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MeVisLab
 http://www.mevislab.de/

 In more than 20 years of development, MeVisLab has become one of the 
most powerful development platforms for medical image computing 
research.

 image processing, visualization and interaction modules can be combined to 
complex image processing networks using a graphical programming 
approach

 can easily be integrated using a modular, platform independent C++ class 
library.

 JavaScript or Python components can be added to implement dynamic 
functionality on both the network and the user interface level.

 based on the Qt application framework and the OpenInventor 3D 
visualization toolkit

 ITK and VTK AddOns
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 Rapid Application Prototyping Environment

 Cross-platform (Windows, Mac OS X, Linux)

 Free for non-commercial usage

 Supported file formats

 DICOM, TIFF, DICOM/TIFF, RAW, LUMISYS, PNM, Analyze, 

PNG, JPEG

 Currently 920+ Standard modules in the MeVisLab SDK 

core, 3000+ modules delivered in total

 with 360+ ITK modules, 1470+ VTK modules, and 300+ 

modules in the Fraunhofer MEVIS release
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MeVisLab development

 Three levels

 Visual level

 Programming with “plug and play”

 Individual image processing, visualization and interaction modules can be 

combined to complex image processing networks using a graphical 

programming approach.

 Scripting level

 Creating macro modules and applications based on macro modules

 Python scripting components can be added to implement dynamic 

functionality on both the network and the user interface level.

 C++ level

 Programming modules

 New algorithms can easily be integrated using the modular, platform-

independent C++ class library.
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Image Processing

 Filters
 Diffusion filters, morphology filters, kernel filters, Hessian, and 

vesselness filters

 Segmentation
 Region growing, live wire, fuzzy connectedness, threshold, manual 

contours

 Transformations
 Affine transformations, distance transformations, projection and 

Radon transforms, manual registration

 Statistics
 Histograms, global image statistics, box counting dimension

 Other
 Unary/binary arithmetic, resampling/reformatting, dynamic data 

analysis, noise/test pattern generators
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Modules for Visualization

 MeVisLab provides modules for visualizing image data and 

other data objects in 2D and 3D.

 A set of lookup table (LUT) modules allows applying basic 

window/level adjustment or flexible color encoding 

schemes. 

 The visualization functionality in MeVisLab is based on the 

well-established visualization and interaction 

library Open Inventor.
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High-quality Volume Renderer: 

MeVisLab Giga Voxel Renderer

 MeVisLab features a high-quality volume renderer that is 

based on OpenGL and its extensions. 

 It supports the rendering of large volume datasets, even if 

they do not fit into the main memory. 

 An optimized, multi-resolution technique based on an 

octree representation and 3D textures adaptively selects 

the best resolution depending on camera position, volume 

of interest, and available resources.
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MeVisLab Software Development Kit 

(SDK)

 Using the MeVisLab Software Development Kit 

(SDK), a developer is able to implement and test own 

algorithms, visualization or interaction methods, or even 

complete processing workflows. 

 The MeVisLab SDK offers a variety of features that 

support module programming, scripting, and network 

development.
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Open Inventor

 An object-oriented 3D toolkit developed by Silicon 

Graphics (SGI)

 offering a comprehensive solution to interactive graphics 

programming problems

 Most of the visualization modules of MeVisLab make use 

of Open Inventor.
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Open Inventor (OIV)

 Direct Open Inventor node support

 Open Inventor:

 Scene graph paradigm

 Object, rendering, transformation, property, … nodes

 Based on OpenGL

 Extensions to support 2D image viewing/manipulation

 Mixed ML/Open Inventor Modules

 http://www.mevislab.de/mevislab/features/open-inventor/
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Open Inventor Scene Graph 

 Scene objects are represented by nodes

 Size and position is defined by transformation nodes

 A rendering node represents the root of the scene graph
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Integration of Visualization, 

Segmentation and Registration Toolkits

 The Insight Segmentation and Registration Toolkit (ITK) is 

an extensive collection of leading-edge algorithms for 

registration, segmentation, and analysis of 

multidimensional data. 

 It is an open-source, cross-platform software package written 

in C++ and supported by the US National Library of Medicine.

 The Visualization ToolKit (VTK) is an open source, freely 

available software library for 3D computer graphics, 

image processing, and visualization. 

 It has become one of the most popular open source toolkits 

for visualization purposes and is used by thousands of 

researchers and developers around the world.

