99. 

Associating this example to what we proposed in the previous section, it is not 

hard to see that here we have essentially computed a conditional probability of 

random variable S given PT based on RE1:  

pRE1( S= A1 | PT= writes) 

We formalize this by defining the contributionk of an instance s to a path type pt 

as the conditional probability that given a path with a certain path type pt is randomly 

selected (based on Random Experiment k), this path starts from s: 

contributionk (s, pt ) = pk(S=s|PT= pt) 

The contribution value therefore encodes the dependency information between a 

node and a path type. The concept is intuitive and understandable, which is a very 

useful and important characteristic for the problem of generating human-

understandable explanations. Note that we consider x only as a starting point in a path 

and not at other positions. This is because if x is in the middle of a path, then it will 

be counted as the starting point of two shorter paths as exemplified below: 

ABxCxCxBA RRRRRR ⎯⎯ →⎯⎯⎯ →⎯+⎯→⎯=⎯→⎯⎯→⎯⎯→⎯
−− 11 )1()2(3321   

Similarly, if x is at the end of a path, then it is the starting node of the inverse path as 

well. Therefore, we consider only x as the starting point of paths to avoid redundancy. 

Using path types as features and their contributions with respect to nodes as 

feature value, we can then construct what we call the semantic profile for a node. For 

example, here is an excerpt of the semantic profile (based on contribution1) for the 
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director Ang Lee taken from a movie dataset used in some of the experiments 

described in the Chapter 5: 

0.00105 [direct, has_actor, child_of]  

0.00109 [direct, has_authors] 

0.00111 [direct, has_actor, lived_with] 

0.00161 [direct, remake] 

0.00446 [write, has_cinematographer ] 

0.00794 [direct, has_actor, has_lover] 

The first column represents the contribution1 value and the second represents the 

relation-only path type. For example, the first row says that if one randomly picks a 

path representing “x directed a movie that has an actor who is the child of some 

person”, than there is a 0.00105 probability that x is Ang Lee. 

2.2.3 Measuring Node/Path Dependence via Mutual Information 

As an alternative to the contribution measure, one can apply the concept of 

mutual information (MI) and pointwise mutual information (PMI) from information 

theory to compute the dependency between path type features and nodes.  

2.2.4 Definition of MI and PMI 

MI measures the mutual dependence of two random variables. The higher it is, 

the more dependent the two random variables are with each other. The equation of MI 

is as follows, where X and Y are two discrete random variables, p(x), p(y) represents 

the associated probability of their values and p(x,y) represent the joint probability (it 

can be proven that MI is always positive): 

∑=
yx ypxp
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For example, say a discrete random variable X represents visibility (i.e., good or 

bad) at a certain moment in time and random variable Y represents wind speed (i.e., 

high or low) at that moment. Then the mutual information between X and Y will be  
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A high MI(X;Y) would imply that knowing the visibility tells a lot about the 

wind speed (and vice versa). In other words one can accurately predict the wind 

speed given the information about the visibility and vice versa. Conversely, low 

mutual information implies that knowing the value of one does not provide much 

information about the other.  

Pointwise mutual information (PMI) measures the dependence between two 

instances or realizations of random variables instead of the random variables 

themselves: 

Note that unlike MI, PMI values can be negative. Negative PMI implies that two 

realizations are negatively correlated with each other. Zero PMI implies mutual 

independence between the two values. It is not hard to see that the mutual 
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information between two random variables is simply the integration of PMI values 

over all the pair-wise instances of these random variables. 

Using the above example, we can measure the pointwise mutual information 

between two values of random variables “X=good” and “Y=low” as  

High PMI implies that if we observe that visibility is good, then we are 

confident that the wind speed is low. Zero PMI implies that knowing visibility is 

good does not tell whether the wind speed is low and vice versa (independence). 

Negative PMI implies that if the visibility is good, then it is unlikely the wind speed 

is low.  

2.2.5 Pointwise Mutual Information Model for Nodes and Paths in an MRN  

With these two random variables, we can now model the dependency (i.e., 

feature value) of a node s and a path type pt as the pointwise mutual information 

between S=s and PT=pt, which is )
)()(

),(log(
t

t
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Note that the computation of the marginal probabilities and joint probability 

described in the above equation varies, depending on which random experiment one 

performs. For RE1 we get this following equation: 
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|S=s| is the total number of paths in the network that start from s. |PT=pt| is the 

total number of paths that have pt as their path type. |S=s, PT=pt | is the total number 

of paths in the network that start from s and are of path type pt.  

For instance, suppose in a social network about movie people, there is a node s 

of the name “Hitchcock” and a relation-only path type pt as [has_friend, direct] (this 

stands for “somebody has a friend who directed some movie”). Then, the PMI1 value 

between “S=Hitchcock” and “PT=[has_friend, direct]” becomes: 
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Note that 
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t

t

pPT
pPTsS

=
==  represents the conditional probability “if a chosen path is 

of path type pt, the probability it starts from s”, which was defined as the 

contribution1 (s, pt) in the previous section. We can therefore rewrite PMI1 as: 

|)log(||)log(|)),(log(   ),( 11 PathsSpxoncontributipPTsSPMI tt +=−===  

From the above equation, we can find that PMI1 is positively correlated with the 

contribution1 between the node and the path type. The difference now is that there is 

an additional subtraction term log|S=s| and the positive log|Path|. The former 

alleviates the impact from nodes that are involved in many paths while the second is a 
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constant. This implies that compared with the contribution measure, the PMI1 

measure tries to discount the total number of connections for the node. In other words, 

if there are two nodes who contribute the same to a path type, the one that has fewer 

overall connections will have a higher PMI1 value.  

Below is the equation to calculate PMI2(S=s, PT=pt), which is the PMI values 

based on Random Experiment 2. It is different from PMI1 since in Random 

Experiment 2 we first randomly selected a node and then a path type. Note that 

|Node| represents the total number of nodes in the network. 

PMI2(S=s, PT=pt) = )

||
|| 

  |,|

*
||

1

|| 
 |,|*

||
1

(1og

Node
kS

pPTkS

Node

sS
pPTsS

Node

nodek

t

t

∑
∈ =

==
=

==

 

Here the term 
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== stands for the probability that if from a source 

node k we randomly select a path, its path type is pt. It is similar to the concept of 

conditional probability so we can rewrite it as p(PT=pt |S=k). Therefore, PMI2 can be 

rewritten as the following equation: 
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The interpretation of PMI2 turns out to be less complicated than it looks. It 

captures the dependency between a node and a path type based on the “node’s point 

of view”. It conveys the idea that the PMI2 between a node s and a path type pt will be 

high if pt is a very frequent path type starting from s. For instance, in our previous 

example the PMI2 will be high between s=Hitchcock and pt=[has_friend, directed] if 

most of the paths describing Hitchcock in the dataset are about some of his friends 

that directed some movie.  

Similar to the previous PMI values, PMI3 tries to model the dependency of a 

node and a path type in a deterministic network based on a path-choosing experiment. 

The difference lies in the way the path is picked. The calculation of PMI3 is as 

follows, where |Path Type| stands for the total number of path types in the network: 
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Again, the term 
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==  stands for the probability that if we randomly 

pick a path of path type m, the chance that this path starts from s. Therefore we 

represent it as p(S=s| PT=m), and rewrite PMI3 as: 
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Similar to PMI2, there is an intuitive interpretation behind this equation. PMI3 

measures the dependency of a node and a path type based on the “path’s point of 

view” (while PMI2 is based on the “node’s point of view”). It says the PMI value 

between a node s and a path type pt will be high if among all the possible nodes, s has 

a very high chance to be the starting node of pt. For instance, in our example 

s=Hitchcock and pt =[has_friend, directed] will have high PMI3 value given 

Hitchcock is the only person who has some friend who directed some movie.  

2.2.6 Mutual Information Model for Multi-Relational Networks  

Unlike PMI, which models the dependency of two instances of random variables, 

mutual information is generally used to compute the dependency of two random 

variables. Since our task focuses on modeling the instances in the network, it seems 

to be more natural to apply the concept of PMI as discussed in the previous section. 

However, as can be inferred from the examples stated above, the PMI models we 

proposed focus only on the positive dependency (e.g. if s happens, whether pt 

happens and vice versa) and ignore other situations (e.g. if s does not happen, 

whether pt does or doesn’t happen). Ideally, we would like to consider dependency 

from all perspectives, which is something that can be achieved by using full mutual 

information analysis. Based on the same path-choosing random experiments, our 

design of the mutual information dependency model starts by redefining S and PT as 

two binary random variables: 

S: whether the path starts from the node s  

PT: whether the path belongs to the path type pt 
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Since both S and PT are binary random variables (i.e., their values can be either true 

or false), we can compute the mutual information between them as follows: 

  MI(S,PT)= 

 

 

 

 

Again, the formulas for the joint and marginal probabilities vary for different 

random experiments, depending on how a path is selected. Note that the major 

difference of these two random variables compared with the previous ones is that 

both s and pt are included in the definition of random variables and their values can 

only be true of false — using the PMI analysis, in contrast, both s and pt are instances 

of random variables and they do not show up in the definition of random variables. 

The MI measure considers all the possible combinations of positive and negative 

instances, and consequently reveals how confident one can be in terms of predicting 

whether a path type is pt given we know whether the starting node of a randomly 

selected path is s, and vice versa (i.e., predict the starting node based on the path 

type).  

2.3 Meta-constraints 

We have described that path types can be generated from paths by a method we 

call variable relaxation. Given that every element in a path can be relaxed to a 

variable, then, how can the system systematically select a set of path types and how 
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can it adapt to users’ preferences when necessary? In this section we design several 

meta-constraints as parameters that can guide the system to select a set of path types 

automatically. Moreover, we also allow freedom for users to introduce domain 

knowledge or biases through such high-level constraints if necessary. 

Meta-constraint 1: maximum path length 

The system needs to limit the path length while selecting path types as features. 

Constraining the path length is reasonable in the sense that the farther away a 

node/link is to the source node, the less impact it has on the semantics of the source 

node. Moreover, it is not hard to image that the longer a path is, the harder it is for 

humans to make sense of it. Therefore, for explanatory purposes, we would like to 

avoid long paths. In our experiment we chose the maximum path length somewhere 

between four and six. The choice is based on the size of the search space and how far 

away one believes link information to still have influence on the meaning of the 

source.  

Meta-constraint 2: relation-only constraint  

This constraint tells the system to treat paths with the same sequence of relations 

(links) as of the same path type. In other words, it considers only the link types and 

ignores any information provided by the nodes. We choose this as the default 

constraint to create the semantic profiles, since in general we assume that the typed 

links play a more important role and can convey more information than the labels of 

nodes in a semantic graph. 
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Based on meta-constraints 1 and 2, the system can fully automatically extract a 

set of path types from an MRN to represent the semantics of the nodes.  

Meta-constraint 3: node and link type constraints  

This type of constraint allows users to express their preference in terms of the 

types of nodes and links that should be considered. For example, one can specify that 

at least one of the nodes in a path type needs to be of type person, or that one link in 

the path needs to be a murder link.  

Meta Constraint 4: exclusion constraint  

This constraint allows the user to say what should not be considered. For 

example, one can state that paths that contain the rob relationship should not be 

considered in the analysis. 

By combining meta-constraints 3 and 4, users can express their preference and 

biases. This is particularly useful in situations where users are very confident about 

what kind of links or nodes are important and what are useless. Some of those meta-

constraints might have been implicitly considered already during the construction 

phase of the network.  

Meta-constraint 5: structure constraints  

This type of constraint controls the structure of a path. For example, in one of 

our experiments we ask the system to only consider paths whose source and target 

nodes are the same, which we call the “loop constraint”. We also define a “uniform 

link constraint” to consider only paths with only one single link type such as [A cites 

B cites C cites D]. 
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Meta-constraint 6: guiding the computation of feature values 

 These types of constraints are used to guide the process of feature value 

selection by constraining the random experiments performed. Meta-constraints 3, 4, 

and 5 can be reused again here. For example, we can tell the system to ignore all 

paths without a certain type of nodes while performing the path-choosing random 

experiments.  

2.4 Finding Abnormal Nodes in the MRN 

Using path types as features and the dependencies (i.e., contribution or PMI or 

MI) of each node with respect to each path type as feature values, we now have a 

method for representing the semantic profiles of nodes in a propositional attribute-

value form. Each node profile is represented by a numeric feature vector that records 

the dependency of the node with each path type in the dataset.  

Now that we have a metric for ascertaining the semantic profile of a node, then, 

the next step is to identify abnormal instances in our set of nodes. One approach is to 

extract nodes that have high dependency values for many path types (e.g., highly 

connected nodes would fall into this category). The opposite approach would be to 

identify the ones that have low dependency values such as isolated or boundary 

nodes. 

Although these two types of nodes are potentially interesting, we believe they 

are not extremely desirable candidates for our system to find. In fact unlike centrality 

theory or PageRank, our goal is not to find important nodes, but instead we are trying 

to find nodes that look relatively different from others. In particular, we are 
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interested in nodes whose semantic profiles are significantly different from those of 

other nodes. 

We transform the question of identifying abnormal nodes in a semantic graph 

into the question identifying nodes with abnormal semantic profiles because mining 

propositional data is a well-studied problem in data mining that has a wide range of 

techniques available. For example, below we will introduce a variety of outlier 

detection techniques that can assist us to identify abnormal nodes. 

An outlier is an observation that deviates so much from other observations to 

arouse suspicion that it was generated by a different mechanism (D. Hawkins 1980). 

There are three major classes of outliers: clustering-based, distribution-based and 

distance-based outliers. Each has its associated detection algorithms. Clustering-

based outlier detectors such as CLARANS (R.T. Ng and J. Han 1994), BIRCH (T. 

Zhang, R. Ramakrishnan et al. 1996) and CLUE (S. Guha, R. Rastogi et al. 1998) 

extract outliers as those points that cannot be clustered into any clusters based on a 

given clustering method. Distribution-based outlier detection assumes some statistical 

distribution of the data and identifies deviating points as outliers (V. Barnett and T. 

Lewis 1994). We argue that in terms of extracting abnormal nodes based on our 

semantic profiles, neither of these is a good option. This is because our system is 

intended to deal with data in arbitrary domains, and there is no guarantee that either a 

learnable distribution or distinguishable clusters exist. Distance-based outlier 

detection, on the other hand, is more generic and applicable to our problem. It 

identifies outlier points simply as those that look very different from their neighbor 



 

40

points (E. Knorr and R. Ng 1998). Consequently, it does not rely on the existence of 

clusters or learnable distributions. Distance-based outlier detectors look for outliers 

from a local point of view instead of a global one. That is, they do not look for a 

point that is significantly different from the rest of the world, but for a point that is 

significantly different from its closest points. For example, a distribution-based 

outlier detector might not deem a researcher who published three papers per year as 

very abnormal, while a distance-based outlier detector can identify it as an abnormal 

one, if finds that the other researchers in the same area (i.e., the neighbor points) 

published on the average one paper every two years. This strategy makes intuitive 

sense because we do not usually compare the productivity of researchers from 

different fields. A distance-based outlier method allows us to identify nodes that are 

different from other nodes in the same context, and we believe these types of 

abnormal instances have a higher chance to interest users. The examples in Chapter 1 

also indicate the usefulness of distance-based outliers in a security domain, since 

malicious individuals who try to disguise themselves by playing certain roles but fail 

to get everything right are likely to still be different from genuine players of that role. 

In the experiments we conducted, we chose Ramaswamy’s distance-based 

outlier algorithm (S. Ramaswamy, R. Rastogi et al. 2000), which ranks outlier points 

by their distance to the k-th nearest neighborhood. Outliers are thus considered points 

that are far away from their k closest neighbors. 
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2.5 UNICORN: An Unsupervised Abnormal Node Discovery Framework 

Based on the methodologies and techniques discussed above, we can now 

describe how our node discovery framework UNICORN1 identifies abnormal nodes 

in a multi-relational network. The information flow is shown in the upper part of 

Figure 2.1. First, the system creates a set of path types to use as features in the 

semantic profiles of nodes. It is important to note that this set of features is not 

defined by the user but instead computed directly from the data using the very general 

meta-constraints described previously. For example, in one of our experiments we tell 

the system to find all different relation sequences (a relation-only constraint) up to 

length four in the data and use those as features. Once the set of path types is 

determined, UNICORN then computes the dependency (i.e., either contribution, MI 

or PMI based on one of random experiments) for each node and path type as the 

feature values to generate a semantic profile for each node. Finally, UNICORN 

applies an outlier detector or outlier ranking algorithm to find nodes with abnormal 

semantic profiles. The lower part of Figure 2.1 describes a system that produces the 

explanations for UNICORN, will be elaborated Chapter 4.  

