
MeVisLab

1



MIP Prototyping

2



MeVisLab
 http://www.mevislab.de/

 In more than 20 years of development, MeVisLab has become one of the 
most powerful development platforms for medical image computing 
research.

 image processing, visualization and interaction modules can be combined to 
complex image processing networks using a graphical programming 
approach

 can easily be integrated using a modular, platform independent C++ class 
library.

 JavaScript or Python components can be added to implement dynamic 
functionality on both the network and the user interface level.

 based on the Qt application framework and the OpenInventor 3D 
visualization toolkit

 ITK and VTK AddOns

3

http://www.mevislab.de/


 Rapid Application Prototyping Environment

 Cross-platform (Windows, Mac OS X, Linux)

 Free for non-commercial usage

 Supported file formats

 DICOM, TIFF, DICOM/TIFF, RAW, LUMISYS, PNM, Analyze, 

PNG, JPEG

 Currently 920+ Standard modules in the MeVisLab SDK 

core, 3000+ modules delivered in total

 with 360+ ITK modules, 1470+ VTK modules, and 300+ 

modules in the Fraunhofer MEVIS release

4



MeVisLab development

 Three levels

 Visual level

 Programming with “plug and play”

 Individual image processing, visualization and interaction modules can be 

combined to complex image processing networks using a graphical 

programming approach.

 Scripting level

 Creating macro modules and applications based on macro modules

 Python scripting components can be added to implement dynamic 

functionality on both the network and the user interface level.

 C++ level

 Programming modules

 New algorithms can easily be integrated using the modular, platform-

independent C++ class library.

5



Image Processing

 Filters
 Diffusion filters, morphology filters, kernel filters, Hessian, and 

vesselness filters

 Segmentation
 Region growing, live wire, fuzzy connectedness, threshold, manual 

contours

 Transformations
 Affine transformations, distance transformations, projection and 

Radon transforms, manual registration

 Statistics
 Histograms, global image statistics, box counting dimension

 Other
 Unary/binary arithmetic, resampling/reformatting, dynamic data 

analysis, noise/test pattern generators

6



Modules for Visualization

 MeVisLab provides modules for visualizing image data and 

other data objects in 2D and 3D.

 A set of lookup table (LUT) modules allows applying basic 

window/level adjustment or flexible color encoding 

schemes. 

 The visualization functionality in MeVisLab is based on the 

well-established visualization and interaction 

library Open Inventor.

7

http://www.mevislab.de/mevislab/features/open-inventor/


High-quality Volume Renderer: 

MeVisLab Giga Voxel Renderer

 MeVisLab features a high-quality volume renderer that is 

based on OpenGL and its extensions. 

 It supports the rendering of large volume datasets, even if 

they do not fit into the main memory. 

 An optimized, multi-resolution technique based on an 

octree representation and 3D textures adaptively selects 

the best resolution depending on camera position, volume 

of interest, and available resources.

8



MeVisLab Software Development Kit 

(SDK)

 Using the MeVisLab Software Development Kit 

(SDK), a developer is able to implement and test own 

algorithms, visualization or interaction methods, or even 

complete processing workflows. 

 The MeVisLab SDK offers a variety of features that 

support module programming, scripting, and network 

development.

9



Open Inventor

 An object-oriented 3D toolkit developed by Silicon 

Graphics (SGI)

 offering a comprehensive solution to interactive graphics 

programming problems

 Most of the visualization modules of MeVisLab make use 

of Open Inventor.

10



Open Inventor (OIV)

 Direct Open Inventor node support

 Open Inventor:

 Scene graph paradigm

 Object, rendering, transformation, property, … nodes

 Based on OpenGL

 Extensions to support 2D image viewing/manipulation

 Mixed ML/Open Inventor Modules

 http://www.mevislab.de/mevislab/features/open-inventor/

11

http://www.mevislab.de/mevislab/features/open-inventor/


Open Inventor Scene Graph 

 Scene objects are represented by nodes

 Size and position is defined by transformation nodes

 A rendering node represents the root of the scene graph

12



Integration of Visualization, 

Segmentation and Registration Toolkits

 The Insight Segmentation and Registration Toolkit (ITK) is 

an extensive collection of leading-edge algorithms for 

registration, segmentation, and analysis of 

multidimensional data. 

 It is an open-source, cross-platform software package written 

in C++ and supported by the US National Library of Medicine.

 The Visualization ToolKit (VTK) is an open source, freely 

available software library for 3D computer graphics, 

image processing, and visualization. 

 It has become one of the most popular open source toolkits 

for visualization purposes and is used by thousands of 

researchers and developers around the world.

