
Exploiting a Search Engine to Develop More Flexible Web Agents

Shou-de Lin
Computer Science Department,

 University of Southern California
sdlin@isi.edu

Craig A. Knoblock
Information Sciences Institution

University of Southern California
knoblock@isi.edu

Abstract

 With the rapid growth of the World Wide Web, more
and more people rely on the online services to acquire
and integrate information. However, it is difficult and
time consuming to find the online services that are
perfectly appropriate for a given task. First, the users
might not have enough information to fill in the
required input fields for querying an online service.
Second, the online service might generate only partial
information. Third, the user might want to query the
information about B by some input set A, but he or she
can only find the online services that generate A from
B. Ideally one would like an intelligent web agent to
still unearth complete and accurate information
despite these imperfect sources. In this paper we
propose a framework to develop flexible web agents
that handle these imperfect situations. In this
framework we exploit a search engine as a general
information discovery tool to assist finding and
pruning information. To demonstrate this framework,
we implemented two web agents: the Internet inverse
geocoder and address lookup module.

1 Introduction

In general web agents adopt two strategies to gather
information from the Internet. The first is to rely on a
search engine, e.g. many question answering (QA)
systems extract answers from search results [6, 19]. The
second is by querying appropriate online services, e.g. a
web agent that gathers geographic data usually queries the
online geocoder for the latitude/longitude (lat/long)
corresponding to a given address.

In this paper, we define an online service as an Internet
service that provides an interface for the users or agents
to interact with its internal program for relevant
information. The tasks performed in the internal program
can be as simple as querying its local database or as
complicated as integrating various information from
different sites. Nonetheless, the users or web agents tend
to view the internal functionality as a black box (see
Figure 1) since the internal process is unknown. The
agent has to provide an input set x1… xm and the online
service will accordingly generate output set y1… yn. For

instance the geocoder site1 is a typical online service in
the sense that (x1… xm) represents an input address while
(y1… yn) is the corresponding latitude and longitude.

Figure 1: The Online service as a black box

These two information-gathering strategies, either
utilizing the search engine or querying an online service,
are diverse in many aspects. First of all, the information
found via these two strategies is different. Search
engines surf through many online documents; however,
the drawback is that they are incapable of acquiring
information from online services. For example the web
agent that utilizes the search engine cannot uncover the
lat/long given the address. On the other hand, an online
service, usually designed for providing certain types of
information, supplies only domain-specific data and thus
cannot be applied as general as a search engine.

Moreover, the characteristics of inputs/outputs show
some divergence. While utilizing a search engine, the
web agent has flexible keywords as inputs. However, the
inputs required for the agents to interact with online
services are usually restricted. The online service
accepts only a certain type of data (e.g. the zip code can
only be a five-digit number) and sometimes there are
implicit constraints or correlation among inputs (e.g. for
city and state, there is no New-York in California). The
outputs are also organized differently: the outputs of a
search engine are arbitrary documents, structured or
unstructured. On the other hand the outputs of online
services usually have a structured or semi-structured
format and in most cases can be extracted easily and
precisely by a wrapper [16].

This paper describes the idea of the flexible web agent,
whose goal is to integrate these two strategies to exploit
the strength of each. There are two potential prospects of
integration, the first is to keep using online service as a
core information-seeking approach in a web agent and
apply the search engine as an auxiliary tool to handle the

1 http://geocode.com/eagle.html

…
..

f(x1… xm) = (y1… yn) …

.

x1

xm

y1

yn

limitations of the online sources. The second is to
enhance the facility of a search engine for interacting
with the online service to improve the recall rate of
search results. In this paper we will focus on the first one.

2 Limitations of online services

In this section we address three potential limitations
of the online services. Ideally an intelligent web agent
should have the capability to generate high quality
outputs even if these limitations exist.

