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Abstract. An N-gram language model aims at capturing statistical
word order dependency information from corpora. Although the concept
of language models has been applied extensively to handle a variety of
NLP problems with reasonable success, the standard model does not in-
corporate semantic information, and consequently limits its applicability
to semantic problems such as word sense disambiguation. We propose a
framework that integrates semantic information into the language model
schema, allowing a system to exploit both syntactic and semantic in-
formation to address NLP problems. Furthermore, acknowledging the
limited availability of semantically annotated data, we discuss how the
proposed model can be learned without annotated training examples.
Finally, we report on a case study showing how the semantics-enhanced
language model can be applied to unsupervised word sense disambigua-
tion with promising results.

1 Introduction

Syntax and semantics both play an important role in language use. Syntax refers
to the grammatical structure of a language whereas semantics refers to the mean-
ing of the symbols arranged with that structure. To fully comprehend a language,
a human must understand its syntactic structure, the meaning each symbol rep-
resents, and the interaction between the two. In most languages, syntactic struc-
ture conveys something about the semantics of the symbols, and the semantics of
symbols may constrain valid syntactic realizations. As a simple example: when
we see a noun following a number in English (e.g. “one book”), we can infer
that the noun is countable. Conversely, if it is known that a noun is countable,
a speaker of English knows that it can plausibly be preceded by a numeral. It is
therefore reasonable to assume that for a computer system to successfully process
natural language, it has to be equipped with capabilities to represent and utilize
both the syntactic and semantic information of the language simultaneously.

The n-gram language model (LM) is a powerful and popular framework for
capturing the word order information of language, or fundamentally syntactic
information. It has been applied successfully to a variety of NLP problems such
as machine translation, speech recognition, and optical character recognition.
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As described in equation (1), an n-gram language model utilizes conditional
probabilities to capture word order information, and the validity of a sentence
can be approximated by the accumulated probability of the successive n-gram
probabilities of its constituent words W1. . .Wk.

V alidity(W1W2. . .Wk) =
k∏

i=1

P (Wi|Wi−n+1. . .Wi−1) (1)

As powerful as a traditional n-gram LM can be, it does not capture the seman-
tic information of a language. Therefore it has seldom been applied to semantic
problems such as word sense disambiguation (WSD). To address this limitation,
in this paper we propose to expand the formulation of a LM to include not only
the words in the sentences but also their semantic labels (e.g. word senses). By
incorporating semantic information into a LM, the framework is applicable to
problems such as WSD, semantic role labeling, and even more generally machine
translation and information extraction – tasks that require both semantic and
syntactic information for an effective solution.

The major advantage of our algorithm compared to conventional unsupervised
WSD is that it can perform WSD without need for any sense glosses, sense-
similarity measures, or other linguistic information as has been required in many
other unsupervised WSD systems. We need only an unannotated corpus plus a
sense dictionary for which some senses of different words have been “pooled”
together into something like a WordNet synset, as we exploit the redundancy of
sense sequences even where the words may differ. Therefore, our approach can
be applied in the early stages of sense invention for a language or domain, where
only limited lexical semantic resources are available.

2 Incorporating and Learning Semantics in a LM

The first part of this section proposes a semantics-enhanced language model
framework while the second part discusses how its parameters can be learned
without annotated data.

2.1 A Semantics-Enhanced Language Model

Figure 1(a) is a general finite state representation of a sentence of four words
(W1. . . W4) connected through a bigram LM. Each word can be regarded as
a state node and the transition probabilities between states can be modeled
as the n-gram conditional probabilities of the involved states (here we assume
the transition probabilities are bigrams). In fact each word in a sentence has
a certain lexical meaning (sense or semantic label, Si) as represented in Fig-
ure 1(c). Conceptually, for each word-based finite state representation there is
a dual representation in the semantics (or sense) domain, as shown in 1(b). A
Semantic Language Model (or SLM) like 1(b) records the order relations be-
tween senses. Alternatively, one can combine both representations into a hybrid
language model that captures both the word order information and the word
meaning, as demonstrated in 1(d). 1(d) represents a Word-Sense Language Model
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Fig. 1. (a) A standard finite-state, bigram LM representation of a sentence. (b) a
Semantic Language Model. (c) each word in the sentence has a certain meaning (or
semantic label). (d) a hybrid LM integrating word and sense information (WSLM). (e)
like (d) except that a trigram model is used.

