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Abstract

Network of workstation (NOW) is a cost-effective alternative to massively parallel supercomputers.
As commercially available off-the-shelf processors become cheaper and faster, it is now possible to
build a cluster that provides high computing power within a limited budget. However, a cluster
may consist of different types of processors and this heterogeneity complicates the design of efficient
collective communication protocols. For example, it is a very hard combinatorial problem to find
an optimal reduction schedule for such heterogeneous clusters. Nevertheless, we show that a simple
technique called slowest-node-first (SNF) is very effective in designing efficient reduction protocols
for heterogeneous clusters. First, we show that SNF is actually an approximation algorithm with
competitive ratio two. In addition, we show that SNF does give the optimal reduction time when
the cluster consists of two types of processors, when the ratio of communication speed between
them is at least two. For cases where the communication speed ratio is less than 2, we develop a
dynamic programming to find the optimal schedule. Our dynamic programming utilizes the monotone
property of the objective function, and can significantly reduce the amount of computation time. Our
experiments indicates a factor of 93 times saving in computation time to find the optimal schedule,
when compared with a naive implementation. We also apply the theoretical results to branch-and-
bound search and show that they can reduce the search time of the optimal reduction schedule by
a factor of 500, when the cluster has three kinds of processors. Finally, combined with a previous
approximation algorithm for broadcast [22, 19], we propose an all-reduction algorithm which sends
the reduction answer to all processors, with competitive ratio 3.5.

Keywords: Heterogeneous workstation cluster, scheduling optimization, reduction protocol, slowest-
node-first heuristic, dynamic programming, branch-and-bound search.

1 Introduction

Network of workstation (NOW) is a cost-effective alternative to massively parallel supercomputers [2].
As commercially available off-the-shelf processors become cheaper and faster, it is now possible to
build a PC or workstation cluster that provides high computing power within a limited budget.
High performance parallelism is achieved by dividing the computation into manageable subtasks, and
distributing these subtasks to the processors within the cluster. These off-the-shelf high-performance
processors provide a much higher performance to cost ratio so that a high performance cluster can be
built inexpensively. In addition, the processors can be conveniently connected by industry standard
network components. For example, Gigabit technology provides up to 1 gigabit per second (Gbps)
of bandwidth with inexpensive network adaptors and switches.



In parallel to the development of inexpensive and standardized hardware components for network
of workstations, system software for programming on NOW are also advancing rapidly. For example,
the Message Passing Interface (MPI) library has evolved into a standard for writing message-passing
parallel code [1, 10, 14, 23]. MPI programmers use a standardized high-level programming interface
to exchange information among processes, instead of a native machine-specific communication library.
MPI programmers can write highly portable parallel codes and run them on any parallel machine
(including network of workstation) that has MPI implementation [30, 9, 7].

Most of the literature on cluster computing emphasizes on homogeneous clusters — clusters con-
sisting of the same type of processors. However, we argue that heterogeneity is one of the key issues
that must be addressed in improving performance of NOW. First it is always the case that one wishes
to connect as many processors as possible into a cluster to increase parallelism and reduce execution
time. Despite the increased computing power, the scheduling management of such a heterogeneous
network of workstation (HNOW) becomes complicated since these processors will have different com-
munication performance from one another. Second, since most of the processors that are used to
build a cluster are commercially off-the-shelf products, they will very likely be outdated by faster
successors before they become unusable. Very often a cluster will consist of “leftovers” from the
previous installation, and “new comers” that are recently purchased. The issue of heterogeneity is
both scientific and economic.

Any workstation cluster, be it homogeneous or heterogeneous, requires efficient collective commu-
nications [3, 25, 24]. For example, a barrier synchronization is often placed between two successive
phases of parallel computation to ensure that all processors finish the first phase before any processor
goes to the second. In addition, a scatter operation distributes input data from the source to all
the other processors for parallel processing, then a global reduction operation combines the partial
solutions obtained from individual processors into the final answer. The efficiency of these collective
communications will affect the overall parallel performance, sometimes dramatically.

The focus of this paper is to optimize the reduction operation. A 5-year-profiling in production
mode at the University of Stuttgart has shown that more than 40Interface (MPI) routines is spent in
the collective communication routines MPI Allreduce and MPI Reduce[25]. As a result it is vital to
develop efficient algorithm to collect and and combine the data in a cluster environment, especially
in a heterogeneous environment.

There has been some work in the literature that focus on the optimization of collection reduc-
tion [16, 20, 25, 26]. However, these work considers mostly homogeneous environments, and does not
take the diversity of processor speed into consideration. In addition, these approach relies mostly on
recursive processor halving techniques and low level communication protocol improvements, which
do treat heterogeneity of clusters mathematically.

Heterogeneity of a cluster complicates the design of efficient collective communication protocols.
When the processors send and receive messages at different speeds, it is difficult to synchronize them
so that the message can arrive at the right processor at the right time for maximum communication
throughput. On the other hand, in a homogeneous NOW every processor requires the same amount
of time to transmit a message. For example it is straightforward to implement a reduction operation
on P processors as log P phases, and in each phase we reduce the number of processors that have
received the combined results from other processors by half. In a heterogeneous environment it is no
long clear how to complete the same task within the minimum amount of time.

This paper treats the heterogeneity of a cluster mathematically, and derives provably efficient
algorithms for reduction operations. This paper shows that a simple heuristic called slowest-node-first
(SNF) is very effective in designing reduction protocols for heterogeneous cluster systems. Despite
the fact that SNF heuristic does not guarantee the optimal reduction time, we show that SNF is
actually an approximation algorithm with competitive ratio two. In addition, we show that SNF
does give an optimal reduction time when the cluster consists of two types of processors and the
communication speed ratio between them is at least two. When the ratio is less than 2, we develop a
dynamic programming to find the optimal schedule. Our dynamic programming utilizes the monotone
property of the objective function, and can significantly reduce the amount of computation time.