The first limitation is the existence of required inputs.
Most online sources require valid input fields to
initialize the service. For instance in AnyWho 2 white
page site, the last name and the residential state of a
person is required and no phone number will be
generated if any one of them are left blank. These input
fields are defined as “required inputs”. An intelligent web
agent has to handle the situation of missing required
inputs in the sense that its user, even short of some
required input information, might be capable of providing
auxiliary data with the hope to still get results with a
certain level of accuracy. For instance, the users might
expect an intelligent web agent to find the potential
phone numbers of their childhood neighbors even they do
not know which state these neighbors are currently in.

The second limitation is the incompleteness of the
output. In many cases the online services are incapable of
returning all the information their users are looking for.
The users would like, in the ideal world, an intelligent
web agent that automatically fills in the missing
information. For example, the web agent that utilizes
Yahoo Yellowpage site 3 can get a company’s phone
number, city and state information given its name. But
this agent cannot satisfy the users that require the zip
code. An intelligent web agent could automatically
exploit other sources to improve its recall rate if the
current results are not sufficient for the users.

The third limitation is lack of reversibility. The
majority of the web agents have online sources that
provide only one-way lookup services. For instance,
although there are online Geocoder services that can
transform an address to its corresponding lat/long, we
find no online service performing the inverse task to get
an address from the lat/long. Resolving inverse queries
given only the forward lookup service is a challenging
non-deterministic task. Theoretically it is solvable by the
exhaustive search since the discrete input domain is
finite, but in practice it is usually computation intractable.
The users, again, prefer a magic web agent that can

2 http://www.anywho.com/wp.html
3 http://yp.yahoo.com

somehow handle the inverse query even though there
exists only the forward service.

3 Web agents that handles imperfect sources

In this section we describe a framework to develop
flexible web agents that are adaptive to the above three
limitations. The key idea is to exploit a search engine as
an auxiliary tool that generates required information.

3.1 The assumption

Our approaches are appropriate for the agents utilizing
imperfect online services that have inputs/outputs
satisfying the following assumption: Given E={e1… en}
is an input or output set of an online service, then

, a non-empty set ' () '! { }i ie E E subset E and E e∀ ∈ ∃ ∈ = s.t.

all the elements in the set {E’,e i} appear somewhere in
at least one document that can be found by a search
engine.

This assumption captures the idea that the elements in
the input set are correlated with each other in the sense
that we can use some of them to index the others through
a search engine. The same assumption applies to the
output set as well. The inputs and outputs of a typical
online service usually satisfy this assumption. For
instance, the (title, director, cast) as the inputs to a movie
site; the (street number, street name, zip code) as the
outputs to a theater or restaurant lookup services and
inputs to a map lookup page; the (title, author, publisher)
as the inputs and outputs to an electronic library.

Our assumption is similar to the fundamental
assumption behind all keyword-indexed information
retrieval systems. It is a reasonable assumption in view of
the fact that the inputs themselves are used together to
query a set of outputs. So these inputs are to the least
extent correlated with each other through the outputs, and
in many cases the correlations are even stronger.

However, we do not assume similar correlation to
occur between inputs and outputs, which would be a much
stronger assumption than the one we made and
conceivably can be satisfied in fewer cases. In other
words the assumption does not necessarily hold if the set
E is the union of input and output sets. Take a geocoder
for example: the inputs (address) and outputs
(latitude/longitude) usually do not appear together in any
documentation that can be found by a search engine.

3.2 Handling input and output limitations

To deal with the first two limitations of an online
source, we propose an idea of utilizing the search engine

as a preprocessor and postprocessor to generate
potential candidates for the missing input and output
fields.