                                                 
1UNICORN, as an abnormal animal, is the abbreviation for “UNsupervised Iinstance disCOvery in multi-Relational Networks”.  
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meta constraints

 

Figure 2.1 Information flow in UNICORN 
 
The following pseudo-code describes UNICORN in more details. Note that for 

simplicity of description, extract_path_types implicitly assumes the “relation-only” 

view in the way it generates candidates, and we choose contribution1 as feature values. 

It utilizes breadth-first search to find all relevant path types. Also, the output of 

function get_outliers can be either a set or a ranked list of nodes depending on the kind 

of outlier algorithm that is applied. Given an outlier detection algorithm, O will be a 

set of outlier nodes. If it is an outlier ranking algorithm, the result will be a ranked list 

of nodes corresponding to their degree of “outlierness”.  
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function UNICORN (G, mc, k) { 

// Input G is an MRN <N, R, L> with nodes N={n1,n2…n|N|}, edges (or relations) 

//R={r1,r2…r|R|} and link types L={l1,l2,….l|L|}. Each ri links a source node s to a target node 

t //via a link of type lj. 

// Input mc is a meta constraint for selecting path types (e.g.,”relation-only”) 

// Input k is the maximum path length considered in the path type computation. 

1. Pt := extract_path_types(G, mc, k) 

2. array profile[|N|, |Pt|] 

3. for n := 1 to |N| 

   4.  for pt ∈ Pt 

   5.    profile[n, pt] := get_contribution(G, n, pt) 

   6. return get_outliers(profile) 

function extract_path_types(G, mc, k) 

 1. pathLength := 0  

 2. Pt := {l1, l2, …l|L|}  

 3. for pathLength := 1 to k-1 

 4.  for pt ∈ Pt where length(pt) = pathLength  

5. for l L∈  

6.   pt’ := concatenate (pt, l) // add link l to the end of pt 

7.     if path_exists(G, pt’) and satisfies(pt’, mc)  

 8.      Pt := Pt ∪ pt’ 

 9. return Pt 
function get_contribution(G, s, pt) 

1. starts := number of paths of type pt in G that start with s 

2. all := number of paths of type pt in G 

3. return starts / all 

 

An important aspect of UNICORN is that it is designed primarily as a 

framework with a variety of options at each stage that users can choose from. In the 

feature selection stage, our meta-constraints provide users a certain amount of 
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flexibility to introduce their preferences, without affecting the overall advantage of 

being domain independent. In the feature value generation stage, users can choose not 

only three different random experiments (RE1 as default) but also several plausible 

dependency models: contribution (default), PMI measures and MI measures, each of 

which has a slightly different view and intuition for node/path dependency. In the 

final stage, users can plug in different types of outlier detection or outlier ranking 

algorithms to find different types of abnormal instances. Later in Chapter 6 we will 

describe a novel outlier detection algorithm we will call the “explanation-based 

outlier detector” which can also be used in this stage.  

2.6 Local Node Discovery 

The process can be easily adapted to solve a modified version of the problem, 

which we call the local node discovery problem. Its goal is to identify a node that is 

abnormally connected to a given node s. For example, given a medical MRN created 

based on a set of diseases, foods, and patients, one might want to see if there is a 

certain food that is abnormally connected to a given disease. Such a food could be 

interesting, because it might indicate the cure or cause of the disease. To perform 

such discovery, we need a system that can takes a given source node as input and that 

outputs nodes that are abnormally connected to it. We need only to modify 

UNICORN slightly to address this task. The difference is that when computing the 

feature values for each path type, we consider only the paths that start from s. This 

can be done by simply adding one meta-constraint of type 6 during the feature value 

generation stage. In this case the dependency measures will be focused on picking 
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only paths starting from s. For example, the contribution of a node n with respect to a 

path type pt is the total number of times a path of type pt starts from s and ends in n, 

divided by the total amount of times a path of type pt starts from s. The justification 

for this is that we are looking for nodes that are abnormally connected with s, thus we 

care only about paths that include s. 
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Chapter 3  

 
Evaluating UNICORN 

 
In this chapter we describe our experiments based on an organized crime dataset 

to evaluate UNICORN. The goal of this evaluation is to demonstrate the usefulness of 

the system by showing that it can identify suspicious crime participants, and that it 

does much better than other state-of-the-art network algorithms that have been used 

for analysis of the 9/11 terrorist network. Note that the goal of this evaluation is not 

to show that the instances found by UNICORN are truly abnormal. We leave this part 

to the explanation system in the sense that the abnormality of the discovered 

instances can be validated by showing why they are different from the others in a 

human understandable form. 

3.1 The Dataset 

We evaluate our system by applying it to a synthetic dataset in the domain of 

Russian organized crime. Our main motivation for using a synthetic dataset is that 

this type of dataset has an answer key describing which entities are the targets that 

need to be found. In this experiment we evaluate how well our algorithm can identify 

the predefined suspicious instances given in the answer key of the dataset. We also 

compare our algorithm with a selection of state-of-the-art unsupervised network 

algorithms such as PageRank, HITS, social network analysis (centrality theory), etc.  
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Figure 3.1: Event type hierarchy of the Russian organized crime dataset 

The data we used came from a suite of simulated datasets designed by 

Information Extraction & Transport, Inc. as part of DARPA’s Evidence Extraction 

and Link Discovery program. The data simulates a Russian organized crime (or 

Mafiya with a “y”) domain with a large number of entities involved in activities such 

as contract murders, gang wars and industry takeovers. For each dataset we are given 

an answer key containing the information of participants in high-level events of 

interest such as GangWar and IndustryTakeOver. Those participants are not explicitly 

described in the data but need to be inferred from lower-level, incomplete and noisy 

evidence. With these answer keys we can test our program by checking if the 

abnormal nodes it discovered match the hidden higher-level crime participants.  
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Figure 3.1 illustrates the event hierarchy of the dataset. There are two different 

types of top-level events: gang wars and industry takeovers. Gang wars occur 

between two rivaling Mafiyas, and industry takeovers are attempts by one Mafiya to 

take over an industry. Both events are composed of various levels of lower level 

events such as murders for hire (or contract murders), communications, financial 

transactions, etc.  

We perform this experiment by applying our system to find the most suspicious 

Mafiyas. UNICORN first generates the semantic profile for all Mafiyas, and then 

applies Ramaswamy’s distance-based outlier algorithm to rank them. Our goal is to 

see if the top abnormal Mafiyas our system identified match the high-level crime 

organizers described in the answer key. We performed a similar experiment for the 

set of industries, where we want to know if the most abnormal industry the system 

found is the one being taken over. 

Table 3.1: The statistics of the six datasets 

 

We tested on 6 different datasets (D1 to D6) whose characteristics are described 

in Table 3.1. Each dataset contains roughly 6000-9000 nodes while the number of 

Data   Size 
Observ-
ability Noise 

# of 
nodes 

# of 
links 

# of 
node 
types 

# of 
link 
types 

# of 
Mafiya
s 

# of 
Indus-
tries 

D1 large low 2 9429 16257 

D2 large average 1 8418 12897 

D3 large high 0 6346 8349 

D4 medium low 2 9142 15425 

D5 medium average 1 8033 12687 

D6 medium high 0 6172 7848 

16 31 42 21 
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links ranges from 8000-16000. There are 16 different node types representing objects 

and events, which are: 

Industry, BankAccount, Person, Business, Mafiya, TelNumber, MakingAPhoneCall, 

MeetingTakingPlace, PlanningToDoSomething, WireTransferOfFunds, Paying, 

EmailSending, Observing, Murder, PremeditatedMurder, MurderForHire 

There are 31 different link types representing the relationships between those 

nodes including (detailed descriptions of these relations are listed in Appendix I): 

accountHolder, callerNnumber, ceo, dateOfEvent, deliberateActors, deviceUsed, 

employees, eventOccursAt, geographicalSubregions, hasMembers, mediator, murderer, 

objectsObserved, operatesInRegion, orderedContractMurder, orgKiller, orgMiddleman, 

payee, payer, perpetrator, phoneNumber, receiverNumber, recipient, relatives, sender, 

socialParticipants, subevents, transferMoneyFrom, transferMoneyTo, victim, vor 

The data sets differ in size (large or medium), observability (low, average, or 

high) and noise (0, 1, 2). The size parameter does not necessary reflect the total 

number of nodes and links in the data set. Instead it represents how many contract 

murder events are in the data. The large-sized data sets contain 20 contract murders 

while the medium-sized ones have only 10. Observability is the measure of evidence 

that is explicitly revealed. In other words, the lower the observability, the less 

evidence of events that is reported in the data. The noise parameter represents the 

degree of noise in Lv2 events. Noise level 2 datasets have on average 2000 noise 

events, noise level 1 datasets have 1000 and there are no noise events in noise level 0 

data sets. Note that the difficulty of the datasets can be ranked as follows: 

{D1,D4}>{D2,D5}>{D3,D6}. D1 and D4 possess the lowest observability and the 
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highest noise. D3 and D6 have the highest observability and lowest noise, therefore 

should be simpler to process. 

3.2 Comparing Different Algorithms 

We compare our results with other network ranking algorithms including 

PageRank (L. Page, S. Brin et al. 1998), HITS (J.M. Kleinberg 1999) and Betweeness 

Centrality (S. Wasserman and K. Faust 1994), which have been used to analyze the 

9/11 terrorist networks (V. Krebs 2001; J. Qin, J. Xu et al. 2005). PageRank ranks the 

importance of a node by the quality of the links pointed to the node. That is, a node 

will have high PageRank value if it is pointed at by a lot of nodes that themselves 

have high PageRank values. HITS (hyperlinked induced topic search) considers both 

incoming and outgoing links for each node and generates two scores called hub and 

authority values. These two values have mutually reinforcement one another. An 

authority value is computed as the sum of the hub values of the pages that point to 

that page. A hub value is the sum of the authority values of the pages it points to. In 

our experiment we rank the nodes based on the authority values. Betweenness is a 

centrality measure of a node in a graph. Nodes that occur on many shortest paths 

between other nodes have higher betweenness than those that do not. In the 

experiments we treat all the typed links equally (i.e., as a single-relational network) 

for these three algorithms, since they do not distinguish link types. 
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Table 3.2: Ranking of target nodes in the organized crime dataset. For each 
dataset, there are two or four targets to be found. The numbers show how each 
algorithm ranks those targets. 

Results of the experiment are described in Table 3.2. The second column lists the 

targets to be found for each dataset. Large datasets have a gang war (which includes 

two Mafiyas: Mafiya_gang1 and Mafiya_gang2 fighting with each other) and an 

industry takeover event (which contains one Mafiya: Mafiya_takevoer trying to take 

over an industry), while medium datasets only have one industry takeover event. The 

numbers in the last four columns represent the ranking of those targets based on 

different algorithms. For example, for dataset D1 UNICORN ranks Mafiya_gang1 as 

the second in its list of abnormal individuals, while HITS rank it as the 15th. In the 

large-size dataset, a perfect algorithm should rank the three target Mafiyas as the top 

three and the target industry as the top one. In medium-sized datasets such as D4 to 

Results Data 
 

To Be Found 
UNICOR
N   HITS Betweeness 

PageRan
k 

Mafiya_gang1 2 15 41 41 
Mafiya_gang2 3 5 32 39 
Mafiya_takeover 1 1 1 22 

D1 

Industry 1 6 18 17 
Mafiya_gang1 1 3 10 31 
Mafiya_gang2 2 2 2 37 
Mafiya_takeover 3 1 28 18 

D2 

Industry 1 12 2 3 
Mafiya_gang1 1 2 2 38 
Mafiya_gang2 2 1 9 40 
Mafiya_takeover 4 6 12 41 

D3 

Industry 1 4 1 1 
Mafiya_takeover 2 2 10 34 D4 
Industry 1 18 39 19 
Mafiya_takeover 3 5 19 42 D5 
Industry 1 15 17 21 
Mafiya_takeover 1 1 1 42 D6 Industry 1 1 14 21 
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D6 which contain only one IndustryTakeOver event, a perfect algorithm should rank 

both the Mafiya_takeover and target industry as the top one. In all the experiments 

reported in this chapter, UNICORN utilizes its default relation-only meta-constraint 

to choose path types. In the first experiment shown in Table 3.2, the contribution1 

dependency measure was applied and the maximum path length was set to 4.  

The results in Table 3.2 show that the threat instances that are supposed to be 

found in the answer key are consistently ranked on top of UNICORN’s list, while this 

is not the case for the other three algorithms. We call a crime participant as ranked 

perfectly by an algorithm if there is no other innocent candidate ranked higher than it. 

Figure 3.2(a) shows that overall 83% (15 out of 18 in six datasets) of the crime 

participants are ranked perfectly by UNICORN, while the second-best algorithm 

HITS can rank only 44% (8 out of 18) of them perfectly. 

In fact, this measurement is the same as the average precision and recall values if 

we consider the top three ranked nodes are labeled as “positives” and the rest as 

“negatives”. Precision and recall are identical in this scenario because the number of 

positively labeled nodes (3) is the same as the number of nodes that are supposed to 

be found. Alternatively, we can compute the Receiver Operating Characteristics 

(ROC) curve for the results. ROC curves plot the false positive rate FP as the X-axis 

and true positive rate (TP) as the Y-axis while sweeping the classification threshold. 

A good algorithm should have high TP while FP is till low. The reason to use ROC 

curve is that it is not sensitive to arbitrary threshold while the quality of ranking can 

be mapped to the measure of the area below the curve. Figure 3.2(b) is the ROC 
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curve for the results from each algorithm on D1. The result is consistent with 3.2(a) 

as UNICORN performs much better (reaches 100% TP while FP is 0%) than the 

second best algorithm HITS by a decent margin. Neither Betweeness Centrality nor 

PageRank seem to be very useful for this problem. 

We also compare the error of different algorithms. To measure the error, we 

compute on average how many candidates that are not in the answer key are ranked 

higher than the non-perfectly ranked crime participants (or, to look at the problem 

another way, the average number of spots that a non-perfectly ranked crime 

participant is away from its ideal position). For example, there are three target nodes 

not ranked perfectly by UNICORN: Mafiya_takeover in D3 (ranked fourth), 

Mafiya_takeover in D4 (ranked second), and Mafiya_takeover in D5 (ranked third). 

For the case of D3 and D4, there is one innocent Mafiya group ranked higher than the 

target one. In the case of D5, there are two other innocent Mafiya groups ranked 

higher because the target one is ranked third. As a result the average error is 

(1+1+2)/3=1.3. This value denotes that these Mafiyas are on average 1.3 spots away 

from their ideal ranking. It is obvious that the lower the error the better. Figure 3.2 (c) 

demonstrates that the error of our system (1.3) is much better than the second-best 

HITS algorithm, in which each non-perfectly ranked target is 7.2 spots away from its 

ideal ranking. Both betweeness centrality and PageRank did far worse jobs in this 

task in both accuracy and error measurements. 
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Figure 3.2: Evaluation of UNICORN: (a) shows how many of the hidden crime 
organizers can be found by each method. (b) illustrates the ROC-curve for 
dataset D1. (c) shows on average how many innocent individuals are ranked 
higher than the target individuals  
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We contend that the primary reasons for UNICORN’s exceedingly high 

performance compared with the other algorithms are twofold: First, it has the 

capability to utilize information provided by the different links types while the other 

algorithms do not take the semantics of links into account. Second, for crime analyses, 

using a distance-based outlier method (i.e., finding nodes that are different from their 

neighbors) seems to be a better option compared with using centrality or importance. 

3.3 Comparing Different Dependency Models 

The next table compares the performance of several different dependency 

measures that can be used by UNICORN (note that for the contribution and MI 

measure, this experiment used only RE1, in which every path has the same 

probability of being chosen). The results are shown in Table3.3 and Figure 3.3. 

Table 3.3: Comparing different dependency measures for UNICORN 
 

Results 
Data 

To Be Found Contribution1  PMI1 PMI2 PMI3 MI1
Mafiya_gang1 2 1 1 4 1 
Mafiya_gang2 3 2 2 2 2 
Mafiya_takeover 1 4 3 1 3 

D1 

industry 1 1 1 1 1 
Mafiya_gang1 1 1 1 1 4 
Mafiya_gang2 2 2 2 2 2 
Mafiya_takeover 3 3 3 3 1 

D2 

industry 1 1 1 1 1 
Mafiya_gang1 1 1 1 1 1 
Mafiya_gang2 2 2 3 2 2 
Mafiya_takeover 4 3 2 3 3 

D3 

industry 1 1 1 1 1 
Mafiya_takeover 2 6 5 4 2 D4 
industry 1 1 2 1 1 
Mafiya_takeover 3 8 4 8 2 D5 
industry 1 3 1 3 1 
Mafiya_takeover 1 2 1 1 1 D6 
industry 1 1 1 1 1 

 



 

56

Figure 3.3: Comparing different dependency measures for UNICORN 
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Again, we chose the relation-only constraint with path length up to 4. The results 

demonstrate that all the dependency models can reach a fairly good accuracy. About 

70~80% of the crime participants received perfect rankings while the rankings for the 

rest are still very close to the top (about 1 to 3 spots away). The ROC curve shows 

that contribution1, PMI2 and MI1 perform perfectly on D1, while the PMI1 and PMI3 

are not too far away. All models perform significantly better than the second best 

algorithm HITS. MI is the best overall because of the smallest error (though not by a 

significant margin), which shows that using information from both positive and 

negative samples is, in this case, a more accurate measure.  