13



MeVisLab User Interface
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MeVisLab Modules
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Image Processing Pipeline

16



 Connectors

 Connections
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Network Layout
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Network Quick Search
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Using Groups
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Using Notes
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Scripting (MDL)

 User interfaces are created with the “Module Definition 

Language” (MDL)

 Abstract hierarchical GUI language

 Interpreted at run-time, allows rapid prototyping

 www.mevislab.de/fileadmin/docs/html/mdl/
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Getting Started: Chapter 11. GUI Design 

in MeVisLab
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Application Prototyping

 Hide network complexity

 Design user interfaces

 Scripting for dynamic components
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View2D Module
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View3D Module
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Implementing the Contour Filter
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Creating a New Group

29



Parameter Connection for 

Synchronization
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Getting Started: Chapter 5. Defining 

a Region of Interest

 a network that allows defining a 2D region of interest 

(ROI), that is by selecting a region of the image in the first 

viewer, the selected region is displayed as a subimage in a 

second viewer
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Getting Started: Chapter 7. Creating 

an Open Inventor Scene

 a dynamically definable applicator (needle for minimally 

invasive surgeries) shall be placed at a position and an 

angle relative to the rendering of an anatomical image
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2D Viewers

 Modular 2D Viewer Library (SoView2D)

 Hardware accelerated using textures and shaders

 Supports interactive LUT even on large images

 Extension mechanism supports:

 Overlays

 Markers

 ROIs

 Contours

 User extensions can add drawing

and event handling
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Winged Edge Mesh Library (WEM)

 Data structure proposed by Baumgart, 1975

 Mesh consists of Nodes, Edges and Faces

 Dense pointer structure of incident primitives

 Fast access to neighboring structures

Pointer links in a neighborhood
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WEM Modules Overview

 Generation:
 WEMIsoSurface

 Processing:
 WEMCollapseEdges

 WEMSmooth

 WEMPurge

 WEMClip

 …

 Rendering:
 SoWEMRenderer

 Different Render Modes

 Optional Coloring by LUT Values
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WEM Sceneshots 

Network with iso surface

generation and polygon reduction

A liver surface colored by a LUT

in bone context
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Winged Edge Mesh IsoSurface

 Four subnetworks, each showing different features of the 

WEMIsoSurface
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Contour Segmentation Objects (CSO)

 CSO library

 provides data structures and modules for interactive or 
automatic generation of contours in voxel images

 Contours can be analyzed, maintained, grouped and 
converted back into a voxel image

 CSO consists of a number of seed points and a number 
of path point lists
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CSO Modules Overview

 Generation (without interaction):

 CSOIsoGenerator

 Processing (with interaction):

 CSOFreehandProcessor, CSOLiveWireProcessor, 
CSOIsoProcessor, CSOBulgeProcessor, …

 Rendering

 SoView2DCSOEditor, SoCSO3DVis

 Misc

 CSOConvertToImage, CSOConvertTo3DMask, CSOFilter, 
CSOManager, CSOLoad / CSOSave, …
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SoView2DCSOEditor Example Network
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SoView2DCSOExtensibleEditor 

Example Network
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SoCSO3DVis Example Network
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3D
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DICOM Support

 Import of 2D/3D/4D DICOM datasets

 MeVisLab DICOM Service runs as Windows Service or 

UNIX Daemon and receives data from PACS even when 

user is logged out

 Export of DICOM slices to disk

 DICOM-Store allows to send data to PACS
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Fuzzy

 FuzzyCluster 

 an implementation of the fuzzy c-means algorithm that 

classifies an image into different clusters depending on the gray 

values

 FuzzyConnectDistance 

 a segmentation algorithm based on Fuzzy Connectedness extended by 

the possibility to use a property based on the distance of image 

elements to the center of the object to be segmented while 

calculating membership values

 FuzzyObjectLabeling 
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FCM

47



48



ITK Wrapper

 ITK – Insight Toolkit (www.itk.org)
 Open Source Library for Medical Image Processing and Registration

 about 200 Modules for Standard Image Processing such as
 Image Arithmetics

 Kernel-based and Diffusion Filtering

 Levelset and Segmentation Filtering

 Warping, Resampling Filters

 about 90 Modules Registration-Related Algorithms
 Interpolators

 Metrics

 Optimizers

 Transformations
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ITK Book Examples
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ITK Watershed
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Example Network of itkWatershedImageFilter
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VTK Wrapper

 VTK –Visualization Toolkit (www.vtk.org)

 Visualization, Image Processing and Filtering Library for images, 
meshes, grids, data sets etc.

 about 1000 Modules for
 2D/3D Image Processing

 Grid, Mesh, Surface, and Data Filtering

 Pickers

 Properties and Actors

 Mappers

 Renderers, Widgets, Viewers

 Sources, Readers and Writers

 Transformations
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VTK Example 1: Contour Filter
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VTK Example 2: VTK/OIV mix

 SoVTK module allows VTK rendering as part of an Open Inventor 
scene graph
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vtkBoxWidget2 Example Network
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ITK Image Registration
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Skeletonization

 Skeletonization of a binary image by successive erosion of 

border voxels

 vessel centerline extraction

 in 2d and 3d
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