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ABSTRACT 

Developing systems that perform discovery presents 
unique challenges, e.g., when compared to learning programs, 
since in general there is no teacher or example library available 
to train or evaluate a discovery system. In particular, the lack of 
gold-standard methods or examples makes the verification of 
discovered results and evaluation of system performance a very 
difficult problem. In this paper we address several issues of 
verifying a machine discovery system and discuss what one 
should and should not expect from the evaluation report of a 
discovery system. Recognizing that there is no direct way to 
verify the validity of a true discovery system, this paper 
proposes several indirect strategies one can adopt to assess the 
validity of discovered results. We then present our own set of 
novel link discovery tools as a case study to show how the 
proposed concepts can be applied to verify a real-world 
discovery system. In a time where computer science research 
has become extremely evaluation driven, researchers sometimes 
shy away from areas where results are difficult to evaluate. By 
discussing these issues with respect to discovery systems, we 
hope to provide a useful overview as well as – hopefully - a 
positive and encouraging signal to attract more researchers to 
work on machine discovery problems. 

1. INTRODUCTION 
  Discovery is, by definition1, a procedure of finding out or 
ascertaining something previously unknown or unrecognized. 
Since the products of discovery are previously unknown or 
unrecognized, it is usually non-trivial to convince ourselves and 
others whether the discoveries are truly correct. In fact, many 
scientific discoveries (e.g. Copernicus’ statement that earth is 
not the center of the universe, or Fermat's Last Theorem) do 
take years or even centuries to be proven true or false. 
Machine discovery has been an important research area of 
artificial intelligence (AI) for more than twenty years. Herbert 
Simon described it as "gradual problem-solving processes of 
searching large problem spaces for incompletely defined goal 
objects” [27]. The majority of traditional machine discovery 
programs (e.g. AM [15] and BACON [14]) focus on discovering 
(or rediscovering) theories and laws in natural science. These 
programs usually rely on some pre-requisite knowledge in a 
specific domain and some more general knowledge to guide the 
search (e.g. heuristics). 
More recently, researchers have encountered another problem: 
there is more and more data available to us and we do not know 
how to make use of it.  This started a new type of discovery 
research called knowledge discovery and data mining (KDD) 
that mainly focuses on discovering and extracting previously 
unknown, valid, novel, potentially useful and understandable 
patterns from lower-level data [8]. 
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Researchers have developed various kinds of discovery systems 
that utilize many different approaches. Nevertheless, one can 
divide them into two general categories: “supervised discovery 
systems” and “unsupervised discovery systems”. Most systems 
that aim at predicting a future trend based on history data belong 
to the first category [2]. These systems are closer to supervised 
learning systems, since they have (historic) examples available 
for training. On the other hand, there are some discovery 
systems that naturally do not (and cannot) have training 
examples to use. For example, ARROWSMITH [31] is a 
literature-based discovery tool that hypothesizes the possible 
treatments of medical diseases. This type of system needs to be 
an unsupervised discovery system, since it targets diseases 
whose treatments are not developed yet. 
In general, machine discovery research faces the same 
verification problems as human discovery. Due to its 
incompletely defined goal objects, there is no universal way or 
“gold standard” to determine whether or how well a goal has 
been achieved. Nevertheless, the verification of supervised 
discovery systems is relatively easier than that of unsupervised 
systems. To verify a supervised system, one usually performs 
the same cross-validation as for a typical learning system. That 
is, a certain amount of history training data is held out and the 
system is then evaluated by seeing how well it performs on the 
held-out data. This means one can evaluate the system by 
standard recall and precision and related measures. Therefore, 
verifying a supervised discovery system (or a prediction system) 
is very similar to verifying a typical supervised learning system. 
The basic assumption underlying this verification strategy is that 
the distribution of future unseen data is the same or very similar 
to the distribution of the history [2]. Said differently, if we can 
use a part of the history to predict the other part of the history, 
then we should also be able to use the history to predict the 
future. 
This paper, however, focuses on the verification of unsupervised 
discovery systems where no training examples or historic data 
are available. The rest of the paper is organized as follows: in 
Section 2 we describe several indirect strategies to evaluate 
discovery systems. These are rediscovery, explanation-based 
discovery, exploiting independent resources, minimum 
description length and unexpectedness measures. In Section 3 
we show how recall and precision measures play a different role 
in machine discovery compared with machine learning. In 
Section 4 we use the verification of a set of novel link discovery 
tools as a case study to demonstrate how the methodologies 
described here can be applied to verify a real-world 
unsupervised discovery system.  Section 5 presents concluding 
remarks. 

2. VERIFYING DISCOVERY SYSTEMS 
In this section we describe several independent strategies to 

verify an unsupervised discovery system. For each strategy, we 
will address its strength and as well as some potential 
weaknesses.  



2.1 Rediscovery 
Since for a true discovery system there is no “gold standard” 
available to check the validity of discovered results, one 
strategy we can use in some cases is to test whether the system 
works on some domain that we already have some knowledge 
about. Rediscovery is an indirect verification procedure in the 
sense that we are testing the validity and generality of the 
program instead of the discovered results. Using rediscovery as 
a verification strategy is supported by the following reasoning: 
if the program is general enough to perform discovery 
successfully in certain rediscovery domains, and these are 
reasonably similar to the original or target domain, then there is 
a good chance that the program will also generate good results 
in the target domain. Often the rediscovery and target domains 
are the same and rediscovery simply means – as its name 
implies – automatic discovery of previously human-discovered 
results. 