3.4 Comparing Different Path Lengths 

Table 3.4 and Figure 3.4 compare different path length constraints (k=1 to 5). 

Table 3.4: Comparing different path lengths for UNICORN 

Results 
Data 

To Be Found k=5 k=4 k=3 k=2 k=1 
Mafiya_gang1 4 2 1 1 24 
Mafiya_gang2 2 3 5 4 3 
Mafiya_takeover 1 1 3 3 15 

D1 

industry 1 1 1 10 11 
Mafiya_gang1 1 1 1 1 15 
Mafiya_gang2 2 2 2 2 32 
Mafiya_takeover 3 3 3 3 29 

D2 

industry 1 1 1 10 11 
Mafiya_gang1 1 1 1 1 5 
Mafiya_gang2 3 2 3 3 40 
Mafiya_takeover 2 4 4 4 7 

D3 

industry 1 1 1 11 11 
Mafiya_takeover 1 2 7 17 19 D4 
industry 1 1 2 10 11 
Mafiya_takeover 1 3 7 14 35 D5 
industry 1 1 2 11 11 
Mafiya_takeover 1 1 1 1 1 D6 
industry 1 1 1 10 10 
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Figure 3.4: Comparing different path lengths for UNICORN 
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The contribution1 model is chosen for this experiment. The results show that the 

path length correlates positively with the performance. For k=5, the results are close 

to perfect except for D1 where there is one Mafiya just one spot away from the ideal 

ranking. The results suggest that it is useful to consider information provided by 

nodes and links that are multiple steps away from the source node in our framework. 

Note that the improvement decreases gradually with increasing path length (33% 

from k=1 to k=2, but only 11% from k=4 to k=5). The deterioration of the 

improvement shows that the quality of information does not improve linearly with the 

increasing number of features, which implies a reasonable hypothesis that the farther 

away a node or link is from the source, the less impact it has on it. The results also 

suggest a more flexible incremental discovery framework that will be discussed in 

more detail in Chapter 6. 

3.5 Comparing Different Algorithms for Local Node Discovery 

Finally, we performed another experiment to evaluate the local node discovery 

problem described at the end of Chapter 2, where we try to identify nodes that are 

abnormally connected to a given source.  

In this experiment, we want to see if UNICORN can identify a crime participant 

given the other known one as the seed. Our experiment setup is as follows: Since we 

know that in a gang war there are two Mafiya groups involved, we can try to test if 

we can use one of them to find the other. Similarly, in the industry takeover event 

there are also two participants, one is a Mafiya node and the other is an industry node 

that is being taken over. Therefore, we can also test the system by checking if it can 
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use one to identify the other. In our experiment, we use a gang war participant as the 

source and ask the system to rank a set of Mafiyas that are abnormally connected to it. 

We then check whether the other party that is also involved in the gang war is ranked 

high by the system. We perform a similar test for industry takeover events where we 

check whether the Mafiya that is abnormally connected to the target industry is the 

one who is trying to take it over, and vice versa (i.e., whether the industry 

suspiciously connected to the Mafyia performing industry-takeover is the one that is 

being taken over).  

Table 3.5: Finding local abnormal nodes 

Results 

Data  To Be Found UNICORN WeightedNIPaths 
Pagerank
Prior 

HITS
Prior 

KStep-
Markov 

Mafiya_gang1 1 16 6 11 7 
Mafiya_gang2 5 19 8 9 3 
Mafiya_takeover 1 1 1 1 1 

D1 

industry 1 1 1 1 1 
Mafiya_gang1 1 1 1 1 1 
Mafiya_gang2 1 1 1 1 1 
Mafiya_takeover 1 1 1 1 1 

D2 

industry 1 1 1 1 1 
Mafiya_gang1 1 1 1 1 1 
Mafiya_gang2 1 1 1 1 1 
Mafiya_takeover 1 1 1 1 1 

D3 

industry 1 1 1 1 1 
Mafiya_takeover 2 9 3 6 4 D4 
industry 1 1 1 1 1 
Mafiya_takeover 2 1 2 2 2 D5 
industry 1 1 1 1 1 
Mafiya_takeover 1 1 1 1 1 D6 
industry 1 1 1 1 1 
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This time we compare UNICORN with the following algorithms: 

PageRankWithPrior, HITSWithPrior, WeightedNIPaths and KStepMarkov (S. White 

and P. Smyth 2003). The first two algorithms rank nodes according to their PageRank 

and HITS value specified for the source node. WeightedNIPath ranks nodes based on 

the number and length of disjoint paths that lead to a source node (the more shorter 

paths the better). KStepMarkov ranks nodes based on their stationary probability after 

performing a k-step random walk from the source (the nodes with higher probability 

will be ranked higher). 

The results in table 3.5 demonstrate that for most of the datasets except the 

hardest ones (i.e., datasets with low observability and high noise), all algorithms can 

successfully identify the crime participants. One can see that this task seems to be 

much easier than the previous one, since all algorithms perform significantly better 

than before. This makes sense, because by revealing a high quality source node we 

provide a seed suspect, which has a much higher chance to have strong connections 

to other suspects than an average node. Therefore, finding important or strong 

connections to a seed suspect is likely to turn up other suspects (“guilt-by-

association”), which is a phenomenon also exploited by some group detection 

algorithms (J. Adibi, H. Chalupsky et al. 2004). The result reveals an interesting 

phenomenon where most suspects have both important and abnormal connection with 

other suspects, since they can be detected with both types of mechanisms. However, 

for the two hardest datasets with low observability and high noise, our algorithm 

outperforms the others by a decent margin. For the first dataset D1 in the table, 
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UNICORN ranked the two gang war Mafiyas 1st and 5th while the second best 

algorithm (KStep-Markov) ranked them 3rd and 7th. The results shown in Table 3.5 do 

reflect the difficulty of the data. The algorithms perform the worst for D1 and D4, 

which are the two hardest datasets because of low observability and high noise level. 

In general our algorithm outperforms others by a larger margin for harder datasets, 

which implies that using the information provided by different types of relations can 

be particularly useful for imperfect dataset. Figure 3.5 demonstrates that UNICORN 

again performs the best for this task based on all three measures.  
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Figure 3.5: Finding local abnormal nodes 
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Chapter 4  

 
Explaining Abnormal Instances 

 
In this chapter we describe an explanation-based discovery framework. The 

basic idea is to augment the discovery system with the capability to generate 

explanations for its results. To that end, we have designed an explanation mechanism 

that can summarize the uniqueness of abnormal nodes in a human-understandable 

form such as natural language. We also describe a human study which demonstrates 

that using our explanations, users can significantly improve their accuracy and 

efficiency when trying to identify hidden crime organizers from data. 

4.1 Motivation 

Explanation plays an important role in many learning systems (J. Pitt 1988; R. 

Schank and A. Kass 1990; J.S. Dhaliwal and I. Benbasat 1996). Researcher suggests 

that users would not accept recommendations that emerge from reasoning that they 

do not understand (S.R. Haynes 2001). We argue that the same argument applies to 

an anomaly discovery process like ours. For our task, an automatically generated 

explanation can help verify the discovery system in the sense that the abnormality of 

nodes are validated by displaying in a human-understand form how they are different 

from others. Moreover, it also provides users certain information to guide future 

investigations when necessary. In this sense, the explanation system plays an 
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important role in the third stage described the discovery process of Figure 1.1 by 

producing helpful information for further reasoning.  

With respect to the application in a homeland security or fraud detection domain, 

we believe that before marking any individual as an abnormal or suspicious candidate, 

it is the obligation for a tool or analyst to provide proper justification why such a 

decision is made to facilitate further assessment of the results. This is particularly 

important for cases where false positives can cause serious damage to innocent 

individuals. Automatically generated explanations significantly improve the usability 

of an information awareness system as well as narrow the gap between an AI tool and 

its users. 

The other reason to develop an automatic explanation generation system is that a 

KDD system like ours usually deals with very large numbers of individuals and 

relationships. Given this large data set, it is by no means a trivial job for analysts to 

manually examine the inputs and outputs in order to come up with explanations such 

as the ones we are going to provide. In our own experience with the High-Energy 

Physics Theory (HEP-Th) dataset from the 2003 KDD Cup (S. Lin and H. Chalupsky 

2003b), it can take on the order of 30 minutes for a person who is already familiar 

with the data and features to produce one explanation for one node. Such empirical 

evidence further strengthens our belief that it is necessary to equip our discovery 

system with a mechanism that can automatically produce human-understandable 

explanations.  
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4.2 Explaining the Uniqueness of Nodes 

This section describes a novel mechanism to generate explanations for the 

abnormal nodes discovered by our system. The underlying concept of our mechanism 

is that the abnormality of a node can be described by showing how it can be 

distinguished from the other nodes. The process of generating explanations can be 

viewed as a kind of summarization that first identifies a small number of key features 

that cause a node to be unique, and then describes those and their values in a human 

understandable form.  

In general, a semantic profile can contain hundreds or even thousands of path 

types as features. Our own experience tells us that such an overwhelming amount of 

information is too much for humans to process. Therefore the first step of explanation 

generation is to select a subset of features (i.e., path types) that contribute the most to 

its uniqueness. That is, our system has to determine a small subset of features whose 

feature values in combination are sufficient to distinguish the abnormal node from the 

others. In addition, the system has to characterize qualitatively how those selected 

features in combination can distinguish the abnormal node from the others. Finally, 

the system has to describe the above process in a human understandable form. In the 

following, we divide the explanation process into two stages: the first stage focuses 

on a feature selection and characterization, while the second is a natural language 

generation stage (see the bottom portion of Figure 2.1). 
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4.2.1 Feature Selection and Characterization 

The problem of feature selection for anomaly explanation is different from the 

well-studied feature selection problems for clustering. In general, the goal of feature 

selection is to remove redundant or irrelevant features. However, the definition of 

redundancy and irrelevancy differs between outlier detection and clustering. Features 

that are redundant or irrelevant in clustering could carry relevant and important 

information for anomaly detection. For example, principle component analysis (I. 

Jolliffe 1986) is a dimension reduction technique that summarizes the most important 

features for clustering. It throws away the dimensions whose variances are relatively 

low. Nevertheless, a low variance dimension could carry important information for 

outlier detection in the sense that the very few instances that are far from the mean in 

this dimension could indicate abnormality. Consider the case where the majority of 

authors in a dataset publish one paper per year, with the exception of one author 

publishes 20 papers per year. In this example the variance in the dimension of “paper 

publication” could be relatively low, but it is an important dimension to indicate that 

this particular person is abnormal.  

To select a small set of dominant features, we propose to treat explanation as a 

process of classification, where describing the differences between instances is 

accomplished by finding a method to classify different types of points into different 

classes and then characterizing a classification procedure for these classes into a 

human understandable form. This idea is implemented by assigning a special class 

label to the node to be explained, and then applying a human-understandable 
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classifier such as a decision tree to separate the outlier class from the rest. The 

resulting classification path in the decision tree can then be rendered into an 

explanation. Note that there is one major difference between our system and a typical 

classification tool. The goal of a standard classification problem is to develop a 

system that can assign the correct label to the new data, while our explanation system 

cares more about the classification procedure. Therefore classifiers whose 

classification process is either too complex or opaque (such as, for example, support 

vector machines or neural networks) are not a good fit for generating human 

understandable explanations. For this reason, we chose to use a decision tree for our 

explanation system.  

Having modeled the explanation problem as a classification problem, the next 

question to ask is how many classes we need to explain an outlier and how to define 

those classes. We propose two different strategies: 2-class and 3-class explanations. 

In 2-class explanation the system simply tries to distinguish the abnormal or 

suspicious points from the rest of the world. To do so we need to divide points into 

two groups: the outlier class and the normal class and apply a classifier to separate 

them. In the 3-class explanation strategy, we introduce an additional class besides the 

outlier and abnormal class called the reference class, aiming at producing a more 

meaningful explanation. This is motivated by the observation that while trying to 

explain something special, one usually prefers using an extra object as reference. For 

example, the precise interpretation of this explanation “the researcher is abnormal 

because he is less productive in paper publications” should be “the researcher is 
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abnormal because he is less productive compared with other researchers in the same 

area”, since it is usually not that meaningful to compare the productivity of a 

researcher to a journalist, or to the researchers in different fields. In this sense we 

believe adding an extra reference class (e.g. “other researchers in the same area”) 

might provide a different and sometimes more meaningful view for the uniqueness of 

a node. 

Figure 4.1: 3-class labeling. The “x” point is the outlier to be explained. It 
together with the triangle point belongs to the outlier class, the white points in 
the middle belong to the reference class and the rest belong to the global class. 

This example conveys a key insight for distance-based outliers: the outlier (i.e., 

the researcher) is abnormal because it is sufficiently different from a set of people 

that are to some extent similar to it (i.e., other researchers in the same field). As a 

result we propose to divide the data points into three classes: the outlier class, the 

reference class and the normal class. The outlier class contains the outlier point (the 

“x” in Figure 4.1) and a small number of points that are extremely close to it (e.g., the 

one indicated by a triangle). The reference class contains points that are close enough 

to the outlier but still possess sufficient distinction from the outlier point to allow it to 
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be abnormal, such as the white diamond points in Figure 4.1. To label the reference 

points, we first identify the closest gap between the outlier and its neighbors 

(indicated by the arrow), then label the point (or group of close points) on the other 

end of this gap as the reference points. The rest of the points are assigned to the 

normal class. The normal class (e.g., all researchers in the world) is still required in 

order to provide the global context for the explanation, in the sense that a convincing 

explanation should not only contain how the outlier class differs from the reference 

class, but also the position of the reference class in the overall context. Note that it is 

possible to have multiple layers of reference classes (i.e., the reference of the 

reference class). The tradeoff is the increasing complexity of explanations. 

Once nodes are labeled, we must then describe how they differ in a human-

understandable way. To accomplish this, we use a decision tree classifier to generate 

rules that separate these classes, because decision trees possess the important 

property of generating easily understandable classification rules (S. Russell and P. 

Norvig 2003). We designed two different strategies to guide the search in a decision 

tree. The first is to use the standard information gain heuristic for feature selection, a 

technique commonly used in decision tree learning. This produces a set of decision 

rules describing the uniqueness of a node which can then be rendered into 

explanations such as the following: 

uid667 is the only Mafiya that has 

   larger than 20.8% contribution for [hasMember, ceo]  

  smaller than 11.1% contribution for [hasMember, sender]  
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This example generated from the organized crime dataset tells us that uid667 is the 

only Mafiya that has more than 20.8% chance to be the starting node s of a path of 

type “s has some member who is the CEO of a company” and has smaller than 11.1% 

chance to be the starting node s of a path of type “s has some member who is the 

sender of a communication event”.  

The second strategy is to give higher priority to decision boundary at zero, 

which we call zero/non-zero separation. For the same example node, the system can 

now produce this explanation: 

uid667 is the only Mafiya that has 

 non-zero [hasMember, ordered_murder]  

 zero [operates_in_region]  

 zero [hasMember, victim]  

The above decision rules tell us that uid667 is the only Mafiya that has some 

member who ordered a murder, does not operate in any region, and does not have a 

member who is a victim in some event.  

These two examples illustrate the pros and cons of both strategies. For the 

regular decision tree strategy, it is possible to precisely and concisely separate the 

outlier from the other nodes with a shallower tree. However, to make sense out of the 

explanation, users have to think in terms of relative probability or contributions (e.g. 

larger than 20%), which is somewhat less natural for users to understand. The process 

becomes even harder when the users must perform reasoning in terms of MI or PMI 

values such as “has higher than 12.4 mutual information value …”. Therefore we 
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believe that the contribution measure is the most favorable model for explanation 

purposes, as it is easier to digest and still generates high quality results. For the 

zero/non-zero separation strategy, the system provides the user a simplified 

explanation without having to resort to an exact feature value. We believe that it is 

more understandable in view of the fact that the users only have to reason about path 

type features that involve or do not involve the node. The drawback of this strategy is 

that it conveys less information, is less effective in separating points and generally 

requires more rules to distinguish abnormal nodes from the rest.  

It is reasonable to infer that the first strategy is more suited for dense datasets, 

which require more detailed information to make the distinction and where the 

benefit of fewer rules outweighs the increase of complexity caused by having to 

reasoning with probabilities. Conversely, the second strategy is more suitable for 

sparse datasets in which the zero/non-zero separation is sufficient and can provide a 

more intuitive explanation. The experiments described in Chapter 5 will shed further 

light on these trade-offs. 