Figure 2 shows the framework of developing a web
agent that copes with missing required inputs. We exploit
a search engine as the pre-processor to generate the
required inputs. There are three stages for generating the
required inputs. The first is the keyword-generation stage.
In this stage the agent uses incomplete input data to form
a set of keywords to the search engine: Given an
incomplete set of inputs x2… xn (x1 is the missing but
required input), the web agent can formulate the strictest
keywords by putting them in one group
(keyword=”x1,x2… xn”). Alternatively it is feasible to
relax the keyword by putting one quote on each and
combining them (keyword=”x1”,”x2”,… ”xn”). It can also
drop some inputs to make it less strict
(keyword=”x1”,”x2”,… ,”xi”, i<k). Additionally one can
apply the “keyword spices” [20] approach to build domain
specific searches through a general purposed search
engine by adding some auxiliary keywords in this stage.
The second stage is to call the search engine with one of
the generated keywords. The third stage is to extract the
potential candidates for the missing inputs x1 from the
documents returned by the search engine. While the
candidates for x1 are generated, the agent can then query
the online services. Note that multiple candidates of x1
could be generated, thus the web agent will return a set of
plausible results instead of just one. It is preferable since
the user might want more choices given some key
criteria are missing.

Figure 2: The framework for exploiting a search

engine to handle missing required-input X1

Let us look at an example: Given a movie service that
takes “director name”, “leading actor”, and “leading
actress” as inputs and outputs the movie title. If our agent
is given only partial inputs “leading actor=P1, leading
actress=P2” but not the required “director name”, it will
formulate different keywords (“P1 P2”, “P1” “P2”, “P1”,
or “P2”) to the search engine and extract all the potential
director names Dk from the returned documents. Then
the input sets (P1,P2,D1),… ,(P1,P2,Dk) will be applied
to query the movie service one by one (conceivably the
service will not return anything meaningful for the wrong

combinations) and the user will be happy to see all the
directors and movie titles returned based on P1 and P2.

The same concept can be applied to discover the
missing outputs by utilizing these three stages as the
post-processor to the online service.

In the third stage we perform an Information
Extraction (IE) task, whose goal is to extract relevant
facts from a document [17]. It is the most challenging
step in our framework thus we would like to address
some applicable IE approaches. One traditional method
for IE is to apply natural language process techniques,
which have been studied for decades [23]. Alternatively
we can use wrapper technology to automatically wrap
semi-structured pages [15]. Besides, machine learning
techniques are widely used in learning the extraction
rules and it is applicable for both semi-structured or non-
structured sources [9, 16, 21].

In general extracting precise information from
arbitrary web documents is challenging. However, in our
framework, we need only required inputs or incomplete
outputs. These input and output data usually follow some
patterns (e.g. there are patterns for address, email and
phone) and can be extracted by similar techniques applied
to named-entity tagging problems. The methods using
Hidden Markov Models [3], Rule-based systems [11], or
Maxima Entropy Models [4] to extract names, time, and
monetary amounts are applicable approaches to our IE
stage. Another factor that makes our IE stage not as
difficult as a typical IE problem is that the precision of
the IE result is not critical since the backend online
service can be treated as a evaluation engine that filters
out the incorrect or irrelevant inputs generated from the
IE engine.

Due to the fact that the pattern is known and the
precision is not as important as recall in our IE stage, we
present a suitable IE method as formatting the pattern
instantiation problem into an AI Constraint Satisfaction
Problems (CSP) by modeling the pattern as set of
constraints. The advantage of formatting an IE problem
into a CSP is that we don’t need to explicitly program
how to extract each individual field in the pattern. Instead
we tell the CSP engine what the pattern looks like and the
CSP engine will look for all the matched instances for us.
Also we can easily control the recall and precision rate
by manipulating the constraints: strict constraints imply
high precision (and low recall) while sparse and loose
constraints raise the recall at the cost of precision. This
CSP approach simplified the implementation of our IE
stage since for a recall-driven problem, it is not
necessary to exhaust ourselves to conceive all the
precise constraints. As will be shown in section 4.2, with
a backend online service as a verification component, we
can successfully generate the missing address fields by
this approach.

3.3 Handling inverse queries

The third limitation of online services is that most of
them accept only one-way queries. In this section we
propose a framework to construct a web agent that
answers inverse queries from the forward services.