Most AI researchers working on scientific discovery adopt 
this strategy to verify the value of their discovery system. Lenat  
justifies his heuristic discovery system AM by showing that it 
can rediscover various mathematic laws and concepts such as 
natural numbers and Goldbach’s conjecture [15]. Pericliev and 
Valdes-Perez justify their maximally parsimonious 
discrimination program by rediscovering several linguistic 
phenomena such as the structure of kinship-related terms in 
Seneca (originally found by Lounsbury in 1964) [32] as well as 
Greenburg’s language universal rules [22].  

The most important concern we have with rediscovery is 
with the amount, representation and use of background 
knowledge in the rediscovery domain provided to the program. 
The more domain-specific knowledge is encoded, the harder it 
is to make the claim that the discovery is a product of our 
program rather than already “built-in” via background 
knowledge which might be missing in the target domain. This is 
particularly difficult for systems that do need a significant 
amount of background knowledge to work successfully, such as, 
for example, scientific discovery systems. 

Another concern is with the claim that “since the discovery 
program works for domain X, it should also work for domain Y” 
which is only valid if the two domains are fairly similar. The 
more different they are, the weaker this analogy becomes. Even 
if rediscovery and target domains are the same, say mathematics, 
it is not known whether past discovered results are in any way 
similar to any as yet undiscovered results to be found by the 
program. 

2.2 Explanation-Based Discovery 
The idea of explanation-based discovery is to use natural 
language (or some other easily understandable expressions) to 
explain how or why the discovery is made. By providing this 
information, the users are given more data to judge whether they 
should trust the discovered results or not. Explanation plays an 
important role in many learning systems [5, 11, 24, 25]. Haynes 
suggests that users would not accept recommendations that 
emerge from reasoning that they do not understand [11] and we 
believe the same reasoning applies to discovery results as well. 
To our knowledge, however, there are only very few KDD or 
scientific discovery programs that have explanation capabilities. 
Probably the best example is Yao’s work using rough set theory 
as well as supervised classification technologies to explain 

discovered association rules [33, 34]. Knorr proposed a way to 
generate explanation for distance-based outlier mining by 
categorizing them into stronger and weaker outlier groups [13].  
Similar to rediscovery, explanation-based discovery focuses on 
verifying the methodologies instead of the results, because it 
tries to describe how and why the results are generated not 
whether the results are “correct”. Both methods assume that 
trust in a discovered result can be formed by trust in the 
underlying discovery methods. 

2.3 Exploiting External Resources 
In many complex, real-world systems, verifying whether a 
candidate solution is right or wrong takes much less time than 
generating the solution. For example, verifying the correctness 
of a proof is usually much simpler than generating the proof in 
the first place. The idea of exploiting external resources to 
evaluate a discovery system exploits this characteristic.  
Knowledge can be represented in various forms as well as 
acquired from difference sources. For example, suppose our 
system somehow discovered that “Y’s car will develop a 
problem today”. One might discredit such a result using some 
external knowledge not available to the system such as “Y is a 
3-year-old that cannot drive”. Or one might find it supported by 
observing that Y on average has to go to the garage once per 
week to fix various problems or that he just posted an 
advertisement looking for another car on the Internet. This 
shows that logical inference, statistical analysis or external 
sources such as the Web could all serve as different methods to 
verify a particular piece of knowledge. Similarly, to verify a 
discovered result, one can try to find support for it from external 
sources and reasoning independent of the discovery methods. 
The basic idea stems from the observation that for a specific 
discovery problem some resources are more suitable for 
generating the results while others are more adequate to verify 
them. In our example, it might have been impossible to make 
the discovery or prediction using Web sources, but once the 
discovery was made a focused search might have revealed the 
car-for-sale advertisement in support of the discovery.  

To exploit external resources for verification, we have to 
make sure that those resources were not explicitly or implicitly 
used to generate the discovery. In Section 4 we will describe an 
example on how the methods described above can be applied to 
verify discovered results.  

2.4 Minimum Description Length 
Minimum Description Length [29], minimal encoding length 
[16] and the principle of parsimony (Occam’s razor) [30] all try 
to formalize the notion that knowledge should be represented in 
a concise way. Information theory researchers have studied 
these measures extensively [3]. As pointed out by Milosavljevic, 
the relativity of MDL is addressed by the first central theorem 
of algorithmic information theory, which states that there exists 
a language that gives encodings of the data that are as concise as 
the encodings in any other language [20]. He also shows that the 
shortest program can give the best predictions about unseen data 
in molecular evolution patterns [19]. This concept has not only 
been used for coding and communication problems, but also 
been applied widely in machine learning research for model 
selections. To verifying discovery results, we propose to exploit 
MDL in two different ways: 