Here is a summary of the theoretical results from this paper.

e SNF does give an optimal reduction time when the cluster consists of processors with commu-
nication time in the form of power of 2.

e SNF is not optimal, but is an approximation algorithm with competitive ratio two.



e SNF does give an optimal reduction time when the cluster consists of two types of processors
and the communication speed ratio between them is at least two.

e A dynamic programming to find an optimal reduction for cluster with two types of processors,
in time O(f%slogs) where s and f are the number of slow and fast processors.

e A all-reduction algorithm with competitive ratio 3.5.

It is a very difficult to find an optimal reduction schedule for heterogeneous clusters. In practice
we often resort to branch-and-bound search [3]. This paper shows that we can reduce the number of
search tree nodes we have to examine by the theoretical results developed in the proof of SNF results.

We conduct experiments to show that these techniques can improve the search efficiency by a factor
of 500 when there are two types of processors. For the case of two types of processors, we experiment
our dynamic programming and show that our technique can reduce the amount of computation time
by a factor of 93.

The rest of the paper is organized as follows. Section 2 describes the communication model in
our treatment of reduction problem in HNOW. Section 3 describes the concept of earliest possible
schedule and Section 4 describes the slowest-node-first heuristic for reduction in heterogeneous cluster.
Section 5 states the theoretical results, including a special dynamic programming for efficiently solving
a cluster that has two kinds of processors. Section 6 describes how the theoretical results help improve
the efficiecy in finding optimal schedule, and Section 7 concludes.

2 Communication Model

There have been two classes of models for collective communication in homogeneous cluster environ-
ments. The first group of models assume that all the processors are fully connected. As a result
it takes the same amount of time for a processor to send a message to any other processor. For
example, both Postal model [5] and LogP model [17] use a set of parameters to capture the commu-
nication costs. In addition Postal model and LogP model assume that the sender can engage in other
activities after a fixed startup cost, during which the sender injects the message into the network
and is ready for the next message. Optimal broadcast scheduling algorithm for these homogeneous
models can be found in [5, 17]. The second group of models assume that the processors are connected
by an arbitrary network. It has been shown that even when every edge has a unit communication
cost (denoted as the Telephone model), finding an optimal broadcast schedule remains NP-hard [11].
Efficient algorithms and network topologies for other similar problems related to broadcast, including
multiple broadcast, gossiping and reduction, can be found in [8, 12, 13, 15, 21, 27, 28, 29].

Communication models for heterogeneous environments have also been proposed in the literature.
Bar-Noy et al. introduced a heterogeneous postal model [4] in which the communication costs among
links are not uniform. In addition, the sender may engage in another communication before the
current one is finished, just like homogeneous postal and LogP model. An approximation algorithm
for multicast is given, with a competitive ratio logk where k is the number of destinations of the
multicast [4]. Banikazemi et al. [3] proposed a simple model in which the heterogeneity among
processors is characterized by the speed of sending processors. Based on this model, an approximation
algorithm for broadcast with competitive ratio 2 is given in [22]. The competitive ratio for the same
algorithm is later improved to 1.5 [19]. We adopt the simple model from [3] for its simplicity and
the high level abstraction of network topology. Other models for heterogeneous clusters can be found
in [6, 18].

The communication model of a heterogeneous environment is defined as follows. The system
consists of n processors {pi,...,pn}, each is capable of direct point-to-point communication to one
another. A processor p; is characterized by its transmission time t(p;), i.e. the time it takes for p; to
send a message to any other processor.

In order to make the communication model realistic, we further assume that two communications
cannot overlap, i.e. neither the sender nor the receiver of an ongoing communication can engage in
any other communication at the same time. This assumption is based on the fact that in practice
most of the processors in a clusters only have limited resource for communication.

We define the reduction problem for the communication model we just described. Suppose each
processor in the system has a unit of information, and we would like to combine all these informations
into the final answer, how do we schedule the processors so that the reduction takes the least amount
of time? For example, each processor may have a number and we want to compute the total sum of



these numbers by message passing. For a homogeneous system a simple tree algorithm can be used
so that during each iteration half of the processors send their information to the other half where the
informations are combined. The algorithm takes log n rounds, where n is the number of processors,
to combine all the informations since the number of active processors reduces by half per iteration.
However, due to the differences in communication speeds within a heterogeneous environment, this
algorithm cannot guarantee minimum reduction time.

We formally define the reduction as a scheduling problem. We observe that during the reduction
process exactly n — 1 messages are sent by n — 1 different processors — each processor except the
final reduction destination, sends out exactly one message. Based on this observation, we define
a reduction schedule as a mapping function from a processor to the time that it starts sending
its message. Formally we define a function s so that for any processor p (except the reduction
destination), p starts sending its message at time s(p), and completes sending its message at time
s(p) +t(p). Let c(s,p) = s(p) +t(p) be the completion time of p under the scheduling function s. The
interval [s(p), c(s,p)] is defined as the transmission window of p under s.

To show that it is not beneficial for the reduction destination to send out any message, we
define that a processor p can reach the reduction destination d if and only if there exists a series of
transmission windows w1, wa, ..., Wk, and the following properties are true.

1. The source of w; is p.
2. The destination of wy, is d.

3. The destination of w; is the source of w;4+1, for 1 <i < k.

A schedule is “correct” if and only if all the processors (except the destination d) can reach d. It
is easy to see that if a schedule is correct, then we can remove all the transmission windows with d
as the source, and all the other processors can still reach d. Therefore, without lose of generality, we
assume that the destination will not send any messages in our scheduling.

Due to the constraint that a processor can only participate a single communication at any given
time, we must distinguish valid schedule from invalid ones. To formalize this constraint, we define
two sets of processors for any schedule at any given time. Let A(s,t) be the number of processors that
are still actively sending their messages, and C(s,t) be the number of processors that have completed
sending their messages at time ¢ under schedule s.