The challenge of constructing a reversible service lies
in the fact that the original resource (online service) is an
unknown one-way function. We first give a working
definition, borrowed from cryptography, to the one -way
function [2]:
Definition: A function f from a vector space X to a
vector space Y is called a one-way function if f(x) is
“easy” to compute for all vectors x X∈ , but for a
random vector ()y f x∈ it is computationally
infeasible to find any x X∈ such that f(x) = y

In general there is no shortcut to find out the x that
satisfies f(x) = y given y if the f(x) is a black box. The
only way is to try the candidates in X one by one until a
match is found. This is also the basic assumption behind
information security and key encryption/decryption [2]:
the non-deterministic inverse function plus a immense
input domain limit the chance of successful cracking
(find x that satisfies f(x) = y) to almost zero.

Not knowing what is inside the black box for an online
service, the only thing we can do to improve the
performance of inverse mapping is to reduce the “trial
and error” testing domain. In this scenario the search
engine plays a role as a heuristic generator, which
provides the most plausible input candidates.

Originally the “trial and error” method has input
cardinality as huge as the cardinality of the cross product
of all input fields |x1|*|x2|*… *|xn|, where |xk| stands for
the cardinality of a certain input field. There are two
steps for reducing the search domain in our framework.
The first step is to check if there exist online services
that map the output y to some individual input field. If
there are services that takes y or a subset of y as inputs
and generate partial set of x, say x1 to xk, then the “trial
and error” cardinality will be cut to |xk+1|*|xk+2 |*… *|xn|.
The second step is to utilize the identified input fields
x1… xk to indicate remaining input fields xk+1… xn in a
search engine.

For example, assume M is an one-way online movie
service that enables the users to search for a movie title
by its leading actor, actress and director. To perform the
inverse query (in other words to find out the leading
actor, actress and director given a movie title), the very
naïve way is to test all the combination of actors,
actresses and directors in the world and check which
combination generates the given movie title. This naïve
method has the testing domain as large as

|Director|*|Actor|*|Actress|. However, in step one we can
first check if there are online services that map the
movie title to some of its individual inputs (director,
actor, or actress). Assume we have found a service that
maps the movie title to its director. Then the cardinality
of search space is reduced to |Actor|*|Actress|.

According to our fundamental assumption that the
inputs are more or less correlated, heuristically in the
“trial and error” period we would like to give a higher
priority to the input set that has elements associated with
one another. In our second step the search engine plays a
role as this heuristic engine in the following manner.
First use the identified director name as a keyword to
indicate and extract the associated actors in the search
engine. Afterwards, each pair of (director, actor) can be
used as the keyword again to index the associated
actresses. Eventually a set of plausible inputs fields will
be generated and the cardinality of this set is |Actor given
Director|*|Actress given Director and Actor)|. The |X
given Y| represents the cardinality of X returned by the
search engine given Y is used as the keyword.
Conceivably the number of actors associated with a
director is much smaller than the total number of actors
in the world. The number of actresses associated with a
given director and actor should be smaller as well. In this
scenario the search engine plays a role as a heuristic
function to guide the “trail and error” testing, we can also
say that it reduces the size of testing domain. The size of
test domain in general can be reduced to |x1|*|x2 given
x1|*… *|xn given xn-1 xn-2… . x1| by applying only the second
step even no suitable online service can be found in the
first step.

In practice for each value indexed by the search engine,
we have to record the keywords that were used to index it
(e.g. Jean director=John,actor=Tom represents that the actress
Jean is indexed by the director John together with actor
Tom by the search engine). Finally the complete inputs
(e.g. John=director, Tom=actor, Jean=actress) are
generated to query the online service, one after the other,
until a match of the output is found.

4 Case Studies

We implemented two web agents, the internet inverse
geocoder and address lookup module to demonstrate our
framework.