  First, if a program is designed to discover rules or patterns 
from existing data or observations, then the MDL principle tells 
us that the fewer patterns needed to describe the data the better. 
Said differently, the pattern that has higher coverage implies 
higher validity [23, 28]. In mining of association rules such as 
X Y, the concepts of support (the percentage of transactions 
that contains both X and Y items) and confidence (given the 
transactions which contain X, the probability that it also 
contains Y) [1] are used to quantify the coverage of rules. 
Sufficiency (the probability that the evidence occurs given the 
hypothesis is true divided by the probability of the evidence 
given the hypothesis is false) and necessity (the probability that 
the evidence does not occur given the hypothesis is true divided 
by the probability that the evidence does not occur given the 
hypothesis is false) can be used to measure the confidence of a 
classification rule [12] as well. 
Secondly, the MDL principle also tells us that a pattern 
discovered by a program will be more convincing if it can be 
described in a concise way. This claim is similar to applying 
Occam’s razor for learning because Occam’s razor prefers 
simple models over complicated ones. So, not only the fewer 
patterns the better, but also the simpler the patterns the better.  
History shows that scientific discovery can satisfy this MDL 
criterion. For example Maxwell’s equations play a more 
important role in physics than Faradays’ law and Ampere’s law, 
because they are more general and can explain the entire 
phenomenon that is explained by the other two. Also the 
equations are very concise:  
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However, there are several issues we have to be aware of when 
applying MDL to verify discovery results. First, in many 
discovery systems the usage described above has been 
implemented (maybe implicitly) as a heuristic to generate the 
results. In this case it is not fair to also apply it for evaluation. 
Moreover, the MDL criterion is usually not a suitable 
measurement for an instance discovery system (e.g. a system 
that tries to identify a potential suspect in a police database or a 
network intrusion event from network traffic data). On the 
contrary, an instance discovery system might prefer rich, 
“informative” instances which will require longer description 
length. 
The last concern with applying MDL as an evaluation strategy is 
that the description length is highly related to the language used 
for encoding [20]. That is, an apparently complex result with 
larger encoding length might not imply that the discovery 
strategy is poor, rather that the encoding for the knowledge or 
data might not be suitable. 

2.5 Measuring Unexpectedness 
  Intuitively, unexpected findings have a higher chance to catch 
one’s eye, but it is risky to utilize unexpectedness alone as an 
indicator for the validation of a discovery. Nevertheless, 
unexpectedness could be a sign for a discovery that a researcher 

might find interesting. Various methods have been proposed to 
measure unexpectedness either subjectively or objectively. 
Subjective measures in general require the representation of a 
user’s beliefs or background knowledge. The surprising 
discoveries are then those that bring completely new knowledge 
about a domain or that contradict current belief [21, 26]. 
Objective measures, in a nutshell, regard discovered results to 
be surprising if they are different from other candidates based 
on certain distance metrics [6, 10]. Freitas points out a variety of 
alternative unexpectedness indicators that are worth noticing 
such as “small disjuncts” (rules whose coverage is small), rules 
whose antecedent contains attributes with low information-gain, 
and the occurrence of Simpson’s paradox (that is, an association 
between a pair of variables can consistently be inverted in each 
subpopulation of a population when the population is partitioned) 
[9]. 
The major concern for this strategy is to distinguish between 
unexpected results and noise. In noisy domains, many 
unexpected findings might be due to noise. To make things 
worse, a collection of small exceptions could indicate a 
meaningful phenomenon [4] although each individual one looks 
irrelevant. The other issue is that most of the methods and 
systems we mentioned in this section are domain dependent. 
The subjective measures could carry bias and the distance 
metrics in objective measures might be hard to define in some 
domains. Finally we would like to emphasize that these 
measures, which quantify the discovered results based on certain 
criteria of unexpectedness, can only strengthen our beliefs about 
the interestingness but not necessary the validity of the 
discovery.  

3. RECALL AND PRECISION  
In this section we discuss why traditional recall and 

precision cannot and should not play a critical role when trying 
to verify a discovery system. Recall and precision are widely 
accepted ways to evaluate the performance of machine learning 
systems, for example, to measure how well a learned classifier 
classifies test instances. When applied to the discovery domain,  
recall measures how many things that are supposed to be 
discovered have been discovered. Thus, it is measurable only 
when one knows exactly what there was to be found. In this 
sense, asking an unsupervised discovery system to report its 
recall is similar to asking Isaac Newton what percentage of 
physical laws relating to gravity, etc. he has discovered so far. 
Trying to measure discovery recall unavoidably runs into a 
paradox: to measure recall one has to know what there is to be 
found, but if one already knows that then there is no need to 
build a discovery system at all. For unsupervised systems, the 
recall measurement is therefore only suitable when the 
“rediscovery strategy” is applied for verification.  

Precision, on the other hand, focuses on measuring how 
accurate the discovered results are (i.e. are the discovered 
results among those that are supposed to found). Though there is 
still no systematic way for us to compute the precision for an 
unsupervised discovery system, the concept of precision is not 
as inapplicable as recall in terms of verification. It tells us that 
the discovered results have to be at least plausible. Explanation-
based discovery, minimum description length, the methodology 
of applying external resources as well as the unexpectedness 
measures all try to assure some level of discovery precision, that 
is, was something found that was worth finding. 