An important feature of our explanation framework is that it is completely node 

independent. Given a set of semantic profiles, it can explain abnormal points as well 

as normal points. To explain the not-so-abnormal points generally requires more 

decision rules, resulting in longer explanations. In fact, the minimum description 

length criterion can be utilized as a novel outlier ranking criterion, which ranks the 

abnormality of points based on their explanation description length. We will elaborate 

upon idea in Chapter 6. 
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4.2.2 Generating Natural Language Explanations for Suspicious Nodes 

The previous section describes how to select a subset of features and their 

decision boundaries. The next step is to translate those results into a natural language 

such as English. Note that up to the feature selection stage, the process is completely 

unsupervised and domain independent, which means we need neither domain 

knowledge nor training examples to create certain level or explanations, such as the 

uid667 examples illustrated in the previous section. However, to translate our results 

into natural language, it is necessary to have certain language-dependent domain 

knowledge (e.g. the link “ordeContractMurder” means “somebody ordered a 

contract murder” in English), or some training examples that system can learn from.  

To produce natural language outputs, we focus on two issues. The first is to 

translate a path or path type in the semantic graph into its corresponding English. For 

example, we want to translate the following path 

TQPS totravelsoffatheremails ⎯⎯⎯ →⎯⎯⎯⎯ →⎯⎯⎯ →⎯ __ ??  into “S sends an email to somebody 

whose child travels to T”. We designed an n-gram based supervised learning system 

together with a small set of rules to translate paths into English sentences. Since this 

is not the major focus and contribution for this thesis, we point the interested reader 

to the technical details contained in (S. Lin 2006). Therein, experimentation shows 

that our system can translate 82% of the paths accurately and fluently (S. Lin 2006). 

Once we can produce the corresponding natural language description for each 

feature, the second step is to combine all the information to create meaningful 

explanations. We do this via four different natural language generation templates for 



 

74

2-class and 3-class explanations and for regular and zero/non-zero decision 

boundaries. Details of the templates are given in Appendix II.  

Here are some example explanations for abnormal nodes generated by our 

system from three different types of datasets (organized crime, movie and 

bibliography). More results will be shown in Chapter 5. 

 The first example is the most simplified one and can easily be understood. It 

utilizes 2-class explanation with zero/non-zero separation to explain what makes 

Salvador Dali different from the others actors. It basically says Dali is an interesting 

actor because, unlike other actors, he is also a visual director, a writer, and doesn’t 

have any sibling working in the movie industry. 

2-class explanation, zero/non-zero separation is on, from the movie dataset 

Salvador Dali is the only 1 actor in the dataset (which contains a total of 10917 candidates) that 

 is the visual director of some movie , and 

 is the writer of some movie, and 

 never is the sibling of some movie person 
3-class explanation, zero/non-zero separation is on, from the organized crime dataset 

uid3491 is one of the only 10 Mafiyas in the dataset (which contains a total of 42 candidates) that 

 –never has some member receiving some money from somebody, and 

 –never hired some killer, and 

 –never has some member who is a perpetrator 

However, uid3491 is different from the other 9 Mafiyas because it 

 –has some middleman participating in some meeting, while others don’t 

 –has a member who ordered a contract murder, while others don’t 

2-class explanation, zero/non-zero separation is off, from the bibliography dataset 

h_lu is the only 1 author in the dataset (which contains a total of 7152 candidates) that 

  –has higher than 1.71% chance to be the starting node S of the paths representing 

   “S wrote paper with somebody who wrote paper with another person”  
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The second explanation uses 3-class explanation, which first classifies the node 

into a category that contains small amount similar nodes, and then pinpoints the 

difference between the node and the others in this category. In the last example, the 

zero/non-zero separation is set to off—hence the system uses the contribution values 

to separate nodes.  

4.3 Explanation Algorithm 

This section describes some implementation details and the pseudo code 

(UNICORN_EXP) for the explanation system.  

function UNICORN_EXP (Sp[][], n, 2_class, zero_sep, exp_num)  

1. array Lab[] := assign_label (Sp, n, 2_class); 

2.  if (2_class) 

3.   rules:=feature_sel (Sp, Lab, n, zero_sep,“outliers”,”normal”, exp_num); 

4.  else{ 

5.  rules:= feature_sel(Sp_sub, Lab, n, zero_sep, “outliers”, “reference”, exp_num); 

6.    forall k s.t. (Lab[k]=”outlier” or Lab[k]=”reference”)  

7.       Lab[k]:=”outlier_reference”;  

8.  rules:+= feature_sel (Sp_sub, Lab, n, zero_sep,”outlier_reference”, “normal”,  

            exp_num );  

9. return NLG(rules)  

UNICORN_EXP takes five inputs as follows: 

1. Sp points to the semantic profiles of all the nodes in the network. For example, 

Sp[k] returns the semantic profile of node k.  

2. n points to the source node to be explained.  

3. The Boolean variable 2_class is true if two-class explanations are used and 

false for three-class explanations.  
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4. The Boolean variable zero_sep is true if applying the zero/non-zero separation 

heuristic.  

5. Integer exp_num constraints the maximum amount of features the explanation 

system can use to generate the explanations.  

The function assign_label returns the class label of each point (see below for 

details). The feature_sel function returns a set of rules that separate one given class 

from another (see below for details). Note that in the three-class explanation, we 

execute feature_sel twice, the first time to isolate the “outlier” class from the 

“reference” class and the second time to separate the “outlier and reference” class 

from the “normal” class. Finally the NLG function translates the rules into natural 

language. 

Function assign_label takes a semantic profile, a point to be explained, and a 

Boolean variable (2_class) as inputs and outputs an array which represents the class 

labels of every node. For 2-class explanation, the system simply marks the outlier and 

its close neighbors as “outlier” and the rest as “normal”. This near(point1, point2) 

function returns true if the distance between point1 and point 2 is below a given 

threshold. For 3-class explanation, it first identifies the gap point through the 

get_gap_point function. The gap point (e.g. the leftmost white diamond point in Figure 

4.1) represents the boundary between the outlier class and reference class. All the 

points whose distance to the outlier point is smaller than that of the gap point are 

marked as outliers. Those that are very close to the gap point are marked as the 

“reference” class and the rest are marked as the “normal” class.  
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The function feature_sel basically uses a decision tree generator to produce the 

decision rules to separate the classes. If zero/non-zero separation is used, then it 

modifies all the features to binary ones before executing the decision tree. The tree 

returns a set of rules (i.e., a decision path in the tree) to separate two given class s1 

and s2. sub_path function truncates the decision paths if it is longer than a given 

number exp_num. 

 

Function assign_label(Sp, n, 2_class)  

1. array Lab[]; 

2. if (2_clas )  

3.   for k:= 0 to Sp.size-1 

4.      if (near(Sp[k],Sp[n])) 

5.       Lab[k]:=”outlier”; 

6.     else 

7.       Lab[k]:=”normal”; 

8. else 

9.    g=get_gap_point(Sp,n);  

10.    for k:= 0 to Sp.size-1 

11.      if (near(Sp[k], Sp[g])) 

12.        Lab[k]:=”reference”; 

13.      else if (distance(Sp[k],Sp[g])<distance(Sp[n],Sp[g])) 

14.        Lab[k]:=”outlier”; 

15.      else Lab[k]:=”normal”   

16. return Lab; 
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4.4 Evaluating the Explanation System 

In this section, we describe an evaluation for the usefulness of our explanation 

system based on the synthetic organized crime dataset. The goal is twofold: first we 

want to know whether the explanations generated by our system can assist human 

subjects to make more accurate and confident decisions in terms of identifying the 

hidden crime organizers. Second, we want to know whether the explanations can 

reduce the time needed to make these identifications. To answer these questions we 

designed three tasks. In Task 1 we provide the subjects the original data as a file 

(containing 5800 nodes and 26000 links, sorted by nodes) with English translations 

for each relation as the control set. We then ask them to select three Mafiyas from ten 

given candidates that they believe are most likely to have participated in the gang 

wars (two) and industry takeover (one) by any means. In Tasks 2 and 3, we provide 

2-class and 3-class zero/non-zero explanations for the same ten candidates and ask 

function get_gap_point (Sp,n)  

1. array L[]= sort_distance (Sp,n); 

2. for m:= 1 to k //k is the maximum number of neighbors allowed for an outlier 

3. array gap[m-1]:=distance(Sp[n],Sp[L[m]])-distance(Sp[n],Sp[L[m-1]]); 

4. return argmax gap(x) // it returns the number x that maximizes gap(x) 

function feature_sel (Sp, Lab, n, zero_sep, s1 , s2, exp_num)  

1. if (zer0_sep)  

2.  Sp:=to_binary(Sp); //modify the feature values into binary values 

3. path DT:= decision_tree (Sp, Lab, s1, s2)  

4. return sub_path(DT, exp_num)  
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the subjects to perform the same task based only on the provided explanations. We 

record the time (we limit the maximum time allowed to 60 minutes) and confidence 

(from 0 to 4, 0 means no confidence at all) for each task. To avoid interference and 

bias among different tasks, we not only modified the names of the candidates 

between tasks, but also told the users that they are from different datasets. We tested 

on 10 human subjects. The results show that while working on only the original 

network, no subject can identify all three candidates correctly, and only two subjects 

find at least one target Mafiyas. With only 2-class explanations, 80% of the subjects 

are able to identify all three candidates. With only 3-class explanations, 20% of the 

subjects can identify all three candidates, while 60% of the subjects found two out of 

the three. Table 4.1 shows the subjects’ performance for each individual task. 

Table 4.1: Evaluation results for explanation system. In Task 1 the subjects are 
given the original dataset. In Task 2 and 3 the subjects are given the 2-class and 
3-class explanations, respectively. The numbers in the first three columns stand 
for the percentage of subjects who successfully identified the crime participants 
for each task. 

In Task 1, for each Mafiya group sought only one human subject did 

successfully identify it within the time limit. 6 of the 10 subjects gave up after 

spending less than 60 minutes on it for the reason that they believed the data to be too 

 

Mafiya_takeover Mafiya_gang1 Mafiya_gang2 Avg confidence 

Avg 

time 

Task 1 10% 10% 10% 0.3 60min 

Task 2 90% 90% 90% 2.2 22.5min 

Task 3 70% 60% 60% 1.95 23min 
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complicated for them to analyze. This is understandable given the thousands of nodes 

and links where subjects have to keep track of 814 different path types (up to length 4) 

like the system does. Our human subjects’ feedbacks indicate that reasoning for 

indirectly connected links and nodes is very hard for humans, in particular compared 

with the machine which only took seconds to generate the semantic profiles for the 

Mafiyas and produce the explanations. Note that the times recorded here are the 

average time for the subjects who reported at least one correct candidate. The 

confidence level for Task 1 is close to 0 (0.3). The results demonstrate that the 

original network with baseline explanation (i.e., simply translating every single 

relation into English) is very difficult for humans to analyze within a limited amount 

of time. The results in Task 2 show that with the 2-class explanation, the human 

subjects improve dramatically (90%) in identifying the suspicious candidates with 

much less time (22.5 min) spent and much higher confidence (2.2). For 3-class 

explanations, the accuracy is a little bit lower (60%-70%), but the confidence (1.95) 

and time required (23min) are similar to Task 2. According to the feedback from 

subjects, most of them thought the 2-class explanation strategy provided sufficient 

amount of information for them to perform the analysis while the information 

provided by 3-class explanations seemed to be a bit overwhelming. We think this is 

the major reason why they generally performed not as well for Task 3 compared with 

Task 2. Appendix III lists the 2-class explanations and 3-class explanations generated 

by our system for this study. 



 

81

The results of this human study demonstrate that with the explanations generated 

by our system, users have a significantly higher chance to identify the truly 

suspicious instances within less amount of time. 
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Chapter 5  

 
Applying UNICORN to Natural Datasets 

 
 
In this section we demonstrate how UNICORN can find abnormal nodes in 

several real-world natural datasets. Our goal is to demonstrate how in general the 

complete system works as well as to show that the system is domain independent and 

can be applied to find abnormal (and sometimes interesting) instances in arbitrary 

semantic graphs. We will also demonstrate that different explanation strategies are 

suitable for different types of datasets. For each dataset, we will list a set of abnormal 

instances our system finds and their explanations. To make the explanations more 

understandable, we chose to use at most three features in explanations based on 

contribution1 analysis, and limit the maximum path length to 4. 

The first network is generated from the KDD Movie dataset designed by Gio 

Wiederhold and available from the UCI Machine Learning Repository. The second 

network is generated from the HEP-Th (High Energy Physics Theory) bibliography 

dataset used in the 2003 KDD Cup. We provide most examples from the movie 

dataset because it is a domain that is familiar to most people.. 

5.1 KDD Movie Network 

From the KDD Movie dataset, we extracted 37808 nodes representing movies 

(11540), directors (3233), producers (2867), actors (18777), and some other movie-
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related persons (5772). There are people who play multiple roles in this dataset (e.g. 

both director and actor). We also extracted about 150,000 inter-node relations. We 

must note that because the data was created manually, errors or missing values do 

exist and they are inevitably carried into our network. There are 42 different relation 

types in this dataset (21 basic and 21 inverse relations), which can be divided into 

three groups: relations between people (e.g. spouse, mentor, worked with), relations 

between movies (e.g. remake), and relations between a person and a movie (e.g. 

director, actor). Below are the descriptions of the 21 basic link types (the numbers at 

the end of each line represent their occurrence statistics).  

actor (<person>, <movie>): <person> acted in <movie>(46529) 
affected_by (<person1>,<person2>): <person1> was affected by <person2>(56) 
authors (<person>, <movie>): <person> wrote a book adapted into the <movie>(1829) 
c (<person>, <movie>): <person> is the cinematographer of <movie>(986) 
child_of (<person1>,<person2>): <person1> is the child of <person2>(208) 
d (<person>, <movie>): <person> directed the <movie>(11541) 
e (<person>, <movie>): <person> is the editor of the <movie>(51) 
g (<person>, <movie>): <person> is the choreographer of the <movie>(45) 
lived_with (<person1>,<person2>): <person1> lived with <person2>(393) 
lovername (<person1>,<person2>): <person1> is the lover of <person2>(16) 
m (<person>, <movie>): <person> composed music for <movie>(1311) 
member_of (<person1>,<person2>): <person1> is the member of <person2>(58) 
mentor_of (<person1>,<person2>): <person1> is the mentor of <person2>(32) 
p (<person>, <movie>): <person> produced the <movie>(5806) 
parent_of (<person1>,<person2>): <person1> is the parent of <person2>(97) 
remake (<movie1>, <movie2>): <movie1> was remade from <movie2>(1304) 
sibling_of (<person1>,<person2>): <person1> is a sibling of <person2>(306) 
spousename (<person1>,<person2>): <person1> is the spouse of the <person2>(1372) 
v (<person>, <movie>): <person> is the visual director of the <movie>(254) 
w (<person>, <movie>): <person> wrote the script for <movie>(3491) 
workedwith (<person1>,<person2>): <person2> worked with <person2>(1112) 
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Figure 5.1: Degree histogram for movies and persons in KDDMovie network 

Figure 5.1 displays the degree-histogram of the people and movies. The x-axis 

represents the degree of the nodes and the y-axis represents the number of nodes. One 

can see that the majority of movies and persons are of low degree values, but there 

are still a few of that have many connections with others. The person degree roughly 

satisfies the Zipf’s law. The movie of the highest degree is Around the World in 80 

Days. The person of the highest degree is Hitchcock.  

5.2 Explaining Why Hitchcock is Abnormal 

In our experiment, we chose the relation-only constraint and limit the maximum 

path length to four. Table 5.1 displays four different explanations for uniqueness of 
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Hitchcock, which our system believes to be the person with the most abnormal 

semantic profiles in this dataset based on Ramaswamy’s distance-based outlier 

algorithm. This makes sense, because the dataset creator described himself as a fan of 

Hitchcock and the dataset has a significant Hitchcock bias, which makes him very 

different from all other nodes.  