(or WSLM), a semantics-enhanced LM incorporating two types of states: word
symbols and their semantic labels. The intuition behind WSLM is that when
processing a word, people first try to recognize its meaning (i.e. P (Sn|Wn)), and
based on that predict the next word (i.e. P (Wn+1|Sn)). Figure 1(e) is the same
as 1(d) except that the bigram probabilities are replaced by trigrams. It embod-
ies the concept that the next word to be revealed depends on the previous word
together with its semantic label, and the meaning of the current word depends
on not only the word itself but the meaning of the previous word.

The major reason for the success of a LM approach to NLP problems is its
capability of predicting the validity of a sentence. In 1(a), we can say that a
sentence W1W2W3W4 is valid because P (W2|W1) ∗ P (W3|W2) ∗ P (W4|W3) is
relatively high. Similarly, given that the semantic labels of each word in the
sentence are known, the probabilities P (S2|S1) ∗ P (S3|S2) ∗ P (S4|S3) can be
applied to assess the semantic validity of this sentence as well. Furthermore, we
can say that a word sequence together with its semantic assignment (interpre-
tation) is valid based on a WSLM if the probability of P (S1|W1) ∗ P (W2|S1) ∗
. . . ∗ P (W4|S3) ∗ P (S4|W4) is high. We can therefore use a semantics-enhanced
LM to rank possible interpretations of a word sequence.

2.2 Unsupervised Parameter Learning

The n-gram probabilities of a word-based LM such as the transition probabili-
ties in Figure 1(a) can be easily learned through counting term frequencies and
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Fig. 2. Sense-based graph of word sequences (a) “Existing trials demonstrate. . . ” (b)
“Existent tests show. . . ” (c) “Existing runs prove. . . ”

co-occurrences from large corpora. If there were some large corpora with seman-
tically annotated words and sentences, we could learn the semantics-enhanced
LM such as 1(b) and 1(d)-1(e) directly through frequency counting as well. Un-
fortunately, there is no corpus containing a significant amount of semantically
annotated data available. To address this problem, we discuss below an approach
that allows the system to approximate the n-gram probabilities of the semantics-
enhanced language models. Without loss of generality, in the following discussion
we assume the transition probabilities to be learned are all bigrams.

The problem setup is as follows: the system is given a plain text, unannotated
corpus together with a dictionary (assuming WordNet 2.1) that contains a list of
possible semantic labels for each word. Using these resources alone, the system
must learn the n-gram dependencies between semantic labels. Note that every
word in the WordNet dictionary has at least one sense (or synset label), and
each sense has a unique 8-digit id representing its database location. Different
words can share synsets, indicating they have meanings in common. For example,
the word trial has six senses in the dictionary and one of these (id=00791078) is
shared by the word test and run. The word demonstrate has four meanings where
one of them (id=00656725) is associated with the words prove and show. To learn
a SLM, one has to learn the conditional probabilities of one sense following the
other such as P (Sk = 00656725|Sk−1 = 00791078).
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The first step of learning is to construct a sense-based graph representation
for the plain text corpus by connecting all the senses of each word to the senses of
the subsequent word. For example, Figure 2(a) is the sense-graph of the phrase
“Existing trials demonstrate”. For illustration purposes we display only three
senses per word in the figure, though there may be more senses for the word
defined in WordNet. The weights of the links in the graph, based on the concept
of a LM, can be modeled by the n-gram (e.g. bigram) probabilities. If all the
bigrams between senses in the graph are known, then for each path of senses
(where a path contains one sense per word) we can generate its associated prob-
ability, as in equation (2). Note that if a word has no known senses in WordNet
(e.g. for closed class words or proper nouns) we assign it a single “dummy” sense.