It is usually unacceptable for a learning system to produce 
results of low recall and precision. However, in this section we 
would like to point out that for a discovery system, having low 
recall and precision does not necessary imply the system is 
valueless. Let us assume for the moment that there is somehow a 
way for us to know the recall and precision of a discovery 
system. Given that, what would the value of a discovery system 
be? To answer this question, we introduce a “utility function of 
discovery” in terms of precision (P), recall (R), total number of 
outputs produces by the discovery system (D), the total cases to 
be discovered (N), the expected utility value of a true discovery 
(v+), the cost of a false positive (wrong discovery) (cf+), and cost 
of a false negative (missed discovery) (cf-). The utility function 
of discovery will be equal to the total utility gain minus the 
penalty of wrong discovery minus the penalty of missed 
discovery:  

U= P • D • v+ - (1-P) •D • cf+ - (1-R) • N • cf-  
With this utility function of discovery, we can then answer the 
question what is the “value” of a discovery system. We claim 
that it is simply the difference of the utility value with and 
without the system or U - U0. U0 stands for the penalty of not 
being able to discover anything, which will be equal to the 
system with zero precision/recall. 

U - U0 = P • D • v+ - (1-P) • D • cf+ - (1-R) • N • cf- - (-N • cf- ) 
= P • D • v+ - (1-P) • D • cf+ + R • N • cf-  

 From this equation we can see that low precision can still 
produce high utility if v+ >> cf+. Similarly, low recall can 
produce large amount of utility given  cf- is very large.  
  Let us illustrate this with an example: Assuming there is a 
discovery system aiming at discovering the threat events (e.g. 
bomb or hijacking) from some database. Saying that it predicts 
the location and time for five events (D=5) but only one of them 
is correct (P= 20%). Also assuming that there are in fact a total 
of 10 true threats all over the area (N=10, R=10%) and each of 
them causes on average 1 million dollars in damage (cf-=1 
million).  Discovering a true event earns no financial profit 
(v+=0) and each wrong finding will cost 10000 dollars 
(cf+=10000) in wasted resources. According to the equation the 
value of this discovery system is 0.2*5*0 - (1-0.2)* 5 * 10000+ 
0.1* 10 * 100000= 60000 dollars. The shows that in this 
situation it is still worth 60000 dollars to develop a discovery 
system achieving only 10% in recall and 20% in precision. 
In general, a discovery system aims at finding something that 
has not yet been found, which in many cases leads to a very 
high v+ (e.g. in many science discovery tasks such as gene 
decoding or the invention of new medicines) or cf-  (e.g. in the 
domain of homeland security, credit card fraud detection, law 
enforcement, and network intrusion detection), and, therefore, 
makes high recall and precision less important. A typical 
supervised learning system requires much higher precision and 
recall, since in general its utility is lower. The above observation 
is an encouraging message to researchers working on machine 
discovery problems because it tells us that it is still worthwhile 
and important to work on machine discovery problems, even 
though true precision and recall is hard or even impossible to 
measure. 

                                                                 
 

4. CASE STUDY: VEFIFYING NOVEL 
LINK DISCOVERY TOOLS  
In this section we present a case study on how some of the 
above strategies can be applied to verify a discovery tool suite 
developed by us which we call “novel link discovery (NLD) 
tools”. We did not use the MDL strategy because they are more 
suitable for pattern discovery instead of instance discovery 
program such as our NLD tools. Note that the goal in this 
section is not to justify our specific approaches but to show how 
we can apply various indirect methods to check the validity of 
discovered results. We therefore focus mainly on the 
verification part. More detailed descriptions of our 
methodologies are published elsewhere[17, 18].  

4.1 Novel Link Discovery (NLD) Tools 
Our NLD tools are designed as unsupervised tools to discover 
interesting evidences and connections in multi-relational 
networks such as the bibliography network shown in Figure 1. 
In this case study, we will focus on how to verify three NLD 
tools that aim at discovering different type of interesting facts in 
the network: 
1. Novel loop discovery [18]: given a multi-relational network, 
find the most interesting loop path (or type of loop) in it. For 
example, we might want to find the most interesting loop that 
goes through node A1 or find the most interesting type of loop 
in the whole network. Our basic approach to this problem 
(which we call rarity analysis) is that the loops that look 
different from most others have a higher chance to be interesting.  
2. Significant node discovery [17]: given a pair of nodes, 
finding whether they are significantly connected to each other 
relative to other nodes. For example, for all pairs of nodes in 
Figure 1, find those that are the significantly connected to each 
other. The basic concept behind our solution is that two nodes 
are significantly connected to each other if there are many “rare 
paths” between them. 
3. Interesting instance discovery [18]: given an arbitrary source 
entity in a network, find entities that are most interestingly 
connected to it. For example, find the most interesting 
organizations in Figure 1 or find organizations most 
interestingly connected to node A1. The solution we use for this 
problem is to characterize each node by its semantic profile 

Figure 1: A multi-relational bibliography network



based on the nodes and paths surrounding it and extracting those  
nodes with abnormal profiles.  
In terms of verification, those tools face exactly the problems 
outlined above. In other words, if there were gold-standard 
measures for interestingness or novelty, we could simply 
implement them as our discovery tools. Since there are no such 
measures, there is no perfect way to verify our system, thus, we 
need to exploit indirect methods for verification. 