A(s,t) = Hpi:s(pi) <t <c(s,pi)}
C(s,t) = WHpi:t>cls,pi)}
2A(s,t) + C(s,t) < n (1)

A scheduling function s is wvalid if and only if the inequality above (Equation 1) is true. The
inequality says that at any time ¢, the total number of senders and receivers, and those processors
that have sent out their messages, should not be more than the number of processors in the system.
Figure 1 show a valid schedule and the corresponding A and C' functions.

3 Earliest-Possible Schedule

This section describe a technique called earliest possible scheduling that can “normalize” all the
possible valid schedules. We use this canonical form to simplify the discussion of finding an optimal
schedule.

An earliest possible (EP) schedule is one in which all the communications are initiated as earlier
as possible. A new communication can be initiated as soon as the number of free processors reaches
2 — one for the sender and one for the receiver. Let F'(s,t) denote the number of processors that
we are free to use to initiate a new communication at time ¢ under schedule s. That is, F(s,t) =
n— 2A'(s,t) — C(s,t), where A'(s,t) = |{pi|s(pi) < t < s(pi) + ¢(ps)}| is the number of processor
that are in the middle of sending and receiving messages. Note that A’(s,t) is different from A(s,t).
A’(s,t) does not include processors that will start sending and receiving message at time ¢ but A(s,t)
does. As a result all the first |n/2] processors will start sending messages at time 0, and the rest
of the processors will start sending messages as soon as the number of free processors reaches two,
as illustrated by Figure 2. The algorithm EP will assign non-decreasing start time to the processors
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Figure 1: A valid reduction schedule showing A and C functions. The system consists of seven processors
— indicated by the uppercase letters from A to G. The transmission time for these seven processors are
10, 5, 5, 5, 4, 2, 2, respectively.

in the order they appear in the input processor sequence P. Since we do not need to schedule the
reduction destination for sending, there are only n — 1 processors in the input processor sequence P.
By definition an earliest possible schedule s has the following properties.

1. n—1<2A(s,t) + C(s,t) < n.
2. For any processor p that s(p) > 0, there exist another processor ¢ such that s(p) = c(s, ¢).

Note that it is trivial to convert any valid schedule into an EP schedule without increasing the
total time — we just move the transmission window of each processor to the earliest possible time.
As a result EP schedule servers as a canonical form in which we will limit our search of an optimal
schedule. Since the EP algorithm can completely determine a schedule once the order of processors
in the sequence P is fixed, we only have to consider up to (n — 1)! different schedules. Figure 3 shows
the EP schedule that is converted from the schedule in Figure 1.

3.1 Sender Dependency and Destination Assignment

Given an EP schedule, we need to specify the destinations for all messages in order to program a
cluster to perform a reduction. We will show that under any EP schedule, it is always possible to do
so without violating the constraint that a processor cannot participate more than one communication
simultaneously.

Lemma 1 For any earliest possible schedule we can assign the destinations for all processors so that
no two overlapping transmission windows have any sender or receiver in common.

Proof. First we would like to establish the dependency among the processors. Note that in algorithm
EP it requires two free processors to start a new transmission. As a result we define the predecessors
of a sender processor to be the two senders that must complete before the new transmission can
start!. This dependency forms a binary tree among all sender processors.

Now we can start filling in the destinations for all senders. First we assign the reduction destination
d as the destination of the sender that has the latest completion time. Then for a sender/receiver pair
s and r, we assign s and 7 to be the destinations of the two predecessors of s. We assign destinations
for transmission windows in a top-down manner within the binary dependency tree. Since both
predecessors complete sending their messages before s starts, no overlapping transmission windows
will have processors in common. |

Figure 4 shows an example of how to find the destination for the schedule in Figure 3. Note that
the assignment is not unique since we can assign s and r to either of the two predecessors.

1Note that when n is an odd number, one of the processor will have only one predecessor.



Algorithm EP(P)
{
1= 1; time = 0; free = n;
Active = empty set; Complete = empty set;
while (4 < n-1) {
do while (free > 2) {
set the start time of the i-th processor in P to time
add the i-th processor in P into Active;
1=1+ 1;
free = free - 2;
}
find the set of processors p that has the smallest
completion time in Active;
time = the completion time of p;
move p from Active to Complete;
free = free + the number of elements in p ;

}

Figure 2: The pseudo code for the earliest possible scheduling algorithm.
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Figure 3: The EP schedule converted from the schedule in Figure 1

4 Slowest-Node-First Scheduling

We now introduce a simple scheduling heuristic called slowest-node-first (SNF) for the reduction
problem. SNF simply sorts the processors in P = (pi1,p2,...pn—1) in non-increasing transmission
time order, i.e., t(p;) > t(p;) if ¢ < j. SNF then gives the sorted sequence P to algorithm EP for
scheduling. In the next section we show that this simple technique is very effective in obtaining a
good reduction schedule. Figure 5 shows the slowest-node-first schedule with the same cluster as in
Figure 3.

The rationale of having the slowest processors to send messages first is as follows. At the beginning
of the reduction process, we would like to overlap as many communication windows as possible.
Intuitively we let all the slow processors send first so that they will overlap with each other, instead
of having to wait for each other at the end of the reduction.
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Figure 4: Find the destinations for all senders in Figure 3. Note that A is the destination processor.
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Figure 5: Slowest-node-first scheduling result from the same cluster as in Figure 1 and 3.

5 Theoretical Results

Before we describe the main results, we describe an exchange lemma that clarifies our intuition that
slow processors should send first, as we did in SNF scheduling.

Lemma 2 Let s be a valid schedule and processor p starts right after processor q ends, i.e. s(p) =
c(s,q). If t(p) > t(q) then we can exchange p and q so that the modified schedule s’ in which
s'(p) = s(q) and s'(q) = c(s',p) is also valid.