4.1 The inverse geocoder

The inverse geocoder is a web agent realizing the idea
of developing inverse service by its forward source. We
developed it by integrating the search engine with the

online resource (Mapblast4) to transform the geocode
into its equivalent address including the closest street
number.

The inverse geocoder consists of three parts: The zip
finder, the street name finder, and the street number
locator since a typical address in the Unite States can be
uniquely identified by these three types of information.

Zip finder: The corresponding zip code of a given
geocode can be found in Mapblast site. Mapblast_Maps
has the feature of displaying the map centered at a
geocode given by its user. While checking the source
code of this map page, we can find a hidden field “zip”
that contains the zip code. Our zip finder sends the
lat/long to this Map service and wraps the zip code.

Street name finder: The street name finder discovers
the street name of a given geocode by manipulating the
inputs to the Mapblast_Direction. Mapblase_Direction is
a service that returns the driving direction (in both text
format and graph) from a user-specified starting point to
an ending point. In its advanced search it allows the user
to use latitude and longitude to identify a point.

The street name finder uses the original latitude and
longitude as the starting point to the Mapblast_Direction.
For the ending point, it uses the same latitude but slightly
modifies the longitude to longitude -0.001 (see Figure 3).

By slightly modifying the departure geocode as the
destination point, it essentially asks the system to
produce the driving direction from the original lat/long
to a place that is really close to it. Conceivably the street
name returned in the driving direction is the street name
of that lat/long (see Figure 4). The system also extracts

4 http://www.mapblast.com

the street direction since it is useful in “street number
locator”.

The zip and street name finder realizes the idea we
proposed in the first step of section 3.3: to use online
services to acquire partial inputs from the outputs.
Although there is no service that explicitly provides the
mapping from lat/long to zip code or street name, we are
capable of manipulating some related services to acquire
the information in need.

Street number locator: This locator brings the
search engine into play to prune the size of “trail and
error” domain of the street number. It realizes the idea of
the second step shown in section 3.3 by applying the
search engine as a heuristic function to guide the “trial
and error” procedure.

As the street name and zip code are known, a
straightforward method to locate the street number is to
use two valid street numbers as reference, geocode them
and apply interpolation (given the address is in between
two reference points) or extrapolation (given the address
is not in between two reference points) method. For
example, to locate the street number of the geocode
(33.980344, -118.440268) given the known street name
“Admiralty Way” and zip code “90292”, we can first use
the available forward service to find the lat/long for
arbitrary two reference addresses on the same street. For
instance, “4000 Admiralty Way, 90292” has geocode
(33.981569, -118.459910) and “5000 Admiralty Way,
90292” has (33.979176, -118.452240). Then we
introduce the interpolation method on latitude or
longitude5 to find the target street number as 4511. The
interpolation equation is shown in Figure 5. Since in the
real world the street number is not uniformly distributed,
it is necessary to repeat the same procedure iteratively
until convergence.

5 Whether using latitude or longitude for interpolation depends on

the orientation of the street, for a north-south street, the latitude
is used, otherwise the longitude is applied.

Figure 3: The inputs of street name finder

Figure 4: The output of the driving direction

Ref_ street_num1 Ref_street_num2

Ref_latitude1 Ref_latitude2Input_latitude

Target_street_num

Target_street_num=Ref_street_num1+(Input_latitude-Ref_latitude1)
*(Ref_street_num2-Ref_street_num1) /(Ref_latitude2-Ref_latitude1)

Figure 5 Interpolation on latitude

The tricky part of this approach lies in choosing the
first two valid reference points. Randomly picking street
numbers is not efficient due to the variety of the street
numbers. Some streets have valid street numbers only
from 1 to 100 (e.g. Mason St, Coventry, CI) and others
have valid numbers between 34000 to 38000 (e.g. Ridge
Rd, Willougby, OH). To resolve this problem we applied
the search engine as proposed in section 3.3 to reduce
the cardinality of the street number domain. The idea is
that the street numbers indexed by the street name and
zip code through the search engine are usually valid
street numbers for that street name and zip. Figure 6
shows one of the result returned by the Yahoo6 search
engine while using a street name “Admiralty Way” and
zip code “90292” as the keyword. The street number
locator extracts the street number returned by Yahoo
(4676 in this case) as the reference points.