4.2 Verifying Significant Node Discovery 
We applied the rediscovery method to verify our significant 
node discovery tool. To perform rediscovery, we need a dataset 
for which we already know the solutions to allow us to test 
whether our program can rediscover them. The data we used 
came from a suite of simulated data sets developed as part of 
DARPA’s Evidence Extraction and Link Discovery program. It 
simulates a Russian Mafiya domain with a large number of 
entities involved in contract murders, gang wars and industry 
takeovers. For each dataset we are given an answer key, which 
describes higher-level information of interest that is not 
explicitly mentioned in the data but needs to be inferred from 
lower-level, incomplete and noisy simulated evidence. Using 
these answer keys we can test our program by checking if the 
significantly connected nodes it discovered are truly the ones 
that the simulator or the developers of the simulator deemed to 
be interesting. 
4.2.1 The Russian Contract Kill Dataset 
The Russian Contract Kill (or RCK) data sets were developed 
by Information Extraction & Transport, Inc. to serve as a 
challenge problem domain for different link discovery 
approaches. The data is generated by a simulator and describes 
activities of fictitious Russian Mafiya groups and the people and 
organizations they operate or come in contact with. The 
simulator has a model of high-level threat events such as 
contract murders, gang wars and industry takeovers and their 
decomposition into lower-level events (or tasks) such as 
observations, payments, wire transfers, information exchange, 
killings, etc. The hierarchy of event types used by the simulator 
is shown in Figure 2. The two highest-level (Lv5) threats are 
GangWar and IndustryTakeOver. Gang wars occur between 
mafiya groups and involve multiple contract murders. Industry 
takeovers are attempts by one mafiya group to take over an 
industry controlled by another, which also involves multiple 
contract murders. The simulator is plan-based and starts with an 
initial world state and some goals to generate a certain number 
of high-level threat events. It then hierarchically decomposes 
them into lower level subevents (or subtasks) until they bottom 
out into evidence producing actions. Most tasks can be achieved 
in multiple ways with various random choices along the way. 
Omission, corruption and noise can be used to obfuscate the 
generated evidence and correspondingly there are parameters 
one can choose to adjust the level of each. 
The output of the simulator describes a set of typed entities such 
as mafiya groups, people, victims, hit men, banks, etc. and 
relationships between them, as well as evidence of events that 
occurred such as money transactions, meetings, killings, etc. We 
can build a semantic network similar to figure 1 base on the 
given information. The link discovery goal is to discover what 
high-level threat events occurred by looking at the lower-level 
evidence. 
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Lower-Order threat

Gangwar IndustryTakeOver

MurderForHire
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Lv 4

Lv 3
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Figure 2: Russian Contract Kill data event type hierarchy 

4.2.2 Experimental results 
The RCK datasets where not designed to evaluate significant 
node discovery programs and our program was not designed to 
detect gang wars or contract murders in RCK datasets. 
Nevertheless, the information provided in answer keys can be 
used to evaluate our program. Answer keys give full 
descriptions of high-level cases such as gang wars and industry 
takeovers along with all participants such as the involved 
mafiya groups. Turning this around, we can view two mafiya 
groups involved in a high-level threat event as interestingly 
connected and then test how well our significant node discovery 
program can detect such interesting connections automatically 
looking only at low-level, incomplete evidence data. Since there 
is at most one gang war instance in each data set, it is reasonable 
to expect that the mafiya groups involved in it should have some 
interesting connections between them.  
To do this we enumerate the set of all possible mafiya group 
pairs in a dataset, calculate the node-based n-rarity for each pair 
[17], and then rank the pairs according to the computed scores. 
For example, for one of the datasets there are 42 mafiya groups, 
hence, there are 42*41/2=861 candidates pairs to evaluate. 
Ideally, the mafiya group pair involved in the gang war should 
be among the top scoring pairs. Similarly, we can do the same 
for all pairs of mafiya groups and industries to detect pairs that 
are involved in an industry takeover. 
We tested our program on six data sets turned up by different 
parameters and summarized the results in Table 1. Data set 
names are formatted as “ObservabilitySizeNoise” to indicate 
their simulator parameter settings. Observability describes how 
frequently the higher-level evidences are revealed, Size stands 
for the number of nodes and links in the data and Noise 
indicates how accurate the given evidences are. The results 
show that our program can perfectly predict the participants of 
GangWar and IndustryTakeOver events in data sets with high 
observability and no noise. In those cases the top-scoring pair 
was actually the one we were supposed to find. For data sets 
with lower observability and more noise, the relevant pair can 
still be found in the top 1-2% of ranked pairs. 
In each dataset we have on average 42 mafiya groups and 21 
industries connected to 8500 entities by 13500 evidence links; 
therefore, it would be very difficult for human beings to 
manually figure out the answers. Additionally, since our 



program was not given any background knowledge about the 
event patterns nor the semantics of entities and links, the 
experiment also assures the generality of our discovery tool (e.g., 
the program does not even know what “mafiya” or “murder” 
means). This satisfies one of the important conditions discussed 
in section 3.1, namely, that rediscovery as a verification strategy 
is most convincing if very little domain-dependent background 
knowledge is used. 
Table 1: Results for different data sets: Top 1 indicates the 
pair with highest rarity is the one we were supposed to find. 
Top x% indicates the pair we were supposed to find has the 
top x% score among all the possible pairs. There is no gang 
war in medium-size files. 