Proof. From Figure 6 we observe that the contribution of p and ¢ to the sum of C' and A functions
is always higher in s than in s’, therefore if s can satisfy Inequality 1, so can s’. |

From Lemma 2 it follows that in the search of an optimal reduction schedule we can neglect those
schedules that have a slower sender p with a faster predecessor q. There are two cases to consider.
First if s(p) = c(s, ¢) then by Lemma 2 we can switch p and g. On the other hand, if there is a gap
between the transmission windows of p and ¢, then we can delay the window of ¢ until it touches p’s
window. We can do so because there is no new transmission initiated between s(p) and c(s, q), since
q is a predecessor of p. As a result we will consider only those schedules that all the senders have
predecessors of smaller or equal transmission time.

Corollary 1 There exists an optimal schedule such that the predecessors of every senders have an
equal or higher transmission time than the sender.
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Figure 6: An illustration on the contribution to the sum of C' and 2A before and after we switch the
transmission windows of p and q.

5.1 Competitive Ratio

We now consider a special class of clusters in which the transmission time of every processor is a
power of 2. Without lose of generality we assume that the fastest processor has a transmission time
of 1. We call this kind of cluster a power 2 cluster and show that SNF generates optimal schedules
for all power 2 clusters.

Theorem 1 The slowest-node-first method gives optimal schedules for all power 2 clusters.

Proof. We show that every schedule for a power 2 cluster can be converted into the SNF schedule
without increasing the total reduction time. We reschedule all the slowest processors as early as
possible, until there is no faster processor ahead of them. Then we reschedule the second slowest
processors the same way, and repeat this rescheduling until the final schedule is the same as SNF.

When the transmission time of every processors is a power of 2, we claim that there is an optimal
schedule s so that for every processor p its starting time s(p) is a multiple of its transmission time ¢(p).
Since every processor has a predecessor that ends when it starts, we locate a “chain” of predecessors
all the way back to time 0. In addition, every one of these predecessors has a transmission time of
equal or larger power of 2. Therefore the start time s(p), which is the sum of the transmission time
of these predecessors, is also a multiple of its transmission time.

Consider a processor p and the set F' of faster processors that starts before p. Let ¢ be the
processor that completes last in F'. If ¢ finishes right when p starts, then by Lemma 2 we can
exchange p and ¢. If there is a gap between s(p) and s(q) + t(g), we claim that there will be no
transmission windows located within this gap. If a processors starts or ends within this gap it must
fall into this gap completely, since all processors must start and end at the multiple of its transmission
time. If that is the case ¢ will not be the processor with the largest completion time in F. Since
there is no transmission window in the gap, we can safely delay the transmission window of ¢ so that
q ends when p starts. By Lemma 2 we can then exchange p and ¢ and the theorem follows. |

Theorem 2 The slowest-node-first schedule has a total reduction time no greater than twice of the
time of an optimal schedule.

Proof. Let s be an optimal schedule for a cluster H. Without lose of generality we assume that
the fastest processor in H has a transmission time 1. We first convert H into a power 2 cluster by
increasing the transmission time of every processor p to 2Mes (P We call this new cluster H'.

We argue that there exists a schedule s’ for H' in which every processor p starts at time no later
than 2s(p). The claim follows from a simple induction that if every processor p in H' waits for the
two predecessors ¢ and r defined by s, then it can start at time no later than 2s(p), since both p and
q starts no later than 2s(q) and 2s(q), and their transmission time at most doubles in H'.

Now we have constructed a new schedule s’ for H' that has a reduction time at most twice of s.
Since s’ is a schedule for a power 2 cluster, its reduction time is at least the time of the optimal SNF
schedule s* on H'. Finally if we apply SNF on H and obtain schedule s”, it will be as fast as the
SNF schedule s* on H’, since for every processor both of its predecessors can start earlier and send



messages faster. As a result the reduction time of s” is no more than s*, which in turn is no more
than twice of s. |

5.2 Competitive Ratio for All-reduction

There is a similar problem called all-reduction, in which the final reduction answer should be sent to
all processors. It is easy to see that the an all-reduction is at least as expensive as a fastest broadcast
from any source, or a fastest reduction into any destination.

In a previous paper [22] we showed that starting from any processor as the source, we can perform a
broadcast in no more than twice of the fastest broadcast time from that same source, with an technique
called fastest-node-first [3]. The fastest-node-first technique is later shown to have a competitive ratio
1.5 when the broadcast source is the fastest processor [19]. We have already shown that with slowest-
node-first scheduling, we can perform reduction to any destination with time no more than twice
the optimal time to the same destination. Combining these two algorithms, we can perform an all-
reduction within 8.5 times of the optimal time. We first perform a reduction into the fastest processor
with SNF, which will complete in twice of the optimal all-reduction time, then we do a broadcast
from that fastest processor, which takes at most 1.5 times of the optimal all-reduction time.

Theorem 3 There exists an algorithm that performs all-reduction with competitive ratio 3.5.

5.3 Two Types of Processors

In this section we prove that SNF does give the optimal reduction time when the cluster consists of
two types of processors, and the communication speed ratio between them is at least two. We also
find a counterexample which shows that if the communication speed ratio between them is less than
two then SNF is not optimal.

Lemma 3 Let s be a valid schedule, p be a slow processor and q1,q2,qs be fast processors. If s(p) is
within the transmission window of q1, qi1 stars right after q2, and q2 starts right after qs, then there
exists a schedule s’ with following properties.

1. s'(p) = s(qs), i-e. process p starts sending message in s the time process qs starts sending
message in s.

2. s'(q3) = s(p), i.e. process qs starts sending messages in s' the time process p starts sending
message in s.