Performance: We tested our inverse geocoder on 100
different lat/long and Table 1 shows the average times
each service is called. For most of our test cases the
search engine found two valid street numbers, which
enabled the system to call the forward geocoder as few
as three times (two for geocoding the reference points
and one for verifying the result). Assume it costs 5
second to query each service, it takes on the average
(1+1+1+4.7)*5=38.5 seconds to accomplish the inverse
task. This performance is acceptable. There are three
testing cases that the street number cannot be found by a
search engine and thus our agent had to perform binary
search for valid street numbers, which takes the agent to
execute the forward geocoder on an average of 10 more
times to discover one valid reference. The experiment
data show that integrating the search engine is a
promising method to handle inverse query since it
significantly shrinks the size of “trail and error” domain.

6 http://www.yahoo.com

Table 1. Number of times each service is called

Online services Number of Times
called

Mapblast:Map 1

Mapblast: Direction 1

Yahoo Search 1
Mapblast:forward

geocoder 4.7

Compared with the generic offline inverse geocoders,
which tackle this problem by the geographic methods and
numerical analysis based on a fairly large spatial database,
our approach basically relies on integrating information
from the online service and the search engine. Notably in
our approach neither a local database nor intensive
computation is required. Moreover, the implementation
time and expenditure is much lower than generic
approaches. The zip finder and street name finder also
show the fact that there is plentiful information hidden
on the Web, only one has to create ways to find it.

4.2 Address lookup module

The address lookup module is built as the pre-
processor or post-processor for a web-agent to fill in the
missing part of any online service that has addresses as
the inputs or outputs.

This module has seven optional input fields: entity
information, street number, street name, apartment
number, city, state, and zip code (see Figure 7). It has
seven identical fields as outputs. The idea is to utilize a
search engine with the known values to find the missing
fields. Note that in addition to the address, the user can
provide any other necessary information in “entity
information” field and this auxiliary information will be
treated as the keyword to the search engine as well. The
address lookup module has three phases as discussed in
section 3.2.

Figure 7 The interface of address lookup module

The keyword-generation stage takes the inputs to
generate the keywords from the strictest one to the

Figure 6: The association between
street number, street name and zip

loosest one. In the search phase the module uses the
keyword to extract relevant pages. Then it sends the top
100 ranked documents returned by the search engine to
the third phase. The third IE phase is designed to extract
the potential candidates of address from these documents.
The addresses of the United States form a regular pattern:
a street number followed by a street name followed by an
apartment number, then the city, state, and zip (Figure 8).

Given this pattern, we can format this address
extraction problem into an equivalent constraint
satisfaction problem (CSP) as discussed in section 3.2.
In the corresponding CSP problem, the starting positions
of each field (x1… .x6 in Figure 8) in a document are
variables. The constraints come from the order shown in
the pattern (e.g. since city is followed by Apt#, so x4-
x3>=0) as well as the inherent characteristic of each
input type (e.g. zip codes are numbers of 5 digits, or state
names have at most two words). By representing this
pattern as a set of constraints, our CSP engine can
generate all the consistent variable sets of (x1… x6) that
satisfy these constraints, e.g. (4,6,10,15,22,24) and
(123,124,128,128,130,130)… etc. Each solution
indicates a position of a potential address pattern in the
document. In our system defining precise constraints are
not necessary. Our IE stage emphasizes on improving the
recall since we have a backend online service as a
verification tool to filter the imprecise outputs.