Table 5.1: Four types of explanations for Hitchcock in the KDD Movie network 

2-class explanation, zero/non-zero separation is on  
Hitchcock is the only 1 actor in the dataset (which contains a total of 10917 candidates) that 

  is the mentor of some movie person, and 

  is affected by some movie person 

2-class explanation, zero/non-zero separation is off  
Hitchcock is the only 1 actor in the dataset (which contains a total of 10917 candidates) that 

 has larger than 4.148% chance to be the starting node S of paths of type “S directed some 

movie” 

3-class explanation, zero/non-zero separation is on  
Hitchcock is one of the only 2 actors in the dataset (which contains a total of 10917 candidates) that 

    is affected by somebody who wrote a movie that has some producer  

Moreover, Hitchcock is different from the other 1 actor because it 

   Acted in a remade movie that has some director, while others didn’t 

3-class explanation, zero/non-zero separation is off 
Hitchcock is one of the only 2 actors in the dataset (which contains a total of 10917 candidates) that 

   has larger than 43.243% chance to be the starting node S of paths of type  

 “S is affected by some actor”  

Moreover, Hitchcock is different from the other 1 node(s) because it 

   has much lower (20% v.s 80%) chance to be the starting node S of paths of type  

  “S is affected by somebody who wrote a movie that has some producer” 

In the first explanation our system extracts two features (i.e., the non-zero 

contribution of two path types) to separate him from the rest of the world. It basically 
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says that the reason Hitchcock is abnormal is that he is not only the mentor of 

somebody but also affected by others in the dataset. This might be interesting to some 

movie buffs to further investigate who those persons are and why the others in the 

dataset do not have this characteristic. In this dataset both “mentor_of” and 

“affected_by” relations are not very common, and most of them are related to 

Hitchcock, which makes him abnormal. The next explanation conveys key 

information about Hitchcock’s uniqueness by showing that he directed the most 

movies. In the third explanation, the system first isolates Hitchcock together with a 

set of (in this case, one) similar actors and differentiates them from the rest of the 

world, and then uses another classifier to explain the difference between Hitchcock 

and his closest neighbor (remember that the system applies the classifier twice for 3-

class explanation). The last explanation uses a similar strategy as the third, but this 

time it does not limit itself to zero/non-zero decisions. It conveys the idea that 

“among the actors that are affected by some other actors frequently, Hitchcock has a 

lower chance to be affected by a person who is both a writer and a producer”, which 

makes him unique. All these explanations seem to be meaningful and to some extent 

interesting in our opinion, which implies three things: First, using path types as 

features seems to be a good choice for explanation purposes, since the linear 

combination of relations can be translated into meaningful English, and facilitates the 

generation of easily understandable explanations. Second, using the contribution 

dependence measure (or its simplified zero/non-zero version) can produce intuitive 

explanations. Third, trying to explain the uniqueness of a node seems to be a good 
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strategy to find out potentially interesting information about it. Note that although the 

four explanations are different, they are to some extent correlated (except the second 

one) in the sense that some similar features (i.e., those related to “mentor_of” and 

“affected_by”) are selected to generate explanations.  

5.3 Finding and Explaining Abnormal Movies, Directors, and Actors 

Tables 5.2 to 5.4 present some examples of abnormal movies, directors, and 

actors generated from the KDD Movie dataset. In these examples we use the 

explanation mechanism itself to determine who is abnormal. To do that, UNICORN 

first generates the semantic profile for each node, and then applies the explanation 

mechanism to explain them. Based on its own explanation, we can assign each node 

into one of two groups, the abnormal group and the not-so-abnormal group. A node 

belongs to the abnormal group if UNICORN can explain its uniqueness by three or 

fewer features using 2-class explanation while zero/non-zero separation is on; 

otherwise, it was assigned to the not-so-abnormal group. We then manually picked 

some nodes from the abnormal group which we believe to be better known by people 

for display. It can be easily seen that the zero/non-zero criteria generally produces 

explanations that are simpler and easier to understand at the expense of skipping 

some detail information. Note that the indented parts of the explanations are the 

translations of path types generated by our path-to-sentence generator. For example, 

in the first explanation of Table 5.2, the sentence “has a composer who is also an 

actor” comes from the path [has_composer, acted_in].  
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Table 5.2: Examples of abnormal movies from the KDD Movie dataset 

2-class explanation, zero/non-zero separation is on  
“Snow White and the Seven Dwarfs” is the only 1 movie in the dataset (which contains a total of 

9097 candidates) that 

 has a composer who is also an actor, and 

 is remade into some movie adapted from a book, and 

 is remade into some movie that has a composer 

2-class explanation, zero/non-zero separation is off  
“Phantom of The Paradise(1974)” is the only 1 movie in the dataset (which contains a total of 

9097 candidates) that 

 has larger than 5.31% chance to be the starting node S of paths of type “S has been 

remade from a movie that has some visual director“ 

3-class explanation, zero/non-zero separation is on  
“Superman” is one of the only 24 movies in the dataset (which contains a total of 9097 candidates) that 

 has a composer who worked with some movie person, and 

 never has a writer, and 

 has some actor whose spouse also works in the movie industry 

Moreover, “Superman” is different from the other 23 movies because it 

 has a visual director who is also a composer, while others didn't 

3-class explanation, zero/non-zero separation is off 
“Romeo and Juliet” is one of the only 4 movies in the dataset (which contains a total of 9097 

candidates) that 

 has larger than 1.974% chance to be the starting node S of paths of type “S is remade 

into some movie that has some cinematographer”  

Moreover, “Romeo and Juliet” is different from the other 3 node(s) because it 

has much higher (66.667% v.s 0%) chance to be the starting node S of paths of type “S is 

remade into some movie whose producer is also an editor”  
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Remember that most of the movie data in this dataset was collected manually 

and is to some extent biased by the interests of the dataset author. Therefore, the data 

is somewhat skewed and also has missing values for certain movies. For example, in 

the third explanation of Table 5.2 it says the movie Superman “never has a writer”, 

while the real-world interpretation is that the person who wrote the script for 

Superman is not recorded in the dataset. This example also demonstrates that 

UNICORN can potentially be applied as a data cleaning tool. 

Table 5.3 lists some abnormal directors. In the first explanation it says Woody 

Allen never acted in some movie that has producer. This is again due to the producer 

information for the movies he acted not being recorded. The second explanation tells 

us that what makes Stephen King unique is that he has the highest chance to be a 

director who wrote a book adapted for a movie, which is consistent with the general 

impression that King is better known as an author than as a director (therefore he is 

abnormal as a director). The last explanation is also interesting. It tells us that among 

the directors that mentored others more frequently, Yamamoto is different from them, 

because he also affected people who already have some other mentors.  

Table 5.4 explains some abnormal actors UNICORN found, and shows some 

interesting facts about these people. For example, Elton John’s co-composer has 

authored some book that was adapted for some movie.  



 

90

 

Table 5.3: Examples of abnormal directors from the KDD Movie dataset 

2-class explanation, zero/non-zero separation is on  

Woody Allen is the only 1 director in the dataset (which contains a total of 3233 candidates) that 

acted in some movie that was remade into some other movie, and 

never acted in some movie that has a producer 

2-class explanation, zero/non-zero separation is off  

Stephen King is the only 1 director in the dataset (which contains a total of 3233 candidates) that 

has larger than 36.508% chance to be the starting node S of paths of type “S wrote some 

book adapted for a movie”  

3-class explanation, zero/non-zero separation is on  

George Lucas is one of the only 61 directors in the dataset (which contains a total of 3233 

candidates) that 

 directed some movie that has some composer, and  

 never directed some movie adapted from some book, and 

 directed some movie that was remade into some movie 

Moreover George Lucas is different from the other 60 directors because it 

 is the writer of some movie that has some visual director, while others aren't 

3-class explanation, zero/non-zero separation is off 

 Yamamoto is one of the only 8 directors in the dataset (which contains a total of 3233 candidates)that 

 has larger than 2.419% chance to be the starting node S of paths of type “S is the mentor of 

some director”  

 Moreover, Yamamoto is different from the other 7 node(s) because it 

 has much higher (50% v.s 0%) chance to be the starting node S of paths of type “S affects 

somebody who is mentored by some other person”  

 



 

91

 

Table 5.4: Examples of abnormal actors from the KDD Movie dataset 

2-class explanation, zero/non-zero separation is on  

Antonio Banderas is the only 1 actor in the dataset (which contains a total of 10917 candidates) 

that 

 lived with some movie person who is the child of some movie person, and 

 lived with some movie person whose spouse is also a movie person, and  

 is the spouse of some actor  

2-class explanation, zero/non-zero separation is off  

Elton John is the only 1 actor in the dataset (which contains a total of 10917 candidates) that 

 has 100% chance to be the starting node S of paths with path type “S is the composer for 

some movie which has another composer who wrote a book adapted for a movie” 

3-class explanation, zero/non-zero separation is on  

 Fassbinder is one of the only 54 actors in the dataset (which contains a total of 10917 candidates) 

that 

 wrote a book adapted for a movie, and 

 never is the composer of some movie, and 

 never is the child of some movie person  

 Moreover, Fassbinder is different from the other 53 actors because it 

 cinematographed some movie, while others didn't 

 mentored by some movie person, while others didn't 

3-class explanation, zero/non-zero separation is off 

Brad Pitt is one of the only 2 actors in the dataset (which contains a total of 10917 candidates) that 

has larger than 28.571% chance to be the starting node S of paths of type“S lived with some 

movie person who is the child of some director”  

Moreover, Brad Pitt is different from the other 1 node(s) because it 

has much lower (0% v.s 50%) chance to be the starting node S of paths of type “S wrote 

some movie which has another writer who lived with a movie person”  
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The results from Table 5.1 to Table 5.4 demonstrate that UNICORN can identify 

abnormal instances, and the explanations it produces are actually sometimes 

interesting. We observed that it can identify at least three types of interesting things: 

1. Some facts users might not have known before. For example, that George 

Lucas has never directed some movie adapted from some book and that he is 

a writer for some movies. 

2. Something that matches users’ original impressions about an instance. For 

example, the system finds that “authoring books” makes Stephen King 

unique as does “composing” for Elton John, which matches our general 

impression of them (i.e., that King is a famous writer and that John is a well-

known musician). This is interesting considering our system does not have 

any background knowledge about nodes. 

3. Strange things that are potential errors. For example, Woody Allen never 

acted in some movie that has a producer.  

Note that given the semantic profiles our explanation system can explain not only 

abnormal nodes but also not-so-abnormal nodes. For example:  

L. Anderson is one of the only 48 actors in the dataset (which contains a total of 10917 

candidates) that 

 produced some movie  

 directed some movie  

 never is the writer of some movie
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In this case, the best job our 2-class explanation system can do based on three 

zero/non-zero features is to separate L. Anderson from the other (10917-48=10869) 

nodes. In other words there are still a group of 47 actors that are similar to Anderson. 

This example suggests that our explanation system can be used to generate 

explanations for every node regardless of whether it is unique or not. Moreover, the 

structure and size of explanations reveals the degree of abnormality of the nodes. 

This motivates another idea of using our explanation mechanism for outlier ranking, 

which will be discussed in more detail in Chapter 6. 

5.4 HEP-Th Bibliography Network 

The second natural dataset we used is the high-energy physics theory (HEP-Th) 

bibliography dataset, which records papers, their authors and citations in this domain. 

For the HEP-Th dataset, we extracted six different types of nodes and twelve types of 

links to generate the MRN. Nodes represent papers (29014), authors (12755), journals 

(267), organizations (963), keywords (40) and the publication time encoded as 

year/season pairs (60). Numbers in parentheses indicate the number of different 

entities for each type in the dataset. There are about 43000 nodes and 477,000 links 

overall. We defined the following types of links to connect nodes:  

writes (<author>,<paper>): <author> writes <paper> (57447) 

date_published(<paper>,<time>): <paper> published at <time> (29014) 

organization(<author>,<organization>): <author> belongs to <organization> (11060) 

published_in(<paper>,<journal>): <paper> is published in <journal> (20715) 

cites(<paper1>, <paper2>): <paper1> cites paper <paper2> (342437) 

keyword_of(<paper>,<keyword>): <paper> has <keyword> (16714) 
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These links are viewed to be directional with implicit inverse links. Thus, there are a 

total of 12 different relation types. Figure 5.2 describes the degree histogram for this 

dataset.  

Figure 5.2: Degree histogram for papers and persons in the HEP-Th network. 

Table 5.5 displays some results about abnormal authors in the HEP-Th dataset 

with zero/non-zero separation turned off. Here we selected the top candidates ranked 

by Ramaswamy’s distance-based outlier algorithm. We exploit the loop Meta-

constraint together with contribution1 feature value.  
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In the 2-class explanation, we can see that C.N. Pope is abnormal because he 

has a higher chance than anybody else to cite his own papers. From the 3-class 

explanation, we can conclude that among the persons whose papers have higher 

chance to be cited together by another paper, and who have a higher chance to 

publish multiple papers in the same journal, Edward Witten is the one who has the 

highest chance to have papers being cited together by another paper. It turns out 

Witten is a very influential person in HEP-Th (two of the top three cited papers in 

this dataset are authored by him). On the other hand, Table 5.6 shows that using three 

zero/non-zero features is not sufficient to describe the uniqueness of these people, 

since there are still respectively 1144 and 1540 other candidates that satisfy the same 

conditions.  

Table 5.5: Abnormal researchers in the High-Energy Physics dataset and their 
explanations with zero/non-zero separation turned off. 

2-class explanation, zero/non-zero separation is off  
C. N. Pope is the only 1 node in the dataset (which contains a total of 7152 candidates) that 

  has higher than 1.01% chance to be the starting node S of paths of type “S wrote a paper 

that cites his/her own paper”  

3-class explanation, zero/non-zero separation is off 
Edward_Witten is one of the only 2 nodes in the dataset (which contains a total of 7152 candidates) 

that 

  has higher than 1.71% chance to be the starting node S of paths of type “S has multiple 

papers cited by one single paper”, and 

has higher than 0.615% chance to be the starting node S of paths of type “S has multiple 

papers published in one journal”  

Moreover, Edward_Witten is different from the other 1 node(s) because it 

 has slightly higher (4.04% v.s 1.71%) chance to be the starting node S of paths of type “ S  

has multiple papers cited by one single paper”. 
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Table 5.6: Abnormal researchers in the High-Energy Physics dataset and their 
explanations with zero/non-zero separation turned on. 

2-class explanation, zero/non-zero separation is on  

 C.N. Pope is one of the only 1145 nodes in the dataset (which contains a total of 7152 candidates) 

that 

 published two or more papers with the same keyword, and  

 never has a colleague that once belonged to the two institutes he has ever belonged to, and 

 has coauthor came from the same organization 

3-class explanation, zero/non-zero separation is on  

Edward_Witten is one of the only 1541 nodes in the dataset (which contains a total of 7152 

candidates) that 

 published two or more papers with the same keyword, and 

 published two or more papers at the same season, and 

 has coauthor came from the same organization 

Comparing the HEP-Th with the KDD Movie network, the former has more 

nodes and links but much fewer relation types (only 12 compared with 44 in KDD 

Movie). This fact makes the HEP-Th dataset a much denser dataset with more points 

and fewer features compared with the movie dataset. In a dense dataset, the zero/non-

zero separation strategy is not as useful, because we need more precise information to 

classify a node as demonstrated in Table 5.6. 

5.5 Explaining Local Abnormal Nodes 

The explanation system can be easily adapted to explain abnormal local nodes 

(i.e., nodes abnormally connected to a given source node). For example, the following 

is the 3-class zero/non-zero explanation our system generates to explain an 

organization that is abnormally connected to Dr. Chen from the HEP-Th dataset: 
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This example shows that NCU is one of the three organizations Dr. Chen has 

ever belonged to. Furthermore, it is “abnormal in the abnormal” because unlike the 

other two, Dr. Chen does not have any citationship or collaboration with the people 

from NCU. This result is interesting in the sense that the system can identify that the 

organizations he belongs to are an important feature to characterize him (i.e., “Type 

2” results). Moreover, it also figures out that what makes him even more abnormal is 

that he does not have any other connection with one of the organization he once 

belonged to. 

NCU is one of the only 3 organizations in the dataset (which contains a total of 187 

candidates )that  

      C.M. Chen once belonged to 

Moreover, NCU is different from the other 2 nodes because it 

     never is the organization of some person whose paper is cited by a paper written by C.M. Chen,  

     never is the organization of some person whose paper cites paper written by C.M. Chen, 
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Chapter 6  

 
Discussion and Applications 

 
The previous chapters described a series of methods designed to handle the 

anomaly detection problem in an MRN. A common feature of the discussed 

techniques is that they are designed to be general and domain independent, will 

therefore, be potentially applicable to a variety of problems. This chapter discusses 

the scalability issues of our system and proposes a number of applications that can be 

solved by the techniques we have developed.  

6.1 Scalability and Efficiency of UNICORN 

In this section, we go through each stage of UNICORN to discuss scalability and 

efficiency issues as well as their solutions. 

6.1.1 Feature Selection 

In the feature selection stage, UNICORN applies a set of meta-constraints to 

generate a set of path types as features. The worst-case complexity for the default 

relation-only meta-constraint is exponential: )
)!(

!(
kr

rO
−

, where r is the number of 

different relation types and k is the maximum path length. This is because, in the 

worst case, each permutation of relation types becomes a possible feature. 

Complexity, therefore, a huge number if both r and k are large. Fortunately, as 

described in the previous chapters, it is intuitively clear that the farther a node/link is 
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away from the source node, the less impact it has on the source. Therefore, in general 

a small k is sufficient, and our experiment results support this hypothesis. Also note 

that not all permutations of relations are meaningful and exist in the network. 