V alidity(existing = 00965972, trial = 00791078, demonstrate = 02129054)
= Pr(00965972|start) ∗ Pr(00791078|00965872) ∗ Pr(02129054|00791078)

(2)

This probability reflects the cumulative validity of each sense assignment for
the sequence of words. One can rank all the sense paths based on their prob-
abilities to find the optimal assignment of senses to words. If the associated
probability for each path in the graph is given, we can apply a technique called
fractional counting to determine bigram probabilities. Fractional counting counts
the occurrence of each bigram in all possible paths, where the count is weighted
by the associated probability of the path.

Unfortunately, without a sense-annotated corpus neither the sense bigrams
nor the path probabilities can be known directly. However, since computing
the likelihood for each path and generating the bigram probabilities are dual
problems (i.e. one can be generated if the other is known), it is possible to apply
the expectation-maximization (EM) algorithm to approximate both numbers [8].
EM is an efficient iterative procedure for computing the Maximum Likelihood
(ML) estimate in the presence of missing data. It estimates the model parameters
for which the observed data are most likely, using an iteration of two processes:
the E-step, in which the missing data are estimated using conditional expectation
given the observed data and the current estimate of the model parameters, and
the M-step, in which the likelihood function is maximized under the assumption
that the missing data are known (using the estimate of the missing data from
the E-step).

To perform the EM learning, the first step is to initialize the probabilities of
the bigrams. As will be shown in our case study, the initialization can be uni-
formly distributed or use certain preexisting knowledge. In the Expectation stage
(E-step) of the EM algorithm, the system uses the existing bigram probabilities
to generate the associated probability of each path, such as the one shown in
equation 2. In the maximization stage (M-step) the system applies fractional
counting to refine the bigram probabilities. It is guaranteed that the refined bi-
gram can produce a higher probability for the observed data. The E-step and
M-step continue to iterate until a local optimum is reached.
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One potential problem for this approach is efficiency. The total number of
paths in the graph grows exponentially with the number of words (i.e. O(bn),
where n is the number of words and b is the average branching factor of nodes,
i.e. the average number of senses per word). Therefore it is computationally pro-
hibitive for the system to enumerate all paths and produce their associated prob-
abilities one by one to perform fractional counting. Fortunately in this situation
one can apply a polynomial algorithm called Baum-Welch (or forward-backward)
algorithm for fractional counting [2]. Rather than generating all paths with their
probabilities in the graph, we need to know only the total probability of all the
paths that a link (bigram) occurs in. This can be generated by recording dy-
namically for each link the accumulated probabilities from the beginning of the
graph (the alpha value) to the link and the accumulated probabilities from the
link to the end (the beta value). Since in our case the alpha and beta values are
independent, it is possible to generate all n-grams with polynomial time O(nb2)
and space O(nb). A similar approach has been applied successfully to unsuper-
vised NLP problems such as tagging, decipherment, and machine translation
([7], [12], [13], [14]).

The simple example shown in Figure (2) describes the intuition behind the
method. Imagine the system encounters the phrases “Existing trials demon-
strate”, “Existent tests show”, “Existing runs prove” in the corpus. According
to Figure (2) there is one common sense 00965972 for the words existing and
existent, a single common sense 00791078 for trial, test, and run, and a common
sense 00656725 for the words demonstrate, show, and prove. Based on the min-
imum description length principle (or Occams Razor), a reasonable hypothesis
is that these three senses should have higher chance to be the right assignments
(and thus should appear successively more often) compared with the other can-
didates, since one can then use only three senses to “explain” all the sentences.

The proposed learning algorithm captures the spirit of this idea. Assuming
equal probabilities are used to initialize the bigrams and assuming all senses
listed in Figure (2) do not appear elsewhere in the corpus, then after the first
iteration of EM, 00791078 will have a higher chance to follow 00965972 com-
pared with others (e.g. equation (3)). This is because the system sees 00791078
following 00965972 more times than others in the fractional counting stage.