For evaluation, we use our module as the preprocessor
to fulfill the required input address of the online
WhitePage service 7, which outputs the phone-number
given the address. We evaluate our module by examining
if the returned phone number is correct. We have tested
our module under 2 different scenarios for 50 valid
addresses. Half of them missed the street name while the
other half did not have both city and state information.
Table 2 shows that with the street number and city/state
information, in 70% of the cases our module can still
find the correct phone number. The task is simpler (90%
accuracy) for our module while the missing fields are
city and state. We then apply our module as post-
processor to Yahoo Yellowpage8, which does not provide
the zip code as the output. Table 2 shows that our module
can recover the zip information perfectly. The results

7 http://www.whitepages.com/address-lookup
8 http://yp.yahoo.com/

demonstrate that our framework is applicable in
designing flexible web agents that are adaptive to the
required-input and incomplete-output limitations.

Table 2. Accuracy of address lookup module

Test sets Accuracy

Without street name 70%

Without city and state information 90%

Yellowpage without zip code 100%

5 Related Work

The idea of exploiting the functionality of search
engines resembles Etzioni’s information food chain [8],
in which the search engines are located in the middle of
the food chain and there are goal-oriented softbots
(software robots) built on top of them. MetaCrawler [7]
is a meta-search engine built on top of several search
engines. Citeseer [12] is an autonomous web agent that
utilizes search engines for retrieving and identifying
publications. WebSuite [5] has its own search engine that
can accept not only keywords but also the criteria of the
connection between pages (e.g. finding a web page that
comes from page P via link N). Also most of the
question and answering (QA) systems utilize the search
engine [6, 14]. However, these agents operate the search
engine as the major tool for inquiring information and
they do not usually integrate it with the other sources. In
our approach the online services are still the major tool
of acquiring information while search engine plays a
supporting role in providing the extra information and
reducing the input cardinality for inverse service.

On the other hand many information integrating
platforms made efforts toward integrating various online
services such as ShopBot [18], the Information Manifold
[1], Ariadne [13], and Occam [22]. These systems aim at
resolving different issues of integrating data from the
web such as information resource selection and
modeling, view integration from distributed sources, and
handling the inconsistency among sources. However
none of them are focused on generally fixing the
limitations (especially the non-reversibility) of the
sources. In these platforms the search engine are rarely
being integrated.

Although it is feasible to integrate another online
resources instead of a search engine to resolve the
required-input limitation, such as an information
integration agent [10] does. However, our approach of
integrating a search engine into a web agent is more
appropriate in terms of handling the missing information:
It is more flexible and effort saving since we are not
necessary to find the source that fits the requirement

s# sname apt# city state zip

x1 x2 x3 x4 x5 x6
Figure 8 : The pattern of US address

pattern

perfectly. Furthermore, it is more robust and less risky
since the search engines are more stable than the online
services. It is because that every time an online service
changes the contents, formats, or interfaces, people have
to fix their web agents to adapt to these changes.
Unfortunately, online services change every now and then.

6 Conclusions

In this paper we provide a new framework for
developing flexible web agents that overcome the
required-input and incomplete output limitations of
sources by exploiting the search engine as the pre-
processor or post-processor. Moreover, we propose an
idea of applying a search engine to reduce the cardinality
of the trial-and-error domain while answering the inverse
query from its forward service. Our approaches can be
applied not only to web agents but any type of agents that
have sources of similar limitations . We implemented two
web agents as the demonstration to our frameworks. Our
inverse geocoder is the only web agent that accomplishes
the inverse geocoding task without employing any local
database or intensive computation. The address lookup
module demonstrates a flexible and reusable component
that can be plugged into a variety of web agents that uses
addresses as inputs/outputs. We also present the idea of
resolving a certain type of information extraction
problems by translating it into an equivalent constraint
satisfaction problem. Our address lookup module shows
that this approach simplifies the implementation and fits
perfectly in recall-driven IE tasks.

7 References

[1] A. Y. Levy, A.R., and J. J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. in Intl. Conference on Very Large Data
Bases (VLDB). 1996.

[2] Alfred J. Menezes, P.C.v.O., Scott A. Vanstone, Handbook
of applied Cryptography. 1996: CRC Press.