Furthermore, the result of Figure 3.4 demonstrates that the improvement rate of the 

discovery quality tends to degrade with the increase of path lengths. Based on this 

observation, we designed an incremental version for UNICORN, called 

UNICORN_Inc shown below (without loss of generality, we assume that UNICORN 

utilizes the outlier detection algorithm, which returns a set of abnormal nodes instead 

of a ranking):  

function UNICORN_Inc (G, mc, k) 

1. set L=UNICORN(G, mc, 1); 

2. for x:= 2 to k  

3.     set L’= UNICORN(G, mc, x)  

4.      if 
|'|
|'|

LL
LL

∪
∩

>Threshold , then return L’; 

5.      else L=L’;  

6. return L’; 

Starting from path length 1, UNICORN_Inc executes UNICORN incrementally 

in terms of maximum path length k. At the end of every iteration, it checks how the 

results are changed compared with the previous iteration by comparing the overlap 

between the current and previous results. If it is larger than a pre-determined 

threshold (which implies that the outputs are very similar), then the system stops and 
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returns the current output, otherwise it will keep increasing the path length. Another 

advantage of UNICORN_Inc is that it is an anytime algorithm, which means the user 

can stop it at any time but still be able to get results of a certain quality. 

6.1.2 Feature Value Generation 

Feature value generation is generally the most computationally costly stage of 

UNICORN. Recall that in this stage, UNICORN has to count paths in the MRN in 

order to compute the statistical dependencies between nodes and paths. The worst-

case time complexity for this stage is O(|Path|), which means that it has to go through 

all paths up to certain length in the network. Although this number highly depends on 

the network topology, it is usually very large in the sense that the number of paths 

tends to increase exponentially with the average branching factor of the network. 

Fortunately, our design of random experiments provides a natural way for us to 

approximate the feature values. Since feature values are based on the dependency of 

two random variables of a particular path-selection random experiment, we can use 

sampling to approximate them by simulating such a random experiment and tracing 

the values of the random variables. Based on the simulation results we can then 

approximate the dependency values we would like to generate. For example, in our 

Random Experiment 2 one must first randomly pick a node and then a path from that 

node. One plausible sampling strategy is to first randomly put a mark on one node 

and then apply the method of random walk (i.e., from a node, randomly select an 

edge and walk to the target node, then perform the same experiment to reach farther 

nodes) (B. D. Hughes 1995) to walk through a path of certain length. Once a path is 
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generated this way, we then can record the starting node as one realization of random 

variable 1 and the path type as random variable 2. Repeating this kind of experiment 

will eventually create a set of sampling results and probability distribution on these 

two random variables, from which we can compute the contribution2 and PMI2 

dependency measures. 

It is clear now that an important benefit of choosing path types as features and 

exploiting random experiments to create feature values is that it facilitates sampling, 

which can significantly improve the efficiency and scalability of our system at the 

cost of a certain amount of accuracy. Questions such as how many samples are 

required for networks of different sizes and topologies to maintain a certain level of 

accuracy are beyond the scope of this thesis, but are undoubtedly an important and 

fruitful future research direction.  

6.1.3 Outlier Ranking 

Given the semantic profiles, the anomaly detection requires at most O(n2d) 

where n is the number of nodes and d is the size of the feature set. It is not the 

bottleneck of the system and there are some existing algorithms such as ORCA that 

can improve the performance to near linear time by randomization and pruning 

strategy (S. Bay and M. Schwabacher 2003). 

6.2 Explanation-based Outlier Detection 

This section describes one application for our explanation system, which we call 

the Explanation-based Outlier Detection Algorithm.  
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As described above, existing outlier algorithms aim at identifying abnormal 

points based on different criteria (i.e., distribution-based, clustering-based or 

distance-based). In this section we propose an alternative outlier-detecting criterion 

motivated by our explanation system, which we call explanation-based outliers. 

Explanation-based outlier is based on the concept of minimum description 

length. It claims that something is more abnormal if its uniqueness can be described 

with less effort or shorter description length. Based on our explanation schema, a 

point can be regarded as more unusual if it is possible for a classifier to separate it 

from the others with fewer features. For example, in our problem, we can claim that a 

node is more abnormal if it can be explained by fewer shorter path types.  

The general process for explanation-based outlier detection is simple. For each 

point in the data, the system first labels it as “abnormal” and the others as normal, and 

then applies a simple and non-opaque classifier such as decision tree to classify them. 

The depth of the resulting decision tree can be viewed as the description length of the 

point, and the system can then rank the abnormality of points based on this length. 

Note that one can also assign weights to different features based on their 

characteristics. For example, in our domain the features are path types, therefore, a 

feature of longer path length should be weighted more, since those generally lead to 

more complex explanations. That is to say, a 3-layer classification tree using paths of 

length four as features should have a longer description length compared with a 3-

layer classification tree with paths of length three. 
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One major advantage of this algorithm compared with other outlier detection 

algorithms is that the explanations are automatically generated when the outlier is 

determined. Therefore, the users can easily understand why a point is chosen to be 

abnormal and how it is different from the others. The following is the algorithm for 

explanation-based outlier detection. Without loss of generality, we chose to return 

only the top abnormal point. In step 3, the Des_length function applies a decision tree 

classifier and returns the weighted description length of a point. Finally, the ArgMin 

function returns the point with the smallest length. 

 

6.3 Automatic Node Description  

We now introduce a variation of our original anomaly detection task which we 

call automatic node description. The goal now is not to find abnormal nodes but 

instead to report important or interesting information about any given node. We 

believe this kind of system could be very useful for data analysis. For example, a 

police detective might want to learn something interesting or special about a person 

node they suspect, regardless of whether this person is abnormal or not; or a biologist 

//P is an array of vectors, where each vector represents the feature values of a point 

function Explanation_Based_Outliers (P)  

1. array exp_length[|P|]; 

2.  for i:= 1 to |P| 

3.       exp_length [i]=Des_length(P, P[i]);  

4. return ArgMini(exp_length [i]);  
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might want to find something special about a gene of interests. Doing this manually 

can be very hard and time consuming, because an MRN could contain many typed 

links and thousands of typed paths originating from a given node.  

Fortunately, the method we designed to measure the node-path dependency can 

be of help. Note that based on the random experiments we designed, one can find 

path types that are highly correlated with a node such as those with high contribution, 

PMI or MI values. High PMI, for instance, implies that the path and node occur 

frequently together. It is not hard to imagine those types of paths are the ones we 

should report to the users. Moreover, our path-to-sentence generator can transform 

the paths into a more user-friendly form. The following is an algorithm for automatic 

node description supporting this idea:  

For simplicity but without loss of generality, we assume PMI is used as the 

dependence measure. Also we chose to report only one feature with the highest 

dependency value. Note that the extract_path_type function in step 1 returns a set of 

//Input: G as the MRN, mc is a set of meta-constraints, n as the node to be explained, and 

//k as the maximum path length 

function describe_node (G, mc, n, k)  

1. array P[] := extract_path_type (G, mc, n, k)  

2.  for i:=1 to |P|  

3.       array PMI [i]:=Get_PMI (G, P[i], n);} 

4.  max_index := ArgMaxi(PMI [i]);  

5. return path_2_sentence(P[max_index]); 
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path types starting from n, satisfying mc, and has path length smaller than k. Get_PMI 

computes the PMI value of a given node with respect to a given path in the MRN.  

The following are sample results generated by our system to explain three well-

known individuals from the KDD Movie dataset: director Oliver Stone, actor Meg 

Ryan, and the movie Gone with the Wind. We exploit the relation-only meta-

constraint to generate the semantic profile of a node, and then computed and 

translated the top two PMI2 features for each node: 

Olive Stone 

Olive Stone wrote some movie adapted from a book whose author is also a 

composer (PMI=9.2)  

Oliver Stone produced some movie that has a composer who worked with some 

other movie person (PMI=6.5) 

 Meg Ryan 

Meg Ryan married to a movie person whose sibling is an actor (PMI=6.5) 

Meg Ryan produced some movie whose director wrote some book adapted into a 

movie (PMI=6.0) 

“Gone with the Wind” 

“Gone with the Wind” has some actor who wrote a book adapted into a movie that 

was remade into another movie (PMI=6.6) 

“Gone with the Wind” is composed by somebody who is a cinematographer of a  

movie that has some director (PMI= 6.0) 

 

Besides the apparent application in homeland security and scientific discovery, 

the above results also suggest another interesting application for our system, which is 

to serve as a trivia question generator (e.g. “which movie has some actor who wrote a 

book adapted into a movie that was remade into another movie?”).  
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6.4 Abnormal Path Discovery 

Another variation of the original problem is to identify abnormal paths from the 

network. For example, an abnormal path between a suspicious person and a company 

might indicate some insider trading; or a chemist might have an interest in finding a 

special chain of reactions between two chemicals of interests.  

More formally, given two nodes x and y in an MRN, we want to find a set of 

abnormal paths that connect them. To solve this problem we need to design a measure 

for path similarity and then find abnormal ones as those with fewer similar paths. We 

can apply the concept of meta-constraints described in Chapter 2 to determine 

whether paths are similar or not. That is, two paths are similar if they satisfy the same 

set of meta-constraints. For example, based on our default relation-only meta-

constraint, the system can identify paths whose sequence of relations does not appear 

frequently as the abnormal ones. In (S. Lin and H. Chalupsky 2003a), we propose 

four different views (i.e., sets of meta-constraints) to determine whether paths are 

similar and then identify the rare ones as those of interest. The following is the 

algorithm to find the most abnormal path between two given nodes. The extract_path 

function first returns a set of paths starting from s and ending at t, satisfying mc and 

with path length smaller than k. The sim function counts how many similar paths 

(based on the meta-constraint set) there are for a given one. Finally, it returns the 

natural language representation for the rarest path. 
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In (S. Lin and H. Chalupsky 2003b) we conducted experiments to find abnormal 

paths in the HEP-Th bibliography network. We found several interesting results. The 

first type of rare path our system found was what we called a citation loop: “paper x 

cites paper y cites paper z cites paper x”. In fact this is somewhat of a contradiction 

because for one paper to cite another, the cited one has to be published earlier then 

the citing paper. Therefore this loop should normally not occur. We found that one of 

the reasons this can happen in the HEP-Th dataset is that it is an archive that allows 

people to withdraw and update their publications. Therefore, it is possible to update 

an existing paper by adding citations to papers that were published after the original 

publication of the paper. Two other abnormal and interesting paths we found are “a 

paper cites itself” and “an author published multiple papers at the same time”. The 

former is interesting because it might indicate an error, and the latter tells us that in 

//Input G is the MRN, mc is a set of meta-constraints, s and t are two given nodes, and k is 

//the maximum path length 

function Path_discover (G, mc, s, t, k)  

1. array P[] := extract_path (G, mc, s, t, k)  

2. array abn [|P|];   

3.  for i:=1 to |P|  

4.        abn[i]=1/ sim(G, s, t, P[i], mc); 

5. abn_index= ArgMaxi(abn [i]);  

6. return path_2_sentence(P [abn_index]); 



 

108

the in the area of high energy physics theory, researchers in general do not publish 

multiple papers at the same time. 

6.5 Usage Scenarios and Usefulness of Results  

Since UNICORN is a data-driven system, the potential interestingness and 

usefulness of the results are highly correlated with the quality of the data—that is, 

whether the information encoded in the network is relevant and sufficient—as well as 

the goal of the task. This section discusses the usability of UNICORN and its 

explanation system, specifically the circumstances that lend themselves best to the 

application of UNICORN for analysis. 

6.5.1 Applying UNICORN for seed identification  

A first usage scenario for UNICORN is to apply it in the early stage of network 

analysis. In a large network with thousands or millions of nodes and labeled links, it 

is not trivial for a human to know how and where to start analyzing the data. One 

plausible solution is to apply UNICORN and its explanation system to first identify 

and explain the few most abnormal nodes in the network. The users can choose these 

nodes as seeds and perform further analysis starting from them. Such preprocessing is 

also very helpful for some group detection systems such as (J. Adibi, H. Chalupsky et 

al. 2004) which require a set of given seeds to grow the groups. 

6.5.2 Applying UNICORN for goal-oriented node identification tasks 

Theoretically, UNICORN identifies instances which play abnormal roles (or 

surrounded by abnormal labeled network structure) in the network. Just like any other 

data-driven discovery system (for example, association rule mining), it is generally 
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hard to predict whether the system can find things that can match a predefined goal 

(other than finding abnormal things). Whether the finding is useful for a particular 

task depends on not only the content and quality of the data but also the users’ own 

subjective, internal interpretation of interestingness or usefulness. Therefore in the 

thesis we do not claim that all the instances UNICORN finds are useful. Instead we 

show that UNICORN can find nodes that highly correspond to the suspicious ones (as 

we discuss in Chapter 3), and sometimes interesting (as the results in Chapter 5). In 

Chapter 4 we further demonstrate that the semantic profiles generated by UNICORN 

are useful and meaningful since they can assist the users to determine the crime 

organizers. Our experiments can be regarded not only as the evaluation of our 

algorithm but also the demonstration of how and in which circumstance one should 

apply UNICORN for data analysis. The results indicate that utilizing the surrounding 

labeled network structure to represent the meaning of the nodes and then identifying 

nodes with abnormal meanings is a proper strategy for finding suspicious and 

interesting things in certain domains. 

6.5.3 UNICORN as a semantic interpretation system for MRN’s 

This section suggests how UNICORN should be applied in the situation when 

we are not sure whether the targets to be found possess abnormal property or whether 

the information provided by the network is not skewed (if it is, then there is a high 

chance the skewed individual such as Hitchcock in the KDD Movie dataset will be 

regarded as abnormal). For these situations we recommend exploiting UNICORN as 

a semantic interpretation tool instead of a knowledge discovery tool. That is, instead 
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of identifying abnormal instances, we apply UNICORN to generate an alternative 

interpretation of the data and let users to decide whether the instacnes are interesting 

or not. 

For this purpose, we propose to modify UNICORN slightly by removing the 

distance-based outlier finder and have the explanation system to explain every node 

in the network based on its semantic profile. As a result, instead of telling users 

which node is abnormal, we simply provide an alternative view of the network as a 

list of node descriptions (descriptions can be ranked by the length of the explanations, 

similar to the idea of explanation-based outliers) showing what makes each node 

unique. Remember that the results of our human study described in Chapter 4 reveal 

that it is really hard for humans to manually analyze an MRN to identify certain type 

of instances (e.g. suspicious or abnormal ones). In this case, we believe by 

transforming and condensing this MRN into a list of user-friendly descriptions about 

the nodes, the users will have higher chance to find the individuals they are interested 

in. Our human study demonstrates an alternative way UNICORN can be applied, and 

the results assures that after transforming the original network into a set of natural 

language descriptions of the nodes as shown in Appendix III, human subjects can 

perform their tasks much more efficiently and accurately. 
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Chapter 7  

 
Related Work 

 
 
Our problems and solutions are related to a variety of research fields including 

knowledge discovery and data mining, scientific discovery, social network analysis 

and machine learning. For each related field, we will describe its definition, main 

goals, methodologies and its similarity as well as differences to our research. 

7.1 Network Analysis for Homeland Security and Crime  

Our task is related to crime or homeland security network analysis in the sense 

that one major application for our system is to identify suspicious and abnormal 

individuals from data. There has been a variety of research focusing on applying 

intelligent graph analysis methods to solve problems in homeland security (D. Jensen, 

M. Rattigan et al. 2003; R. Popp, T. Armour et al. 2004; H. Chen and F. Wang 2005) 

and crime mining (J. Xu and H. Chen 2005; H. Chen and J.Xu 2006). Adibi et al. 

describe a method combining a knowledge-based system with mutual information 

analysis to identify groups in a semantic graph based on a set of given seeds (J. Adibi, 

H. Chalupsky et al. 2004). Krebs describes a social network analysis approach on the 

9/11 terrorists network and suggests that to identify covert individuals it is preferable 

to utilize multiple types of relational information to uncover the hidden connections 

in evidence (V. Krebs 2001). This conclusion echoes our decision of performing 
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discovery on top of a multi-relational network. There are also link discovery and 

analysis algorithms proposed to predict missing links in graphs or relational datasets 

(B. Taskar, M. Wong et al. 2003; S. F. Adafre and M. de Rijke 2005). Recently, 

several general frameworks have been proposed to model and analyze semantic 

graphs such as relational Bayesian networks, relational Markov networks, and 

relational dependency networks (M. Jaeger 1997; R. Bunescu and R. Mooney 2004; J. 

Neville and D. Jensen 2004). However, these frameworks aim at exploiting the graph 

structure to learn the joint or posterior probabilities of events or relations between 

them based on training examples. Our task and goal is different—we are not 

assuming there is a given or trainable causal or Bayesian network and we are 

focusing on identifying abnormal instances in an unsupervised manner. Furthermore, 

our framework has the ultimate goal of being able to generate human understandable 

explanations for its findings. 