Pr(00791078|00965972) > Pr(00189565|00965972) (3)

This approach works because there are situations in which multiple words can
be used to express a given meaning, and people tend not to choose the same word
repeatedly. The system can take advantage of this to learn information about
senses that tend to go together from the shared senses of these varied words, as
formalized in the semantics-enhanced LM.

The same approach can be applied to learn the parameters in a WSLM. The
only difference is that the words are included in the graph as single-sense nodes.
Figure 3 is the graph presentation of a WSLM.



A Semantics-Enhanced LM for Unsupervised WSD 293

Fig. 3. The graph generated for the WSLM. Such a network has the format
word1→sense1→ word2→sense2→. . .

3 Unsupervised WSD Using SLM and WSLM

We describe a case study on applying the SLM and WSLM to perform an all-
words word sense disambiguation task. Since both language models are trained
without sense-annotated data, this task is an unsupervised WSD task.

3.1 Background

Unsupervised WSD aims at determining the senses of words in a text without
using a sense-annotated corpus for training. The methods employed generally
fall into two categories, one for all-words, token-based WSD (i.e. assign each
token a sense in its individual sentential context) and the other to find the
most frequent sense of each unique token in the text as a whole (following a
one sense per discourse assumption). The motivation to focus on the second
type of task is that assigning the most frequent sense to every word turns out
to be a simple heuristic that outperforms most approaches [11]. The following
paragraphs describe the existing unsupervised WSD methods.

Banerjee and Pedersen proposed a method that exploits the concept of gloss
overlap for WSD [1], where a gloss is a sentence in WordNet that character-
izes the meaning of a sense (synset). It assumes the sense whose gloss definition
looks most similar (overlaps strongly) with the glosses of surrounding content
words is the correct one. Mihalcea’s graph-based algorithm [16] first constructs
a weighted sense-based graph , where weights are the similarity between senses
(e.g. gloss overlap). Then it applies PageRank to identify prestigious senses as
the correct interpretation. Galley and McKeown also propose a graph-based ap-
proach called lexical chains that regards a sense to be dominant if it has more
strong connections with its context words [9]. The strength of connection is de-
termined by the type of relation as well as the distance between the words in the
text. Navigli and Velardi propose a conceptually similar but more knowledge-
intensive approach called structural semantic interconnections (SSI) [17]. For
each sense, the method first constructs semantic graphs consisting of collocation
information (extracted from annotated corpora), WordNet relation information,
and domain labels. Using these graphs, the algorithm iteratively chooses senses
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with strong connectivity to the relevant senses in the semantic graph. McCarthy
et al propose a method to determine the most frequent senses for words [15]. In
their framework, the distributionally similar neighbors of each word are deter-
mined, and a sense of a word is regarded as dominant if it is the most similar to
the senses of its distributionally similar neighbors.

Although the above methods approach the unsupervised WSD problem from
different angles, they do each take advantage of semantic similarity measures de-
rived from an existing knowledge resource (WordNet). While we are not arguing
the legitimacy of this strategy, we believe there is another type of information
that a system can benefit from to determine the sense of words, specifically word
and sense order information. Furthermore, the strategy we propose allows the
system to be deployed in environments where semantic similarity among senses
cannot be determined a priori. The only requirement in our approach is that
there exist multiple words mapped to a single concept in a sense inventory.

Based on this alternative strategy even the non-content words such as stop
words (ignored in existing approaches) can be helpful. Considering the sentence
“He went into the bank beside the river”, most of the above approaches will
likely choose the river bank (bank#2) sense for bank instead of the correct fi-
nancial institute (bank#1) sense, because the former sense is semantically closer
to the only other content word river. However, even without other context infor-
mation, it is not hard for an English speaker to realize the financial bank is more
likely to be the correct one, since people do not usually go into a river bank.
A somewhat accurate SLM can guide the system to make this decision since it
shows P (bank#1|into#1the#1)�P (bank#2|into#1the#1).