 GangWar IndustryTakeOver 
veryHighLg0 Top 1 Top 1 
veryHighMed0  n/a Top 1 
averageLg1 top1 top 0.5% 
averageMed1  n/a top 1.36% 
veryLowLg2 top 2.50% top1.6% 
veryLowMed1  n/a Top 0.4% 

4.3 Verifying novel loop discovery and 
interesting instance discovery  
Rediscovery is generally only applicable if the data is synthetic, 
historic with previously discovered results or small to allow 
manual discovery. Large real-world datasets that have known 
answers usable to evaluate a discovery program via rediscovery 
are, unfortunately, difficult to find. This section shows how we 
can apply some of the other strategies described in Section 3 to 
verify unsupervised discovery tools. 

4.3.1 The high-energy physics bibliography dataset 
The "High Energy Physics - Theory" (HEP-Th) bibliography 
dataset was provided as a test dataset for the 2003 KDD Cup. 
We translated the data into a semantic net similar to the one 
shown in Figure 1. We extracted six different types of nodes 
(entities) and six types of links (relations) from the dataset to 
generate the semantic network. Nodes represent paper IDs 
(29014), author names (12755), journal names (267), 
organization names (963), keywords (40) and the publication 
time encoded as year/season pairs (60). Numbers in parentheses 
indicate the number of different entities for each type in the 
dataset. We defined the following types of relationships to 
connect various types of nodes: 
writes(a, p) : connects author a to one of his/her papers p. 
date_published(p, d) : connects paper p to its publication date d. 
organization_of(a, o) : connects author a to an organization o they 
belong to.  
published_in(p, j) : connects paper p to journal j it appears in. 
cites(p, r): connects paper p to a paper r it cites. 
keyword_of(p,k) : connects paper p to keyword k in its title. 
These links are viewed to be directional with an implicit inverse 
link. Thus, there are a total of 12 different relations. The 
network generated is similar to the one in Figure 1, only that 
there are 43095 different nodes and 477423 links overall. 

4.3.2 Verifying interesting instance discovery 
The goal of interesting instance discovery (IID) is to discover a 
set of interesting entities in the network. Our program does this 

by first generating the semantic profiles of the nodes. A 
semantic profile contains various path types (a path type can be 
seen as a specific event a node involved) as features and the 
node’s contribution to each path type (the contribution can be 
regarded as a measurement of how deeply a node is involved in 
this event) as feature values. Then we extract the nodes of 
abnormal (different from others) profiles as interesting ones.  
In our experiments we use two different ways to evaluate the 
discovered results: (1) Examine the original network to learn the 
reason why instances are chosen as abnormal ones. Since our 
program does not have any knowledge about the semantics of 
the nodes, manually inspecting which path types contributed the 
most together with our knowledge of what these path types 
mean is a good way of evaluating whether the program has 
indeed found something interesting. This verification method 
reflects the idea of explanation-based discovery, since we are 
examining the results by explaining how and why our program 
chooses them. In the current system we still need to inspect and 
explain results manually, but ongoing work aims at generating 
such explanations automatically. (2) Use the Web as an external 
source to find supporting evidence. Since the nodes represent 
real-world entities such as people, we can “verify” the computed 
results by investigating whether they reflected a real-world, 
semantically interesting profile or connection visible through 
the World-Wide Web. This method therefore uses the idea of 
using external resources to verify discovered results. It is fair to 
apply the Web information for verification, since that 
information was not used by our discovery tool to generate 
results. 
The results show that C.N. Pope, Ashoke Sen, and Edward 
Witten are the top three interesting people discovered by our 
program. After looking into the data and feature distribution, we 
find that the reason why C.N.Pope is chosen is twofold: First, he 
contributed significantly in most of the path types. However this 
fact itself is not enough to distinguish him from other nodes that 
also contribute significantly. The second reason is that he 
contributes 0 to the path organization_of(x,o1) ∧ 
organization_of(y,o1) ∧ organization_of (y,o2) ∧ organization_of(x,o2). 
That is, there is no other person in the data that has ever 
belonged to any two organizations he has ever worked in, which 
is abnormal for people who contribute significantly in most 
other dimensions. Ashoke Sen is chosen as abnormal because 
some features suggest he has very focused research directions 
(e.g. he contributes the most to the loop “a single paper cites 
multiple of his papers”) while some suggests he has a broad 
research directions (e.g. he contributes relatively low to the loop 
“his papers are published in the same journal”) which is not 
common at all in this data. The reason Edward Witten is chosen, 
in short, is because he did not contribute much for most events 
(e.g. he does not publish or co-author frequently with others in 
this data set), but also that a relatively large amount of people in 
this data cite more than one of his publications. After searching 
on the Web we found that Edward Witten is a famous 
mathematical physicist who has won the Fields Medal, the 
highest honor a mathematician can receive. This fact strengthens 
the validity of our discovery, since even though his research is 
not fully focused on high-energy physics, some of his 
contributions to the fundamental mathematics must be valuable 
to this community and thus attract many citations.  