7.2 Social Network Analysis 

Social networks consist of a finite set of actors (nodes) and the binary ties (links) 

defined between them. The actors are social elements such as people and 

organizations while the ties can be various types of relationships between actors such 

as biological relationships or behavior interactions. The goal of social network 

analysis (SNA) is, stated briefly, to provide better understanding about the structure 

of a given social network (S. Wasserman and K. Faust 1994). Although most of the 

analyses are focused on finding social patterns and subgroups, there are a small 

number of SNA tasks resembling our instance discovery problem. Centrality analysis 
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aims at identifying important nodes in the network based on their connectivity with 

others: An actor is important if it possesses high node degree (degree centrality) or is 

close to other nodes (closeness centrality). An actor is importantly connected to two 

source actors if it is involved in many connections between them (betweenness and 

information centrality). The major difference between centrality analysis and our 

approach is that centrality looks for central or highly connected nodes, while our 

system looks for those that are different from others. Social positions analysis targets 

finding individuals who are similarly embedded in networks of relations. The 

similarity between actors is measured by whether they have similar ties with other 

actors. In UNICORN, we generalize this concept by using paths and their statistical 

contributions. The generalized path features and their dependency measures allow us 

to exploit more information from the network in order to capture the deeper meaning 

of instances. 

Another major difference between the problems SNA handles and our problem 

is that most of the SNA approaches are designed to handle only one-mode or two-

mode networks (i.e., there are at most two types of actors), while such a limitation 

does not exist in our analysis. Moreover, existing statistical and graph-theoretical 

methods for centrality, position, and role analysis do not distinguish between 

different link types and their different semantics. The relational network we are 

dealing with is also not limited to social networks–the networks we focus on can be 

any relational graph (even, for instance, a thesaurus such as WordNet).  
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7.3 Knowledge Discovery and Data Mining 

 Knowledge discovery and data mining (KDD) research focuses on 

discovering and extracting previously unknown, valid, novel, potentially useful and 

understandable patterns from lower-level data (U. Fayyad, G. Piatetsky-Shapiro et al. 

1996). Such patterns can be represented as association rules, classification rules, 

clusters, sequential patterns, time series, contingency tables, etc (R. Hilderman and H. 

Hamilton 1999). Below we describe KDD research most relevant to our problems. 

7.3.1 Graph Mining 

Graph mining aims at mining data represented in graphs or trees, such as mining 

interesting subclasses in a graph (T. Murata 2003; J. Ramon and T. Gaertner 2003) 

and mining the Web as a graph (J.M. Kleinberg, R. Kumar et al. 1999; R. Kumar, P. 

Raghavan et al. 2000). It is similar to our problem in the sense that a network is a 

type of graph. There are several well-known objective methods (e.g. PageRank) that 

discover important nodes in a graph. However, to our knowledge there is no work 

addressing how to determine interesting or abnormal instances in graphs.  

That being said, there are various findings about the nature of networks that are 

worth mentioning: Small world analysis (J. Kleinberg. 2000) shows that with a small 

amount of links connecting major clusters, it is essentially possible to link any two 

arbitrary nodes in a network with a fairly short path. The strength of weak ties 

approach (M. Granovetter 1973) addresses the issue that weak connections between 

individuals might be more important than strong ones, because they act like bridges. 

This concept is to some extent similar to our abnormal path discovery in the sense 
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that rare paths also represent a kind of weak connection given a specific similarity 

measure. The major difference between our approach and the approaches described 

above is that our system not only models complex syntactic structure of the typed 

graphs but also incorporates statistical dependency measures to capture deeper 

meanings of the nodes.  

7.3.2 Relational Data Mining 

 Relational data mining (RDM) deals with relational tables in a database. It is 

related to our problem in the sense that a multi-relational network is a type of 

relational data and can be translated into relational tables. RDM searches a language 

of relational patterns to find patterns that are valid in a given relational database (S. 

Dzeroski 2001). Morik proposes a way to find interesting instances in this relational 

domain by first learning rules and than searching for the instances that satisfy one of 

the following three criteria: exceptions to an accepted given rule; not being covered 

by any rule; or negative examples that prevent the acceptance of a rule (K. Morik 

2002). Angiulli propose similar ideas by using default logic to screen out the outliers 

(F. Angiulli, R. Ben-Eliyahu-Zohary et al. 2003). Both methods require a certain 

amount of domain knowledge or training example for supervised learning. It is 

different from our system since we are looking for abnormal instances that are 

possibly neither expected by users nor biased by training data. There is one type of 

unsupervised discovery problem called interesting subgroup discovery that tries to 

discover subsets that are unusual (W. Klosgen 1996; S. Wrobel 1997; P. Flach and N. 

Lachiche 2001). For example, interesting subsets are those whose distribution of 
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instances based on a certain objective function is different from that of the whole 

dataset. The major difference between our problem and subgroup discovery is that we 

are not looking for groups or patterns but individual instances.  

Inductive logic programming (ILP) is one of the most popular RDM methods 

whose goal is mainly to induce a logic program corresponding to a set of given 

observations and background knowledge represented in logic form (S. Dzeroski and 

N. Lavrac 2001). ILP has been successfully applied to discover novel theories in 

various science domains such as math (S. Colton and S.H. Muggleton. 2003) and 

biology (S. Colton 2002). The standard ILP problem is not similar to ours, because it 

works in a completely supervised manner. However, there is an extension of ILP that 

exploits a distance-based measure among relational instances (U. Bohnebeck, T. 

Horvath et al. 1998; T. Horvath, S. Wrobel et al. 2001; M. Kirsten, S. Wrobel et al. 

2001) that is closely related to our problem. Their work defines distance between 

propositional instances as the accumulation of the distances for all their attributes. If 

the attribute is numerical, the distance can be defined as the difference between two 

attributes divided by the maximum distance. If an attribute is discrete (categorical), 

then the distance is 1 if they have different values and 0 if identical. However, to 

apply such an approach to our problem, one needs to first clearly define the common 

and representative features (e.g. semantic profiles in UNICORN) for instances, which 

leads to another research problem called propositionalization.  
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7.4 Propositionalization 

Transforming a relational representation of a learning problem into a 

propositional (feature-based attribute-value, single table) representation is generally 

called propositionalization (S. Kramer, N. Lavrac et al. 2001). The benefit of 

mapping relational data into propositional data is that propositional learning is one 

the most general and best studied fields in data mining. Propositionalization can be 

regarded as a feature construction procedure that tries to create a small but 

representative feature set based on the conjunction of literals, and consequently, the 

values of the features are boolean. One popular idea of feature construction is to find 

the ones that are shared by a statistically significantly large fraction of the training set. 

For example, WARMR tries to detect frequently succeeding queries as features (L. 

Dehaspe and H. Toivonen 1999), and Kramer and Frank propose a bottom-up 

approach method to determine frequently occurring fragments as new features (S. 

Kramer and E. Frank 2000). There are other general methods proposed for 

propositionalization: The Linus system uses background knowledge to generate the 

individual facts about the target relation, and then induces the target relation through 

a propositional learning algorithm (N. Lavrac, S. Dzeroski et al. 1991). Kramer et al. 

use minimum description length as a fitness function to search for features that work 

well together in terms of describing the data (S. Kramer, B. Pfahringer et al. 1998). In 

our design, we do not weight the frequency or description length of the features 

because we believe both the frequent and infrequent features have the potential to 
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convey important information for anomaly detection. Instead we design the meta-

constraints which allow the system to systematically select a set of features. 

To classify nodes, Geibel and Wysotzki propose to obtain features in the graph 

by analyzing categories of paths in the graph (P. Geibel and F. Wysotzki 1995; P. 

Geibel and F. Wysotzki 1996). Instances can then be represented by boolean path 

features describing whether they are involved in various types of paths. The idea is 

similar to our idea of generating path types in the graph as features. However, instead 

of applying symbolic boolean feature values, we take a step further by incorporating 

the statistical measures (e.g. MI) to capture deeper dependency information in the 

network, which allows us to better capture the semantics of the instances and avoids 

the overfitting problems.  

7.5 Interestingness Measurements 

 In data mining and machine learning, various efforts have been made to define 

subjective or objective interestingness measurements for different tasks. In this 

section, we would like to investigate whether those measurements can be exploited to 

discover abnormal instances in a multi-relational network. 

Based on subjective measures, one can define two different types of interesting 

discoveries: the first are those that bring completely new knowledge about a domain 

and the second are those contradicting a user’s belief (A. Silberschatz and A. Tuzhilin 

1995; B. Padmanabhan and A. Tuzhilin 1999). However, to do such, we either need 

some domain knowledge or information about the user’s belief, both of which are not 

available in our problem. 
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As for objective measures, the rule-interest function (G. Piatetski-Shapiro 1991) 

proposes that a rule X  Y is interesting if the co-occurrence rate of X and Y is much 

higher than expected if they were independent. This idea was later extended to 

encompass confidence (given a transactions which contains X the probability that it 

also contains Y) and support (the percentage of transactions that contains both X and 

Y items) for mining interesting association rules (R. Agrawal, T. Imielinski et al. 

1993). The idea of deviation has also been used to measure interestingness (G. 

Piatetsky-Shapiro and C. J. Matheus 1994) by identifying a large deviation between 

an observed value to a reference value (e.g. previous value). Kamber and Shinghal 

propose to use sufficiency (the probability that the evidence occurs given the 

hypothesis is true divided by the probability of the evidence given that the hypothesis 

is false) and necessity (the probability that the evidence does not occur given the 

hypothesis is true divided by the probability that the evidence does not occur given 

that the hypothesis is false) to rank the interestingness of hypotheses. (R. Hilderman 

and H. Hamilton 1999) proposes several statistical and information-theoretic 

heuristics (average information content and total information content, for example) to 

measure the interestingness of a summary of data. The above measures are different 

from our method, because they are not exploiting the concept of relative abnormality 

(or distance-based outlier), and they are usually only applicable to measure the 

interestingness of a rule or pattern instead of an instance such as a node in a relational 

network. 
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Even so, there is a significant amount of work on unexpectedness measures. 

Objective unexpectedness measures, in a nutshell, regard discovered results to be 

surprising if they are different from other candidates based on certain distance metrics 

(G. Dong and J. Li. 1998; P. Gago and C. Bento 1998; N. Zhong, Y. Yao et al. 2003). 

In addition, Freitas points out three alternative unexpectedness indicators that are 

worth noticing: “small disjuncts” (rules whose coverage is small); rules whose 

antecedent contains attributes with low information-gain; and the occurrence of 

Simpson’s paradox (that is, an association between a pair of variables can 

consistently be inverted in each subpopulation when the population is partitioned (A. 

A. Freitas 1998). Although these measures are (to some extent) similar in spirit to the 

distance-based outlier, they are designed for mining propositional numeric datasets 

and it is not clear how they could be applied to a multi-relational network. 

The research of anomaly detection in computer security also attempts to find 

abnormal behavior. It quantifies usual behavior and flags other irregular behavior as 

potentially intrusive (S. Kumar 1995). The basic idea of anomaly detection is to first 

construct opinions on what is normal, either by learning (H. Debar, M. Becker et al. 

1992) or a rule-based system (B. Mukherjee, L. T. Heberlein et al. 1994) , and then 

flag behaviors that are unlikely to originate from the normal process (W. Lee and S. 

Stolfo 1998). In anomaly detection, the target domain and data are usually well 

defined in numerical values, and the focus is on finding meaningful patterns and, 

consequently, anomaly efficiently (e.g. in real time). With our problem, by contrast, 

the major difficulty lies in how to model the relational network data into a form that 
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facilitates the discovery of anomalies as well as their explanations. Furthermore, 

generating explanation is not a major focus of the above systems. UNICORN can be 

viewed as an anomaly detection system in a non-numerical semantic graph with 

embedded explanation capability.  

7.6 Outliers 

 Below we briefly review the literature on outlier detection, because we not 

only apply an outlier detector in our discovery system but also need to describe why 

an outlier is abnormal in the explanation system.  

7.6.1 Outlier Definition and Detection: 

An outlier is an observation that deviates so much from other observations to 

arouse suspicion that it was generated by a different mechanism (D. Hawkins 1980). 

Outlier detection is an important technology with a variety of applications such as 

video surveillance and fraud detection.  

There are three major groups of outliers and each has its associated detection 

algorithm: clustering-based, distribution-based and distance-based outliers. 

Clustering-based outliers are the points that cannot be clustered into any clusters. 

Clustering systems such as CLARANS (R.T. Ng and J. Han 1994), BIRCH (T. Zhang, 

R. Ramakrishnan et al. 1996) and CLUE (S. Guha, R. Rastogi et al. 1998) extract 

outliers as the by-products of clustering. FindCBLOF tries to rank a local clustering-

based outlier not only by how far an “outlier cluster” is away from the nearest cluster, 

but also by how large its size is (H. Zengyou, X. Xiaofei et al. 2003). The problem 

with clustering-based outliers is that in order to find the outliers, one must first define 
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a similarity measure and produces clusters. This could cause problems for datasets 

that are hard to cluster. 

Distribution-based outlier detection, on the other hand, takes the known 

statistical distribution of the data and identifies deviating points as outliers (V. 

Barnett and T. Lewis 1994). The problem with distribution-based outlier detection is 

that there is no guarantee that the underlying data distribution is always accessible or 

learnable. This is especially true for large, high-dimensional datasets. 

To deal with these drawbacks, Knorr and Ng propose distance-based outliers 

that facilitate outlier detection without having to be given a priori knowledge about 

the distribution of the data (E. Knorr and R. Ng 1998). Their idea is simple: a point x 

in a data set is an outlier with respect to parameters n and d if no more than n points 

in the data set are at a distance d or less from x. The major problem of Knorr and 

Ng’s algorithm, as addressed by Ramaswamy and many others, is that it is not clear 

how to determine the threshold distance d. Ramaswamy et al. propose a modification 

to use the distance to its kth-nearest neighbor to rank the outlier (S. Ramaswamy, R. 

Rastogi et al. 2000). In other words the top n points with the largest kth-neighbor 

distance are outliers. Later, Breunig, et al., develop this idea further, proposing the 

idea of density-based local outlier that enables the system to quantify how outlying a 

point is (M. M. Breunig, H. Kriegel et al. 2000). A local outlier, which is different 

from the “global” outliers, is a point that possesses sparser density than its 

neighborhood points (i.e., the number of points surrounding it is much smaller than 

those of its neighbors).  
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The outlier detection algorithms described above only target numerical datasets. 

However, there is some recent work on outlier detection for non-numerical data. One 

worth mentioning is Wei’s HOT (Hypergraph-based Outlier Test) system for outlier 

detection in categorical data (L. Wei, W. Qian et al. 2003). He proposes to extract 

frequent itemsets first and then defines outliers as those items belonging to a frequent 

itemset but that have certain attributes that look different. For example, the item “a 

sedan car owned by a young person whose salary is high” is an outlier because young 

rich persons (a frequent itemset) usually have sports cars. The idea is similar to the 

concept of local outlier, because it first defines a local set (a frequent itemset) and 

then looks for individuals that are abnormal in its local area. It is different from our 

works because we aim to process relational network data instead of categorical data. 

7.6.2 Outlier Explanation 

There is a small amount of prior work on outlier explanation. For distribution-

based outliers, Yamanishi and Takeuchi propose to combine statistical methods with 

supervised methods to generate outliers (K. Yamanishi and J. Takeuchi 2001). The 

statistical method is first applied to learn the data distribution and then to identify the 

outliers. Once the outliers are detected, the classification method can be applied to 

extract the filtering rules as explanation. The idea of applying a classification method 

for explanation is similar to our explanation system. Our system improves upon this 

by introducing a variety of different explanation schemas (e.g. adding a reference 

class) for different types of networks, and furthermore translates the results into 

natural language. Moreover, in the explanation-generation stage Yamanishi and 
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Takeuchi classify all outliers in a single shot. This approach is suitable for a situation 

where the distribution is known, but not for a distance-based scenario in which the 

outliers could be very diverse and each of them might require a different reference 

class for explanation generation. Yao et al. propose to apply a classification method 

to generate explanations for association rules (Y. Yao, Y. Zhao et al. 2003). Their 

system utilizes external information that was not used in association-rule mining to 

generate the condition in which the rules hold. The external information is not 

accessible to our program, so it has to rely on internal information only to produce 

explanations.  

7.7 Machine Discovery in Science and Literature-based Discovery 

 Machine discovery in science has been an important research area in AI for 

more than twenty years. Herbert Simon described it as “gradual problem-solving 

processes of searching large problem spaces for incompletely defined goal objects” 

(H. Simon 1995). The majority of machine discovery programs focus on discovering 

(or rediscovering) the theories and laws of natural science which can be viewed as 

search for a parsimonious description of the world (A. Milosavljevic 1995). Langley 

(P. Langley 1998) classifies scientific discovery into five stages where various 

systems have been developed to achieve each of them: finding taxonomies (e.g. 

clustering systems), finding qualitative laws (R. Jones 1986), finding quantitative 

laws (P. Langley, G.L. Bradshaw et al. 1981), developing structure models (J.M. 