[3] Bikel, M. Nymble: a high-performance learning name -
finder. in Fifth Conference on Applied Natural Language
Processing. 1997: Morgan Kaufmann Publishers.

[4] Borthwick, e.a. Description of the MENE named Entity
System. in the Seventh Machine Understanding
Conference (MUC-7). 1998.

[5] C. Beeri, G.E., T. Milo. WebSuite -- A Tool Suite For
Harnessing Web Data . in WebDB98. 1998. Valencia, Spain.

[6] C. Kwok, O.E., and D. S. Weld. Scaling question
answering to the web. in 10th world wide web conference.
2001.

[7] Erik Selberg, O.E. Multi-Service Search and Comparison
Using the MetaCrawler. in 4th International World-Wide
Web Conference. 1995.

[8] Etzioni, O. Moving Up the Information Food Chain:
Deploying Softbots on the Worldwide Web . in Proc. 13th
Nat'l Conf. Artificial Intelligence (AAAI 96). 1996. San
Mateo, Calif: AAAI Press.

[9] Freitag, D. Information extraction from html: Application
of a general learning approach. in the Fifteenth
Conference on Arti cial Intelligence AAAI-98. 1998.

[10] Genesereth, M.R., Keller, A. M., Duschka, O. Infomaster:
An Information Integration System. in Proceedings of
1997 ACM SIGMOD Conference. 1997.

[11] Hausman, G.R.K.a.K. IsoQuest Inc: Description of the
NetOwl "Fext Extraction System as used for MUC-7". in
Seventh Machine Understanding Conference. 1998.

[12] K.D. Bollacker, S.L., and C. Lee Giles. CiteSeer: An
Autonomous web Agent for Automatic Retrieval and
Identification of Interesting Publications. in 2nd
International ACM Conference on Autonomous Agents.
1998.

[13] Knoblock, C., Minton, S., Ambite, J., Ashish, N., Muslea, I.,
Philpot, A. and Tejada, S, The ARIADNE Approach to Web-
Based Information Integration. International Journal of
Cooperative Information Systems, 2000: p. 145--169.

[14] Li., R.S.a.W., Information extraction supported question
answering. Proceedings of the 8th Text Retrieval Conference,
1999.

[15] Muslea, I. Extraction patterns for information extraction
tasks: A survey. in AAAI-99 Workshop on Machine
Learning for Information Extraction. 1999.

[16] N. Kushmerick, D.W., R. Doorenbos, Wrapper induction
for information extraction. Proc. of 15th International
Conference on Artificial Intelligence, IJCAI-97, 1997.

[17] Pazienza, M.T., Information Extraction: A
multidisciplinary Approach to an Emerging Information
Technology, in volume 1299 of Lecture Notes in Computer
Science, International Summer School, SCIE-97. 1997:
Frascati (Rome), Springer.

[18] R.B.Doorenbos, O.E., and D.S.Weld. A Scalable
Comparison-Shopping Agent for the World -Wide Web. in
First International Conference on Autonomous Agents
(Agents'97). 1997. Marina del Rey, CA, USA.

[19] Rohini Srihari, W.L., Information extraction supported
question answering. Proceedings of the 8th Text Retrieval
Conference, 1999.

[20] Satoshi Oyama, T.K., Toru Ishida, Teruhiro Yamada,
Yasuhiko Kitamura, Keyword Spices: A New Method for
Building Domain -Specific Web Search Engines. the 17th
International Joint Conference on Artificial Intelligence, 2001.

[21] Soderland, S., Learning Information Extraction Rules for
Semi-structured and Free Text. Machine Learning, 1999.
34(1 -3): p. 233-272.

[22] Weld., C.K.a.D. Palnning to gather information. in 14th
National Conference on AI. 1996.

[23] Wilks, Y., Information Extraction as a core language
technology. 1997, In M-T. Pazienza (ed.): Springer, Berlin.