4.3.3 Verifying Novel Loop Discovery 
The goal of novel loop discovery is to find interesting loops 

in multi-relational datasets. The program models interestingness 
via a rarity measure. It tries to determine which types of loops 
are rare compared with the whole dataset [18]. We verified the 
tool based on the high-energy physics data as well. The rarest, 
least frequent types of loops we found are listed in Table 2. The 
most rare loops represent papers citing themselves directly, 
which only occurs 28 times in the whole dataset. We do not 
have a real world explanation for this and can only attribute it to 
errors in the dataset. The second, third and fourth paths are 
citation loops of different length. The rationale behind this 
finding is that for a paper to cite another, the cited paper needs 
to be published earlier. In this sense a citation loop such as “P1 
cites P2 cites P3 cites P1” is really a contradiction in time and 
should not occur at all. One explanation for such 
“contradictions” is that sometimes an author (or close colleague) 
might cite one of his/her own submitted but not yet published 
papers P2 (which has already cited P1) in a paper P1. The other 
explanation is that a journal might have a very long revision 
period and during that period other people can access the 
previous version. For both explanations we have found 
supporting instances (e.g. “0110099 cites 0110200 cites 
0110186 cites 0110099” for the first case and “9912210 cites 
9906151 cites 9509140 cites 9912210” for the second). 
However, there are still some other unexplainable citation loops 
(e.g. “9912288 cites 0004011 cites 9911183 cites 9912288”) 
that might occur due to the difference between the true 
publication date and the SLAC-date. The fifth path shows a 
similar concept where it is rare for a paper to cite another paper 
that was published during the same time period. This type of 
loop could also be an indicator for authors that work closely 
with each other. Finally, the last path shows that people seldom 
publish multiple papers at the same time.  

This case study exploits another external resource to verify 
the results which is our background knowledge of the scientific 
publication domain (e.g. for P1 to cite P2, P1 has to publish later 
than P2) as well as some simple inference capability (e.g. if A 
occurs earlier than B and B occurs earlier than C, then C can’t 
occur earlier than A). The results of the program are verified to 
be “interesting” (at least to some extent), because they are 
against the common knowledge or expectations we have. 
Besides that, the discovery of citations loops is somehow 
unexpected, since they are rare despite the fact that citation 
paths (A cites B cites C…) themselves are very common. 

5. CONCLUSIONS 
There is much less research being done in unsupervised machine 
discovery compared to, for example, machine learning. We 
believe this to be the case not only because of the difficulty of 
the problem, but also because of the difficulty to verify the 
results. However, this fact does not justify that unsupervised 
machine discovery should deserve less attention than other 
problems. In fact, as we motivated in Section 3, the utility value 
for discovery can be much higher than for learning which is a 
strong reason to engage in machine discovery research. Take the 
mathematical conjecture discovery program GRAFFITI [7] for 
example: its author Dr. Fajtlozicz published a fair amount of 
conjectures discovered by his program in a mathematical journal, 
but without evaluating them or proving their correctness. 
Despite that (or probably because of that), this then led to tens 
of publications (including Ph.D. theses) in mathematics centered 
on proving or disproving those conjectures. Had he waited until 
he was able to verify the conjectures before publishing them, 
GRAFFITI would probably still be an unknown program. 

In applied sciences such as computer or information 
science, it is hard for research to receive credit without verifying 
its validity. The success story of GRAFFITI tells us, however, 
that the value of a discovery program is sometimes large enough 
to outweigh the problem of not having straightforward and 
convincing verification methods. To further help with this 
situation, this paper addresses various indirect verification 
methods for discovery systems and their application to a suite of 
link discovery tools. We hope that this overview will help and 
encourage more researchers to work on machine discovery 
problems.  

6. REFERENCES 
1. R. Agrawal, T. Imielinski, and A. Swami. Mining association 
rules between sets of items in large databases. in ACM 
SIGMOD. 1993. Washington D.C. 
2. P.S. Bradley. Data Mining as an Automated Service. in 
PAKDD 2003. 2003: Springer-Verlag Heidelberg. 
3. T. Cover and J. Thomas, Elements of Information Theory. 
1991: Wiley. 
4. A.P. Danyluk and F.J. Provost. Small Disjuncts in Action: 
Learning to Diagnose Errors in the Local Loop of the Telephone 
Network. in In Proceedings of the Tenth International 
Conference on Machine Learning. 1993. 
5. J.S. Dhaliwal and I. Benbasat, The use and effects of 
knowledge-based system explanations: theoretical foundations 
and a framework for empirical valuation. Information Systems 
Research,, 1996. 7: p. 342-362. 
6. G. Dong and J. Li. Interestingness of Discovered Association 
Rules in terms of Neighborhood-Based Unexpectedness. in 
Proceedings of Pacific Asia Conference on Knowledge 
Discovery in Databases. 1998. 
7. S. Fajtlowicz, On conjectures of Graffiti. Discrete 
Mathematics, 1988. 72: p. 113-118. 
8. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, The KDD 
Process for Extracting Useful Knowledge from Volumes of Data. 
Communications of the ACM, 1996. 39(11): p. 27-34. 