Zytkow 1996), and process models (R. Vlades-Perez 1995). Scientific discovery 

systems have been applied to areas such as mathematics, physics, chemistry, 
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linguistics, etc. AM is a heuristic-based search system for mathematical laws and 

concepts such as natural numbers and Goldbach’s conjecture (D. Lenat 1982). 

GRAFFITI (S. Fajtlowicz 1988) has successfully generated hundreds of conjectures 

about inequalities in graph theory by heuristic search, many of which lead to 

publications when mathematicians tried to prove or refute these conjectures. 

MECHEM (R.E. Valdes-Perez 1995) is a discovery tool that hypothesizes the 

structural transformations of chemicals. (R.E. Valdes-Perez and V. Pericliev 1999) 

justify their maximally parsimonious discrimination program by rediscovering 

several linguistic phenomena such as the structure of kinship-related terms in Seneca 

(originally found by Lounsbury in 1964) as well as Greenberg’s language universal 

rules (V. Pericliev 2002). There is another research branch called literature-based 

discovery, which aims at finding interesting connections among concepts in different 

documents. ARROWSMITH (N. Smalheiser and D. Swanson 1998) is a literature-

based discovery tool that hypothesizes possible treatments or causes of diseases using 

a collection of titles and abstracts from the medical literature. Unlike other scientific 

discovery programs which focus on discovering theories or laws, ARROWSMITH 

focuses on instance discovery.  

These scientific discovery systems are similar to our research in the sense that 

researchers also propose a series of heuristics to discover interesting instances in their 

domain, and our system can as well be applied for this purpose. However, most of the 

scientific discovery systems are knowledge driven, which means the developer has to 

first provide some background information as well as an underlying model while the 
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major challenge lies in how to efficiently search for the solution. The major challenge 

for our problem, in contrast, is not merely about search but also how to automatically 

model the problem into something that allows us to find meaningful results as well as 

explain them. Technically speaking, most scientific discovery systems shift the 

responsibility of feature construction and explanation generation to the developers or 

users and focus on search, while our discovery system tries to complete the whole 

discovery process from modeling to search to explanation. The other differentiating 

feature of our system is that, unlike other discovery programs that focus on a certain 

domain, it does not restrict itself to one specific realm as long as an MRN describing 

the data can be provided. We hope the design of our system can provide some fresh 

new ideas about how one can develop a more general framework to assist scientific 

discovery. 
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Chapter 8  

 
Conclusion 

 
In this dissertation we described a general unsupervised framework for 

identifying abnormal nodes in large and complex multi-relational networks and an 

explanation mechanism to explain the discovered results. 

The first contribution is the design and development of a novel framework called 

UNICORN that integrates symbolic and statistical methods to capture the syntactic 

semantics of the nodes into “semantic profiles”. Given these semantic profiles we can 

compare and contrast nodes and exploit distance-based outlier detection to identify 

abnormal nodes. Since the method is unsupervised and does not require training 

examples or user-defined features, it has the potential to discover truly novel 

instances without being biased by human analysts or training examples. Our 

experiments show that UNICORN can successfully identify suspicious crime 

organizers and that it outperforms other network algorithms that were applied to 

analyze the 9/11 terrorist network by a large margin. We also discuss the 

computational complexity of UNICORN and show how an incremental algorithm as 

well as sampling technologies can address them. One promising future direction is to 

utilize our dependency measure and semantic profiles of nodes for other purposes 

such as node clustering in graph datasets. 
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 Motivated by issues of verification and the danger posed by false positives that 

might mistakenly incriminate innocent individuals, our system needs to not only 

identify abnormal nodes but also be able to explain to an analyst why they were 

abnormal. To this end we designed and implemented a novel explanation mechanism 

for UNICORN that can produce four different types of explanations. To generate its 

explanations, UNICORN selects a small set of features that account for the 

abnormality of the node to be explained, and summarizes them in a human-

understandable form such as natural language. In an experiment with human subjects, 

we demonstrate that the explanation mechanism can significantly improve the 

accuracy and efficiency of subjects when analyzing a complex dataset. One 

promising future direction regarding the explanation-based discovery framework is to 

generalize the explanation mechanism for other knowledge discovery processes such 

as rule-mining or clustering. 

Through our experiments performed on two representative natural datasets in the 

movie and bibliography domains, we show that the UNICORN framework is domain 

independent and can be applied not only to identify suspicious instances in crime 

datasets, but also to find and explain abnormal or interesting instances in any multi-

relational network. This leads to potential applications in a variety of areas such as 

scientific discovery, data analysis and data cleaning. Due to the generality of the 

techniques we developed they also lend themselves to other applications such as a 

novel outlier detection mechanism called explanation-based outlier detection, general 

node explanation to describe pertinent characteristics of arbitrary nodes, and 
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abnormal path discovery to detect abnormal paths between nodes. In the future, we 

would like to seek further collaborations with scientists from other areas such as 

microbiology, chemistry, pharmacology, medicine, etc. to apply UNICORN for 

scientific discovery in their domain of interest. 

We conclude with two other possibilities for important future research directions.  

The first pertains to knowledge representation for an MRN: from a given dataset, how 

can one determine which information is important and useful and how this 

information should be connected and represented to generate the MRN.  This is an 

important problem, since the construction of the network can have a lot of impact on 

the results our system can discover.  The second problem is to provide UNICORN 

with the capability of dealing with temporal information, as information on the way 

things change over time can doubtless lead to abnormal and interesting findings. 

We believe performing knowledge discovery in large, heterogeneous networks 

with a variety of different types of relations is an important new research direction 

with many potential applications. By reporting our methods and results in this thesis 

as one of the pioneer efforts to deal with abnormal instance discovery, we hope to 

draw more attention and motivate further ideas in this research domain. 
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Appendices 

Appendix 1: Relations and Their Descriptions in the Organized Crime Dataset 
 
relationName(<type of source node>, <type of target node>): description 

accountHolder (<BankAccount>,< Person>): the person holds the account 

callerNnumber (<MakingAPhoneCall>, <Phonenumber>): The phone number of a phone-call event 

ceo (<Business>,< Person>): the person is the CEO of the business 

dateOfEvent(<Event>,< Date>): the date of the event, in month-date-year format 

deliberateActors(<PlanningToDoSomething>,< Person>): the person plans to do something 

deviceUsed (<Event>,< Device>): the device used for the event 

employees (<Business>,<Person>): the person is the employee of the business 

eventOccursAt (<Event>,<Place>): the event occurred at the place 

geographicalSubregions (<Place1>,<Place2>): the place1 is the sub-region of place2 

hasMembers (<Party>,< Person>): the party (i.e., Mafiya, business, industry) has some member 

mediator (<MurderForHire>,<Person>): the person is the mediator of the contract murder event 

murderer (<Event>,< Person>): the person is the murderer in the event 

objectsObserved(<Observing>,<Person>): the person was observed in the observing event 

operatesInRegion(<Party>,<Place>): the party (i.e., Mafiya, business, industry) operates in the 

place 

orderedContractMurder(<MurderForHire>,< Person>): the person ordered a contract murder event 

orgKiller (<Mafiya>,< person>): the person is the killer hired by the mafiya group 

orgMiddleman (<Mafiya>,< Person>): the person is the middleman of the mafiya group 

payee (<Paying>,< Person>): the person is the payee in the paying event 

payer (<Paying>,<Person>): the person is the payer in the paying event 

perpetrator (<Event>,< Person>): the person is the perpetrator in the event 

phoneNumber (<Person>,< TelNumber>): the person’s phone number 

receiverNumber(<MakingPhoneCall>,< PhoneNumber>): the receiving number of the calling event 

recipient(<Event>,< Person>): the person is the recipient in the event 

relatives (<Person>,< Person>): the first person is a relative of the second 
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sender(<Event>,< Person>): the person is the sender in the event 

socialParticipants (<Meeting>,< Person>): the person participates in the meeting 

subevents(<event1>, <event2>): event1 is the subevent of event2 

transferMoneyFrom (<WireTransferOfFunds>,< Bankaccount>): funds transferred from the bank 

account in the WireTransferOfFunds event 

transferMoneyTo (<WireTransferOfFunds >,< Bankaccount>): funds transferred to the bank 

account in the WireTransferOfFunds event 

victim(<Event>,< Person>): the person is the victim of the event 

vor(<Mafiya>,< Person>): the person is the leader of the mafiya group 
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Appendix II: Natural Language Generation Templates for Four Explanation 

Strategies 

2-class template with zero/non-zero separation 
Node X is one of the only <integer> <node type> in the dataset (which contains a total of 

<integer> candidates) that: 

[-<polarity> <Strings (path translation)> ]* 

Example: 

uid3655 is one of the only 4 mafiyas in the dataset (which contains a total of 42 candidates) that 

 -has a leader, and  

 -never hired some killer, and 

 -never has some middleman 

2-class template without zero/non-zero separation 
Node X is one of the only <integer> <node type> in the dataset (which contains a total of 

<integer> candidates) that: 

[-has <more/less> than <double (0-1)> chance to be the starting node S of paths oftype 

<Strings> ]* 

Example: 

uid1314 is one of the only 5 mafiyas in the dataset (which contains a total of 42 candidates) that 

-has larger than 8% chance to be the starting node S of paths of type ”S hired some killer” 

3-class template with zero/non-zero separation 
Node X is one of the only <integer> <node type> in the dataset (which contains a total of 

<integer> candidates) that: 

[-<polarity> <Strings (path translation) ]* 

Moreover, X is different from the other <integer> nodes because it 

[-<polarity> <Strings (path translation), while others do/don’t]* 

Example: 

uid3655 is one of the only 4 mafiyas in the dataset (which contains a total of 42 candidates) that 

 has some member paying some money to somebody, and 

 never hired some killer, and 

 has some member receiving some money from somebody 

Moreover, uid3655 is different from the other 3 mafiyas because it 

 has a leader who is the recipient of some communication event, while others don’t 

 never has some middleman, while others do 
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3-class template without zero/non-zero separation 
Node X is one of the only <integer> <node type> in the dataset (which contains a total of 

<integer> candidates) that: 

 [-has <more/less> than <double (0-1 )> chance to be the starting node S of paths of 

type <Strings>}* 

Moreover, X is different from the other <integer> nodes because it 

[-has <polarity> <<double> v.s. <double> > chance to be the starting node S of paths of 

type <Strings>]* 

Example: 

uid2241 is one of the only 8 mafiyas in the dataset (which contains a total of 42 candidates) that 

-has smaller than 1.042% chance to be the starting node S of paths of type “S has some 

member participating in some social event”, and 

-has smaller than 0.01% chance to be the starting node S of paths of type ”S hired some 

killer who has phone number recorded”, and 

-has larger than 2.21% chance to be the starting node S of paths of type “S has some 

member who is also a member of other mafiya group” 

Moreover, uid2241 is different from the other 7 node(s) because it 

-has relatively higher (10% v.s 0%) chance to be the starting node S of paths of type “S 

has some member who is a perpetrator”  
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Appendix III: 2-class explanations provided for human subjects for Task 2 

(The crime participants are Uid4542, Uid4502, Uid3655) 

 

 

Uid707 is one of the only 4 mafiyas in the dataset (which contains a total of 42 candidates) that 
–never has some member who is the sender of a communication event  
–has some member planning to do something  
–never hired some killer  

Uid3655 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has a leader who paid some money to somebody  

Also , Uid3655 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that  
–has a leader who is the recipient of a communication event  
–has a leader who is the member of some other mafiya  

Uid3695 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–never has some member participating in some meeting 
–has some member paying some money to somebody  
–never hired some killer who paid some money to somebody  

Uid4582 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has a middleman who is a member of some mafiya  
–never has some middleman participating in some meeting  
–has some member receiving some money from somebody 

Uid4542 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has some member who is the victim for a murder event  

 Also, Uid4542 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has some member who observed a murder event  

 Also , Uid4542 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has a leader who is also the leader for other mafiya group  

Uid1474 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has some middleman participating in some meeting  
–never has some member who is the sender of a communication event  
–never has some middleman also working as a middleman for other mafiya  

Uid4502 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has a member who ordered a contract murder 

 Also , Uid4502 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has some middleman planning to do something  
–never has some middleman who is the sender of a communication event  

Uid2121 is one of the only 3 mafiyas in the dataset (which contains a total of 42 candidates) that 
–never has some member who is the recipient of a communication event  
–never hired some killer  
–has some member planning to do something  

Uid2888 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has a leader who is the sender of a communication event  
–never has a leader who participated in some meeting  

Also , Uid2888 is one of the only 12 mafiyas in the dataset (which contains a total of 42 
candidates) that 

–never has some member participating in some meeting  
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Uid5349 is the only 1 mafiya in the dataset (which contains a total of 42 candidates) that 
–has some middleman participating in some meeting  
–never has some member participating in some meeting  

 Also , Uid5349 is one of the only 10 mafiyas in the dataset (which contains a total of 42 
candidates) that 

–has some middleman who is the recipient of a communication event  
 

3-class explanations provided for human subjects for Task 3  

 

Uid3695 is one of the only 4 mafiyas in the dataset (which contains a total of 42 candidates) that 
– has some member paying some money to somebody  
– never has some member who is the sender of a communication event  
– has some member planning to do something 

Moreover, Uid3695 is different from the other 3 mafiyas because it 
– has a leader who has some phone number recorded, while others didn't 
– has a leader who has some bank account recorded, while others didn't 
– never has some member who is the recipient of a communication event, while others did 

Uid1474 is one of the only 4 mafiyas in the dataset (which contains a total of 42 candidates) that 
–never has some member who is the sender of a communication event 
–has some member who received some information from somebody  
–never has some member participating in some meeting including a information sender 

Moreover, Uid1474 is different from the other 3 mafiyas because it 
 –has some middleman who has phone number recorded, while others didn't 
 –has some middleman who has some bank account recorded, while others didn't 

Uid5349 is one of the only 3 mafiyas in the dataset (which contains a total of 42 candidates) that 
–never has some member participating in some meeting  
–never hired some killer 
–never has a leader  

Moreover, Uid5349 is different from the other 2 mafiyas because it 
–has some member receiving some money from somebody, while others didn't 
–has some middleman who is the recipient of a communication event, while others didn't 
–has some middleman participating in some meeting, while others didn't 

Uid4582 is one of the only 5 mafiyas in the dataset (which contains a total of 42 candidates) that 
–has some member receiving some money from somebody  
–never hired some killer 
–never has some middleman participating in some meeting  

Moreover, Uid4582 is different from the other 4 mafiyas because it 
–has some middleman who has phone number recorded, while others didn't 
–has some middleman who has some bank account recorded, while others didn't 
–has a member who is the middleman of some mafiya, while others didn't 

Uid2888 is one of the only 3 mafiyas in the dataset (which contains a total of 42 candidates) that 
–never has some member participating in some meeting  
–never hired some killer  
–never has some middleman  

Moreover, Uid2888 is different from the other 2 mafiyas because it 
–has some member receiving some money from somebody, while others didn't 
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Uid707 is one of the only 4 mafiyas in the dataset (which contains a total of 42 candidates) that 
–never has some member who is the sender of a communication event  
–has some member who received some information from somebody  
–never has some member receiving some money from somebody  

Moreover, Uid707 is different from the other 3 mafiyas because it 
 –never has some member whose phone number is the receiving number of a communication 
event, while others did 

Uid2121 is one of the only 8 mafiyas in the dataset (which contains a total of 42 candidates) that 
–never has some member receiving some money from somebody  
–never hired some killer 
–never has some middleman  

Moreover, Uid2121 is different from the other 7 mafiyas because it 
–has some member who sent some message to some people, while others didn't 

Uid4502 is one of the only 10 mafiyas in the dataset (which contains a total of 42 candidates) 
that 

–never has some member receiving some money from somebody  
–never hired some killer 
–never has some member who is a perpetrator  

Moreover, Uid4502 is different from the other 9 mafiyas because it 
–has some middleman participating in some meeting, while others didn't 
–has a member who ordered a contract murder, while others didn't 

Uid4542 is one of the only 2 mafiyas in the dataset (which contains a total of 42 candidates) that 
–has a leader who is the sender of a communication event  
–never has a leader who is the member of some other mafiya 
–never has a leader who is the perpetrator  
Moreover, Uid4542 is different from the other 1 mafiya because it 
–has some member who is the sender of a communication event, while the other one didn't 
–has some member participating in some meeting, while the other one didn't 
–has some member planning to do something, while the other one didn't 

Uid3655 is one of the only 4 mafiyas in the dataset (which contains a total of 42 candidates) that 
–has some member paying some money to somebody  
–never hired some killer  
–has some member receiving some money from somebody 

Moreover, Uid3655 is different from the other 3 mafiyas because it 
–has a leader who is the recipient of a communication event, while others didn't 
–has a leader who paid some money to somebody, while others didn't 
–never has some middleman, while others did 

 

 