3. Process qu starts right after g2 and q1 ends in s’ at the same time as p ends in s.

time -
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Figure 7: Rearrange the communication windows of p and q1, g2, g3.

Proof. From Figure 7 we observe the followings:
1. 2A(s, s(p)) + C(s,s(p)) = 6 because p is at least twice as slow as qi.
2. s'(g2) < c(s',p), i.e. p ends before g starts in s.



From the observations above we conclude that at any time ¢ the value of 24 + C' is always equal
or higher in s than in s’, and the theorem follows. |

According to Lemma 2 we know that there exists an optimal schedule in which no slow processor
will start right after a fast processor. Therefore, we can assume for every slow processor, its predeces-
sors are slow processors as well. As a a result the starting time of every slow processor is a multiple of
its transmission time, and we can layer the slow processors according to their starting time as follows.

Definition 1 Layer one processors are the set of slow processors starting at time 0. Layer i + 1
processors are the set of slow processors starting right after layer i processors.

Theorem 4 SNF is optimal when there are only two types of processors and the communication
speed ratio between them is at least two.

Proof. Assume that there exists an optimal solution in which there exits a slow processor that
starts after a fast processor does. Let p be the earliest such slow processor, and ¢ be the last fast
processor starts before p starts. We show that it is always possible to reschedule p so that it starts
earlier than ¢ without increasing the total time.

There are three cases to consider — processor p can start before, at, or after the processor ¢ ends.
For the second case we apply Lemma 2 and switch p and q. For the third case, since g finishes last
among all the fast processors starting before p, there will be no processor starting in the gap between
q ends and p starts. As a result we can delay the transmission window of ¢ so that ¢ ends right when
p starts, then we apply Lemma 2 to move p earlier.

We now consider the first case. Since every processor has a predecessor that ends when it starts,
we locate a “chain” of predecessors for ¢ all the way back to time 0. For processor g we need at least
two levels of predecessors and both of them must be fast ones, since the ratio of communication speed
is at least two and the slow processors must start at a multiple of its transmission time. By Lemma 3
we find a new schedule in which p starts before q. We repeatedly reschedule the slow processors p
earlier until no fast processor starts before it, and the theorem follows. |

Figure 8 shows a counterexample that SNF always gives optimal reduction time. This cluster
has 4 slow processors with transmission time x, and 8 fast processors with transmission time 1. The
alternative schedule requires 2z + 1 time when 1.5 < x < 2, or 4 when 1 < < 1.5. In contrast SNF
requires = + 3 time for both cases, and has a longer reduction time for for all  between 1 and 2. As
a result the bound of two in Theorem 4 is tight.

time -
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Figure 8: A counterexample that SNF always gives optimal reduction time in a cluster consisting of two
types of processors.
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5.3.1 Small Speed Ratio

From the counter-example in Figure 8, we know that SNF cannot find optimal solution for a cluster
of only two types of processors with speed ratio no more than 2. However, in the following we show
that we can still use dynamic programming to find the optimal solution in this situation. In addition,
we show that this dynamic programming can be significantly improved by a theoretical study.

To ease the explanation we suggest a binary tree representation for the reduction problems.
Figure 9 illustrates a reduction problem. Now if we traverse backward in time, we obtain Figure 10,
which has the same total time as in Figure 9. For each transmission window in the time-reversed
diagram (Figure 9), we construct a node, with a weight equal to the length of the transmission
window. We place an edge from a node a to another node b if the transmission window represented
by b can only occur after the transmission window represented by node a is completed. The tree will
be a binary tree since a node only needs wait for up to two nodes. The corresponding binary tree of
the example from Figure 9 is illustrated in Figure 11.

time >

@]
n

Figure 9: An example of reduction scheduling where processor A is the final destination processor.

time >

I ) ) A R I B |

A E

Figure 10: Figure 9 traversed backward in time.

We define the length of a tree path to be the sum of the weights of the tree nodes along the path,
and the critical path length to be the maximum tree path from the root to a leaf. To find an optimal
reduction schedule is equivalent to constructing a binary tree that has the minimum critical path
length, when given the weights of the nodes. We use MCP to denote the minimum critical path.

5.3.2 Dynamic Programming

Before we describe the dynamic programming algorithm for finding the minimum critical path, we
make the following observation. From Observation 1 we immediately conclude that there exists an
optimal MCP tree in which all the fast nodes are on top of slow processors in the tree, that is, no
slow processor has fast child.

Observation 1 An MCP tree exists in which every node has a cost no greater than its children.

11



Figure 11: A binary tree representation of the schedule in Figure 10. The labels next to the nodes indicate
the sender and the receiver of the transmission window, and the numbers within the nodes indicate the
transmission time.

This observation follows from the fact that if an MCP tree does have a parent with a cost larger
than one of its children, we switch these two nodes and the overall MCP length will not increase.
In fact this is a special case of Lemma 2. We can also conclude that an optimal MCP tree exists in
which every path from the root to a leaf has non-decreasing weights on the nodes.

We describe a dynamic programming method for finding the optimal MCP tree for clusters with
two classes of processors. From Theorem4 we only need to focus on the cases where the speed ratio is
less than 2. Let T'(f, s) be the minimum critical path length for a cluster consisting of f fast processors,
s slow processors, and a destination whose transmission time is irrelevant. The transmission time of
fast and slower processors are ¢ty and ts respectively. We define T'(f, s) recursively as the following
Equation 2. This recursion follows from Observation 1 that an optimal MCP tree exists with the
root being the minimum cost in the tree - in our case a fast processor.

T(f,s) = ty+ min (max(T(f1,s1), T(fr,57))), f >0 (2)
it fr=f—-1
si4s-=5
= [logy(s+1)|ts, when f=0 (3)

The recursion above suggests a dynamic programming solution to the MCP problem. The optimal
solutions of MCP are kept in a two dimensional array, with the number of fast and slow processors
as the indices. The algorithm makes these table entries from lower to higher indices. The execution
time, given f and s as the number of processors, is bounded by O(f?s?), since there are fs entries
to compute, and the time for computing each entry is bounded by O(fs) time.