Table 2 The rare loops 
Top 6 rarest loops 

1. PaperX cites PaperX 
2. PaperX cites Paper1 Paper1 cites PaperX 
3. PaperX cites Paper1 Paper1 cites Paper2  Paper2 cites 
PaperX 
4. PaperX cites Paper1 Paper1 cites Paper2  Paper2 cites 
Paper3 Paper3 cites PaperX 
5. PaperX cites (or cited by) Paper1  Paper 1 published at 
Time1  At Time1, PaperX also published. 
6. PaperX is written by Person1  Person 1 has another 
Paper1  Paper1 published at the same time period as PaperX 



9. A.A. Freitas. On objective measures of rule surprisingness. in 
Principles of Data Mining & Knowledge Discovery  (PDDD). 
1998. 
10. P. Gago and C. Bento. A Metric for Selection of the Most 
Promising Rules. in European Conference on Principles of Data 
Mining and Knowledge Discovery. 1998. 
11. S.R. Haynes, Explanation in Information Systems: A Design 
Rationale Approach, in The London School of Economics. 2001, 
University of London. 
12. M. Kamber and R. Shinghal. Evaluating the interestingness 
of characteristic rules. in Second Int'l Conference on 
Knowledge Discovery and Data Mining. 1996. 
13. E. Knorr and R. Ng. Finding Intensional Knowledge of 
Distance Based Outliers. in VLDB. 1999: Endiburgh Scotland. 
14. P. Langley, et al., Scientific discovery: computational 
explorations of the creative process. Cambridge, MA: The MIT 
Press, 1987. 
15. D. Lenat, The Nature of Heuristics. Artificial Intelligence, 
1982. 19: p. 189-249. 
16. L. Li and P. Vitanyi, An Introduction to Lolmogorov 
Complexity and its applications. 1993: Springer Verlag. 
17. S. Lin and H. Chalupsky. Unsupervised Link Discovery in 
Multi-relational Data via Rarity Analysis. in Proceedings of 
IEEE International Conference on Data Mining (ICDM). 2003. 
Florida. 
18. S. Lin and H. Chalupsky, Using Unsupervised Link 
Discovery Methods to Find Interesting Facts and Connections 
in a Bibliography Dataset. KDD Explorations, 2003. 5(2): p. 
173-179. 
19. A. Milosavljevic, Discovery by minimal length encoding: A 
case study in molecular evolution. Machine Learning Journal, 
1993. 12: p. 69-87. 
20. A. Milosavljevic, Discovery Process as a Search for 
Concise Encoding of Observed Data, in Machine Discovery, Jan 
Zytkow, Editor. 1997, Kluwer Academic Publishers. 
21. B. Padmanabhan and A. Tuzhilin, Unexpectedness as a 
measure of interestingness in knowledge discovery. Decision 
Support Systems, 1999. 27: p. 303--318. 

22. V. Pericliev, A linguistic discovery system that verbalizes its 
discoveries. 19th International Conference on Computational 
Linguistics, 2002: p. 1258-62. 
23. G. Piatesky-Shapiro, Discovery, analysis and presentation of 
strong rules. Knowledge Discovery in Databases, 1991: p. 229-
248. 
24. J. Pitt, Theory of Explanation. Oxford University Press. 
1988: Oxford. 
25. R. Schank and A. Kass, Explanations, machine learning, 
and creativity. Machine Learning: An Artificial Intelligence 
Approach, 1990. 3: p. 31-48. 
26. A. Silberschatz and A. Tuzhilin. On subjective measures of 
interestingness in knowledge discovery. in First International 
Conference on Knowledge Discovery and Data Mining. 1995. 
27. H. Simon, Machine Discovery. Foundations of Science, 
1995. 2: p. 171-200. 
28. P. Smyth and R.M. Goodman, Rule Induction Using 
Information Theory. In Knowledge Discovery in Databases, 
1991: p. 159-176. 
29. E. Sober, Reconstructing the Past: Parsimony, Evolution, 
and Inference. 1988: MIT Press. 
30. R. Solomonoff, A formal theory of inductive inference, Part 
I. Information and control, 1964. 7: p. 1-22. 
31. D.R. Swanson, Fish Oil, Raynaud's syndrome and 
undiscovered public knowledge. Perspectives in Biology and 
Medicine, 1986. 
32. R.E. Valdes-Perez and V. Pericliev, Computer Enumeration 
of Significant Implicational Universals of Kinship Terminology. 
Cross-Cultural Research: The Journal of Comparative Social 
Science, 1999. 33(2): p. 162-174. 
33. Y. Yao, Y. Zhao, and R.B. Maguire. Explanation-Oriented 
Association Mining Using a Combination of Unsupervised and 
Supervised Learning Algorithms. in Canadian Conference on AI. 
2003. 
34. Y.Y. Yao, Y. Zhao, and R.B. Maguire. Explanation-oriented 
association mining using a combination of unsupervised and 
supervised learning algorithms. in Conference of the Canadian 
Society for Computational Studies of Intelligence. 2003. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