Such information can be learned in an unsupervised manner if the system sees
similar sentences such as “He went into a banking-company” (where banking-
company has bank#1 sense in WordNet 2.1). Also consider the sentence “The
tank has an empty tank”. Again it would not be trivial for the previously de-
scribed algorithms to realize these two tanks have different meanings since their
frameworks (explicitly or implicitly) imply or result in one sense per sentence.
However, an accurate semantics-enhanced language model can tell us that the
tank as container sense has higher chance to follow the word empty while the
tank as the army tank sense has higher chance to be followed by has.

3.2 System Design and Experiment Setup

We applied both bigram SLM and WSLM to perform unsupervised WSD. Our
WSD system can be divided into three stages. The first stage is the initialization
stage. In SLM, we need to initialize P (Sk+1|Sk) and in WSLM there are two
types of probabilities to be initialized: P (Sk|Wk) and P (Wk+1|Sk). We explore
here two different ways to initialize the LMs without any a priori knowledge
of the probability distribution of senses. The second stage is the learning stage,
using the EM algorithm together with forward-backward training to learn the
bigrams. The final stage is the decoding stage, in which the learned bigrams are
utilized to identify the senses of words in their sentential context that optimize
the total probability. Using the dynamic programming method, the overall time
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Table 1. The results for all-words unsupervised WSD on SemCor using SLM and
WSLM based on uniform and node-frequency initialization

Initialization Corpus Baseline (%) SLM (%) WSLM (%)
Uniform SC 17.1 31.8 27.7
Uniform SC+BNC 17.1 32.3 28.8

Graph Freq SC 17.1 25.1 34.0
Graph Freq SC+BNC 17.1 36.0 34.6

complexity for the system is only linear to the number of words and quadratic
to the average number of senses per word.

We tested our system on SemCor (SC) data, which is a sense-annotated cor-
pus that contains a total of 778K words (where 234K have sense annotations).
We use SemCor and British National Corpus (BNC) sampler data (1.1 million
words) for training. In the EM algorithm initializations reported on below, no
external knowledge other than the unannotated corpus and the sense dictionary
is exploited. The experimental setup is as follows: we first determine the baseline
performance on the WSD task using only the initial knowledge (i.e. without ap-
plying language models). Then we train a semantics-enhanced LM based on the
initialization and use it to perform decoding. Our model is evaluated by checking
how much the learned LM can improve the accuracy over the baseline.

Initialization: Uniform N-Gram Probabilities. The baseline for this case
is a random sense assignment for all-words WSD (i.e. disambiguation of all word
tokens) in SemCor, resulting in 17% accuracy on the test set. The initialization
simply assigns equal probability to all bigrams. As shown in Table 1, the results
improve to 32.3% for SLM and 28.8% for WSLM after training on a corpus
consisting of the SemCor texts plus texts from the BNC Sampler.

Initialization: Graph Frequency. The second initialization is based on the
node occurrence frequency in the sense graph. That is, Pr(S1|S2) = gf(S1)
for SLM and Pr(S1|W1) = gf(S1) for WSLM , where gf(S1) represents the
frequency of a node S1 in the sense graph, or its graph frequency (for example, in
Figure 2 00965972 appears three times). The intuition behind this initialization
is that a sense should have a higher chance to appear if it occurs in multiple
words that frequently occur in the text. Again, to count the node frequency we
do not need any extra knowledge since the graph itself can be generated based
on only the corpus and the dictionary. This initialization improves the accuracy
to 36.0% for SLM and 34.6% for WSLM.

These experiments show that learned syntactic order structure can tell us
much about the sense of a word in context, in the absence of external knowledge.