5.3.3 Improvement from the Monotone of s Coordinate

The dynamic programming described in the previous section can be improved if we understand the
structure of the T'(f, s) function. We describe this structures and show how it reduces the computation
costs of T'(f, s). It is not difficult to see that the T'(f, s) function is monotonic with respect to s, that
is, when we increase the number of slow processors, the optimal MCP length will not decrease.

Lemma 4 T(f,s+1) >T(f,s) for all s > 0.

Proof. Consider an optimal MCP tree 7 with f fast and s 4+ 1 slow processors. Suppose this tree
has a shorter MCP than the tree with one less slow processor, that is, T'(f,s + 1) < T(f,s). From
Observation 1 we can always locate slow processor n as a leaf in 7. It is easy to see that by removing
n we will not increase the MCP length. As a result we have constructed a tree that has a shorter
critical path than T'(f, s), a contradiction to the definition of T'(f,s). ]

With Lemma 4 in place we examine Equation 2. For a given f; and f, pair, we must examine all
the s; and s, pairs such that s; + s, = s. This is equivalent to computing the following function:

M(fh Ir 5) = Ogi,gs(max(T(flv Sl)vT(fT7 S = 5/))) (4)
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Equation 4 leads us to consider the crossover point of T'(fi,s') and T'(fr,s—s'). Since T'(f1,s) is
non-decreasing and T'(f,, s —s’) is non-increasing with respect to s’ (from Lemma 4), the minimum of
the maximum of the two functions is located around T'(f;,s’) = T'(fr,s —s’). This crossover point of
can be easily found by a binary search with O(log s) time. On the other hand, if one of the functions
is strictly larger than the other, the minimum of the maximum of two functions can be found at
either s = 0 or s’ = s, and these special cases can be easily checked. We summarize our discussion
with the following theorem:

Theorem 5 Given the number of fast and slow processors in an MCP length problem, the optimal
time T(f,s) can be found in time O(f*slogs).

Proof. The theorem follows from the improvement of reducing the computation time for each cell
to O(flogs), and there are fs cells to compute. [ |

5.3.4 Improvement from the Monotone of f/ Coordinate

We now establish the monotone of T'(f,s) with respect to f. One would think that, like adding
slow processors, adding fast processors will delay the schedule. Surprisingly, this intuition is only
partially true — when the number of fast processors is small, adding fast processors actually helps
reduce the broadcast time since the workload of telling all the slow processors is shared by the added
fast processors.

The main purpose of having fast processors is to share the workload of sending messages to slow
processors. As a result, if a fast processor only has one child in an optimal MCP tree, we conclude
that the number of slow processors is not large enough compared with the number of fast processors
to be beneficial, so this redundant fast processor can be safely removed without increasing the MCP
length.

Observation 2 Any tree node with only one child can be removed (by connecting its parent to its
only child) without increasing the MCP length.

With this observation, we proceed to prove the monotonic result.
Lemma 5 T(f +1,s) > T(f,s) forall f > s—1.

Proof. We prove by contradiction and assume that T'(f +1,s) < T(f,s) for an f > s—1. Consider
this optimal MCP tree having f + 1 fast and s slow processors. From Observation 1 all f + 1 fast
processors (including the root) are connected into a tree 7*. The f 4 1 fast processors in 7 can
connect up to f + 1+ 1 > s+ 1 other tree nodes as children. Since we do not have enough slow
processors to cover every fast processor in 7* with two children, there exists a fast processor with at
most one child. From Observation 2 we remove this one-child fast processor without increasing the
MCP length, and by doing so we construct a tree with f fast processors, s slow processors, and an
MCP length smaller than T'(f, s) — a contradiction to the definition of T'(f, s). ]

To see how Lemma 5 helps improve dynamic programming efficiency, let’s consider a table entry
T(f,s") where f* > s*. If T(f*,s") is already worse than the current best solution, we do not need
to consider any T'(f, s) where f > f* and s > s*. The reason is that T'(f, s) is monotonic with respect
to f, we have T'(f,s*) > T(f*,s*) for f > f*. In addition, T'(f,s) is also monotonic with respect to
s, 80 T(f,s) > T(f*,s") for s > s*. As a result it is possible to eliminate a rectangular area in the
T(f,s) table (Figure 12) if we know the solution T'(f,s) is worse than the current best solution.

We apply the results from Lemma 4 and 5 to our dynamic programming. We first define a
relation between two (f,s) pairs while computing the T" function in Equation 2. We call two (f,s)
pairs buddies if they appear within the maximum function in Equation 2. For example (fi,s;) and
(fr,sr) are buddies if fi + fr = f — 1 and s; + s, = s for given f and s (Figure 13). For example,
point A in Figure 13 has a buddy B on the right side of the f-s plane. We also define F'(A) and S(A)
to be the f and s coordinates of point A. Let C be the point ([£32] —1,[212]) on the s = f+1 line
(Figure 13).

We improve efficiency in dynamic programming by eliminating buddy pairs that could not possibly
be the answer. There are three cases to consider. In all cases we assume that A is a point on the line
s = f+1, and B is the buddy of A.
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T(f*,s*)

f

Figure 12: An illustration that any entry with indices higher than f* and s* will have a larger T'(f, s)
value.

f(0,1)

Figure 13: An illustration of two buddies A and B. Point C is on the line s = f + 1 and has coordinate
(I =115

S(A) < S(B)+1 Consider a point A’ under A and its buddy B’ (Figure 13). From Lemma 4 we
know that T(B") > T(B), and from Lemma 4 and 5 we conclude that T(B’) > T(A). As a result
the pair A’ and B’ could not possibly produce the answer for Equation 2 since A and B would be a
better choice. We do not need to consider the shaded area in Figure 13.