13



MeVisLab User Interface

14



MeVisLab Modules

15



Image Processing Pipeline

16



 Connectors

 Connections

17



Network Layout

18



Network Quick Search

19



Using Groups

20



Using Notes

21



Scripting (MDL)

 User interfaces are created with the “Module Definition 

Language” (MDL)

 Abstract hierarchical GUI language

 Interpreted at run-time, allows rapid prototyping

 www.mevislab.de/fileadmin/docs/html/mdl/

22

http://www.mevislab.de/fileadmin/docs/html/mdl/


Getting Started: Chapter 11. GUI Design 

in MeVisLab

23



Application Prototyping

 Hide network complexity

 Design user interfaces

 Scripting for dynamic components

24



View2D Module

25



View3D Module

26



Implementing the Contour Filter

27



28



Creating a New Group

29



Parameter Connection for 

Synchronization

30



Getting Started: Chapter 5. Defining 

a Region of Interest

 a network that allows defining a 2D region of interest 

(ROI), that is by selecting a region of the image in the first 

viewer, the selected region is displayed as a subimage in a 

second viewer

31



Getting Started: Chapter 7. Creating 

an Open Inventor Scene

 a dynamically definable applicator (needle for minimally 

invasive surgeries) shall be placed at a position and an 

angle relative to the rendering of an anatomical image

32



2D Viewers

 Modular 2D Viewer Library (SoView2D)

 Hardware accelerated using textures and shaders

 Supports interactive LUT even on large images

 Extension mechanism supports:

 Overlays

 Markers

 ROIs

 Contours

 User extensions can add drawing

and event handling

33



Winged Edge Mesh Library (WEM)

 Data structure proposed by Baumgart, 1975

 Mesh consists of Nodes, Edges and Faces

 Dense pointer structure of incident primitives

 Fast access to neighboring structures

Pointer links in a neighborhood

34



WEM Modules Overview

 Generation:
 WEMIsoSurface

 Processing:
 WEMCollapseEdges

 WEMSmooth

 WEMPurge

 WEMClip

 …

 Rendering:
 SoWEMRenderer

 Different Render Modes

 Optional Coloring by LUT Values

35



WEM Sceneshots 

Network with iso surface

generation and polygon reduction

A liver surface colored by a LUT

in bone context

36



Winged Edge Mesh IsoSurface

 Four subnetworks, each showing different features of the 

WEMIsoSurface

37



Contour Segmentation Objects (CSO)

 CSO library

 provides data structures and modules for interactive or 
automatic generation of contours in voxel images

 Contours can be analyzed, maintained, grouped and 
converted back into a voxel image

 CSO consists of a number of seed points and a number 
of path point lists

38



CSO Modules Overview

 Generation (without interaction):

 CSOIsoGenerator

 Processing (with interaction):

 CSOFreehandProcessor, CSOLiveWireProcessor, 
CSOIsoProcessor, CSOBulgeProcessor, …

 Rendering

 SoView2DCSOEditor, SoCSO3DVis

 Misc

 CSOConvertToImage, CSOConvertTo3DMask, CSOFilter, 
CSOManager, CSOLoad / CSOSave, …

39



SoView2DCSOEditor Example Network

40



SoView2DCSOExtensibleEditor 

Example Network

41



SoCSO3DVis Example Network

42



3D

43



44



DICOM Support

 Import of 2D/3D/4D DICOM datasets

 MeVisLab DICOM Service runs as Windows Service or 

UNIX Daemon and receives data from PACS even when 

user is logged out

 Export of DICOM slices to disk

 DICOM-Store allows to send data to PACS

45



Fuzzy

 FuzzyCluster 

 an implementation of the fuzzy c-means algorithm that 

classifies an image into different clusters depending on the gray 

values

 FuzzyConnectDistance 

 a segmentation algorithm based on Fuzzy Connectedness extended by 

the possibility to use a property based on the distance of image 

elements to the center of the object to be segmented while 

calculating membership values

 FuzzyObjectLabeling 

46



FCM

47



48



ITK Wrapper

 ITK – Insight Toolkit (www.itk.org)
 Open Source Library for Medical Image Processing and Registration

 about 200 Modules for Standard Image Processing such as
 Image Arithmetics

 Kernel-based and Diffusion Filtering

 Levelset and Segmentation Filtering

 Warping, Resampling Filters

 about 90 Modules Registration-Related Algorithms
 Interpolators

 Metrics

 Optimizers

 Transformations

49

http://www.itk.org/


ITK Book Examples

50



ITK Watershed

51



Example Network of itkWatershedImageFilter

52



53



VTK Wrapper

 VTK –Visualization Toolkit (www.vtk.org)

 Visualization, Image Processing and Filtering Library for images, 
meshes, grids, data sets etc.

 about 1000 Modules for
 2D/3D Image Processing

 Grid, Mesh, Surface, and Data Filtering

 Pickers

 Properties and Actors

 Mappers

 Renderers, Widgets, Viewers

 Sources, Readers and Writers

 Transformations

54

http://www.vtk.org/


VTK Example 1: Contour Filter

55



VTK Example 2: VTK/OIV mix

 SoVTK module allows VTK rendering as part of an Open Inventor 
scene graph

56



vtkBoxWidget2 Example Network

57



ITK Image Registration

58



Skeletonization

 Skeletonization of a binary image by successive erosion of 

border voxels

 vessel centerline extraction

 in 2d and 3d

59



60