3.3 Discussion

The case study on applying semantics-enhanced LM to WSD reveals two impor-
tant facts. The first is that syntactic order information for words and senses can
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Table 2. Comparison between LM-based approaches, semantic approaches and
semantics-enhanced LM approaches for all-nouns Unsupervised WSD

Initialization Corpus SLM (%) WSLM (%)
Uniform SC+BNC 35.6 32.3

gloss overlap 36.5
Graph Freq SC+BNC 29.6 38.0

SSI 42.7

benefit WSD. This conclusion to some extent echoes the concept of syntactic
semantics [18], which claims that semantics are embedded inside syntax. The
second conclusion is that the unsupervised learning method proposed in this
paper does learn a sufficient amount of meaningful semantic order information
to allow the system to improve disambiguation quality. It follows from this that
the framework is flexible enough to be trained on a domain-specific corpus to
obtain a SLM or WSLM specifically for that domain. This has important po-
tential applications in domains with senses not represented in resources such as
WordNet.

Table 2 shows how different types of knowledge perform in WSD. We compare
our system with two existing WSD systems on the all-nouns WSD task (that is,
evaluating disambiguation performance only on nouns in the corpus): Banerjee
and Pedersen’s gloss overlap system and the SSI system (we limit ourselves to
the all-nouns task as these are the results as reported in [4]). The LM-based
approach without preliminary knowledge performs right in between gloss over-
lap and SSI approaches in predicting the nouns in SemCor. This is interesting
and informative since the results demonstrate that by using only word order
information and no lexical semantic information (e.g. sense similarity), we still
generate competitive WSD results. Comparing Table 2 with Table 1, one can
also infer that WSD on nouns is an easier task than on other parts of speech.

One advantage of our model is that it could incorporate any amount of su-
pervised information in the initialization step. A small amount of annotated
data can be used to generate the initial n-grams to be refined through EM.
This would certainly result in significant improvements over the knowledge-poor
experiments presented here. Given the performance of our system relative to
the more knowledge-intensive approaches, that approach would also be likely
to result in an overall improvement over those results since it incorporates an
additional source of linguistic information.

4 Related Work

There have been previous efforts in incorporating semantics into a language
model. Brown et al proposed a class-based language model that includes semantic
classes in a LM [5]. Bellegarda proposes to exploit latent semantic analysis to
map words and their relationships with documents into a vector space [3]. Chueh
et al propose to combine semantic topic information with n-gram LM using the
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maximum entropy principle [6]. Griffiths et al also propose to integrate topic
semantic information [10] into syntax based on a Markov chain Monte Carlo
method.

The major difference between our model and these is that we propose to
learn semantics at the word level rather than at the document or topic level.
Consequently the models are different in the parameters to be learned (in the
other models, the topic usually determines words to be used while in our model
the words can determine senses), preliminary knowledge incorporation (e.g. [5]
used a fully connected word-class mapping during initialization) and most im-
portantly, the applications. Other systems were evaluated on word clustering
or document classification while we have made the first attempt to apply a
semantics-enhanced LM to a fine-grained semantic analysis task, namely word
sense disambiguation.

5 Conclusion and Future Work

There are three major contributions in this paper. First we propose a framework
that enables us to incorporate semantics into a language model. Second we show
how such a model can be learned efficiently (O(nb2) time) in an unsupervised
manner. Third we demonstrate how this model can be used to perform the WSD
task in knowledge-poor environments. Our experiments also suggest that WSD
can be a suitable platform to evaluate the semantic language models, and that
using only syntactic information one can still perform WSD as well as using
conventional semantic (e.g. gloss) information.

There are two main future directions for this work. In terms of the model
itself, we would like to integrate additional knowledge into the initialization,
to take advantage of existing a priori knowledge, specifically sense frequency
information derived from WordNet (which orders senses by frequency), as well as
using the semantic hierarchy in WordNet to smooth probabilities in the language
model. We would also like to investigate how much the results can be improved
based on higher n-gram models (e.g. trigram). In terms of applications we would
like to investigate whether the model can be applied to other natural language
processing tasks that generally require both syntactic and semantic information
such as information extraction, summarization, and machine translation.
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