S(A) > S(B)+1and T(A) <T(B) InFigure 14 any point A’ below A could not be the solution,
since the buddy of A’ (call it B’) has cost T(B’) > T(B) > T(A). As a result the pair A’ and B’
could not possibly produce the answer, and we do not need to consider the shaded area in Figure 14.

S(A) > S(B)+1 and T(A) > T(B) Any point A’ in the upper region (region 1 in Figure 15)
could not be the solution since T'(A") > T'(A) > T(B). On the other hand, any point Ax in the lower
area (region 2 in Figure 15) could not be the solution either since the buddy of Ax (call it Bx) has
a T value no less than either A or B. We only need to consider the rectangular region in the middle
for this case (Figure 15).

We now describe the overall dynamic programming algorithm in details. The algorithm will try
to ignore as many cells as possible, given the three cases we just described. The algorithm will ignore
the region in Figure 13 when the s coordinate is less than or equal to (S;Tl-\ (point C in Figure 13),
as discussed in the first case. Once we pass point C, we repeatedly compare T'(A) and T'(B) (B is
the buddy of A) and try to find the first A on the line s = f + 1 such that T(A) > T(B). The
second case applies to those s coordinates before the loop stops, and their trapezoid areas can be
safely ignored. When the loop stops, the third case applies and we need to consider a rectangular
area only (Figure 15). For those areas that cannot be ignored, we use a binary search to find the
crossover point, as in the discussion of Equation 4.

In Figure 13, 14, and 15 we all assume that f is larger than s. When s is larger than f, the
second and the third case will not occur, and we can actually simplify the dynamic programming by
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f(0,1)

Figure 14: An illustration when S(A) is larger than S(B) + 1 and T'(A) < T(B).

S

oA

region2

f(0,1)

Figure 15: An illustration for the third case that S(A) is larger than S(B) + 1 and T'(A4) > T'(B).

ignoring the area illustrated in Figure 16.

5.3.5 Improvement for Higher Dimensions

It is easy to generalize Theorem 5 to a higher number of classes of processors, since Lemma 4 holds
for the slowest processors.

Theorem 6 If a cluster has n processors from k classes, the optimal MCP length can be computed
in O(n**~tlogn) time.

Proof. It is easy to see that Lemma 4 holds for the slowest processors. That is, the optimal time
function given the number of processors of each kind, is monotonic with respect to the number of
the slowest processors. As a result we can derive an equation similar to Equation 4, that is, we fix
the number of other processors, and try to find the minimum by a binary search for the crossover
point along the coordinate of the slowest processor. The dynamic programming requires a table of n*
entries since the number of each type of processors is bounded by n. For each entry we need O(logn)
time for a binary search, and there are n*~! entries. The total time is bounded by O(nk xn*~1log n)
and the theorem follows. |

6 Experimental Results

6.1 General Clusters

The previous section describes the theoretical results that guarantees the optimality of SNF method
for special cases, and provides performance guarantee for general cases. However, in practice one may
wish to find the optimal reduction schedule for a particular cluster that contains more than two kinds
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1(0,1)

Figure 16: An illustration for the case that s is larger than f.

of processors. In such cases we have to search for the optimal schedule since SNF does not guarantee
optimality. This section describes the techniques that we used to speed up the search process.

As described in Section 3, every reduction schedule can be converted into a earliest-possible
schedule, which can be represented by a sequence of processors. As a result we can find an optimal
reduction schedule among these (n — 1)! possible sequences, where n is the number of processors in
the cluster. However, for a typical cluster (n — 1)! is such a large number that we apparently cannot
try all these permutations, even by a branch-and-bound procedure. To overcome this problem, we
conduct experiments to show that by Corollary 1 we can dramatically reduce the search space.

We use three techniques to reduce the number of sequences we have to consider. First of all, we
examine the sequences in such an order that those sequences with slower processors appearing first
will be examined first. Formally we define the priority of a sequence to be the number processors
that have longer or equal transmission time than the next processor in the sequence. In other words,
the SNF schedule has the highest priority and will be considered first.

The second technique is to apply Corollary 1 so that when a fast processor is scheduled to send
the message to a slower processor, we can prune that subtree immediately. In addition, it is possible
for several senders to send messages simultaneously so that more than one processor can receive at
the same time. In that case if any sender is faster than any of those possible receivers then we can
drop this partial solution completely.

Finally, we use the standard branch-and-bound technique to explore the search tree. If the cost of
a partially examined sequence is already larger than the current optimal, the entire subtree is pruned.
This technique is most effective when the difference among processor speed is large.

We conduct the experiments on a Pentinum 3-450 PC running FreeBSD 3.2 UNIX. The PC has
128Mbytes memory and we use gcc 2.7.2-1 to compile the code. The input cluster configurations for
our experiments are generated as follow. We assume that the number of classes in a cluster is 3. This
assumption is practical since processors are usually purchased in batches and the number of batches
is usually small. We vary the cluster size from 10 to 21. For each processor we randomly assign a
communication speed from the three possible values. For each cluster size we repeat the experiments
for 50 times and compute the average for the quantities we measured.

We quantify the search ratio of an algorithm as the percentage of the entire search tree the
algorithm has to examine in order to find the optimal solution. As a result, an algorithm that scans
n tree nodes before finding the optimal one the search ratio is &, where N is the total number of
nodes in the entire search tree.

Table 1 compares the efficiency of our algorithm with a simple branch-and-bound search. Guided
by various heuristics described earlier, our algorithm searches much fewer tree nodes than the generic
branch-and-bound method, and consequently runs much faster. For large clusters consisting up to 21
nodes our algorithm runs about five hundred times faster than the generic algorithm, and can find
the optimal solution within 15 second, while the generic algorithm runs more than two hours.

The first two columns in Table 1 indicate the average number of nodes and leaves of the search
trees generated. The next three columns are the number of tree nodes examined, the search time (in
second), and the search ratio from our algorithm. The next three columns are from a generic branch-
and-bound algorithm. The last column shows the performance ratio between these two algorithms.
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search tree SNF search generic branch-and-bound search time

P N L n | time n/N n time n/N ratio
10 7852 2406 475 | 0.002 | 6.049% 5642 0.05 | 71.854% 25
11 21544 6586 824 | 0.005 | 3.825% 15330 0.17 | 71.157% 34
12 55243 16785 2151 0.01 | 3.894% 39367 0.48 | 71.262% 48
13 163186 49695 3715 0.03 | 2.277% 115419 1.64 | 70.728% 54
14 440848 134154 9908 0.07 | 2.247% 310731 4.76 | 70.485% 68
15 1141417 344573 14845 0.12 | 1.301% 804970 13.61 | 70.524% 113
16 3824647 1160027 46688 041 | 1.221% 2683898 48.48 | 70.174% 118
17 10379374 3147823 70259 0.66 | 0.677% 7248825 144.32 | 69.839% 218
18 29444739 8902547 187034 1.85 | 0.635% 20576306 444.51 | 69.881% 240
19 78392528 23692980 293681 3.28 | 0.375% 54742994 | 1115.72 | 69.832% 340
20 | 189185942 56704807 848633 | 10.43 | 0.449% | 132562430 | 2476.89 | 70.069% 237
21 | 600236924 | 180412877 | 1187418 | 15.28 | 0.198% | 420191444 | 8173.73 | 70.004% 544

Table 1: The comparison of two search programs.

6.2 Dynamic Programming

To demonstrate how theoretical results help improve the efficiency of our dynamic programming, we
design experiments to compare the number of pairs of table entries that we need to examine in order
to compute the optimal schedule. In other words, we use the number of table entry lookups as the
cost measurement of dynamic programming.

We conduct experiments on a Pentinum 3-450 PC running Windows 2000 5.00.2195. The PC
has 128Mbytes memory. We use Microsoft Visual C++R 6.0 to compile the code. The experiment
has four parameters — cs, ¢, s and f. These parameters are the transmission costs of slow and fast
processors, and the number of slow and fast processors in the cluster. Since we are only interested
in counting the number of referenced pairs while computing the optimal schedule, only 3 parameters
are needed: £2, s and f. In other words, we can safely assume that the transmission cost of a fast

processor is 1, therefore, for ease of notation, we only consider parameter cs.

We compare three algorithms: The first is a naive algorithm that checks all the pairs in the table,
that is, it has to check [#W pairs. In this algorithm, parameter c¢s; does not affect the result.

The second algorithm utilizes Lemma 4 and uses a binary search on the s-axis to find the optimal
solution. This algorithm reduces the number of table references since, while computing Equation 4,
a binary search requires only O(log s) references.

We now consider both Lemma 4 and Lemma 5, and derive the third algorithm. This algorithm
deletes certain pairs from the computation and uses a binary search on the rest of the points along the
s-coordinate. This algorithm does not reduce the time complexity order, but will reduce the constant
factor since many pairs will not be examined. Please refer to Figure 13, 14 and 15 for savings.

Table 2 lists the costs of computing the optimal schedule using the three algorithms. We chose
¢s = 2 and compute T'(f, s) all the way till f < 150 and s < 150.

150 0 750 1500 2250 3000 3750 4500 5250 6000 6750 7500 8250 9000 9750 10500 11250
140 0 700 1400 2100 2800 3500 4200 4900 5600 6300 7000 7700 8400 9100 9800 10500
130 0 650 1300 1950 2600 3250 3900 4550 5200 5850 6500 7150 7800 8450 9100 9750
120 0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000 6600 7200 7800 8400 9000
110 0 550 1100 1650 2200 2750 3300 3850 4400 4950 5500 6050 6600 7150 7700 8250
100 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
90 0 450 900 1350 1800 2250 2700 3150 3600 4050 4500 4950 5400 5850 6300 6750
80 0 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 5200 5600 6000
70 0 350 700 1050 1400 1750 2100 2450 2800 3150 3500 3850 4200 4550 4900 5250
60 0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500
50 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750
40 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
30 0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950 2100 2250
20 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
10 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s/f 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Table 2: The number of references from a straightforward dynamic programming.
From Table 2, 3 and 4 it is obvious that the second and third algorithms are much better than

the first naive algorithm. For example, when f = s = 150 the first algorithm has to refer to 11250
pairs, while the second and third only has to look up 117 and 120 pairs respectively.
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150 0 17 35 45 93 79 83 90 89 97 97 99 98 103 108 117
140 0 19 28 62 74 70 76 70 75 75 80 85 95 100 105 105
130 0 28 30 68 59 57 58 61 66 75 80 85 90 95 100 105
120 0 29 53 40 42 48 54 79 114 151 185 168 130 101 154 210
110 0 16 38 31 39 57 99 171 174 164 174 158 125 96 149 180
100 0 16 34 35 81 105 105 106 103 113 116 126 123 95 148 179
90 0 18 26 62 68 83 75 71 81 85 97 103 105 103 107 157
80 0 15 39 54 50 57 54 59 68 75 81 85 99 101 111 102
70 0 16 37 37 41 45 49 54 60 67 71 77 83 92 97 107
60 0 26 23 28 58 99 65 75 96 89 87 91 86 91 98 102
50 0 15 49 58 57 63 62 72 104 131 156 179 142 129 124 129
40 0 18 28 28 32 44 51 60 67 99 116 137 146 195 232 176
30 0 14 31 34 50 46 45 49 58 68 83 89 120 140 173 219
20 0 15 19 25 32 62 74 116 85 87 90 102 110 132 181 236
10 0 10 16 36 46 52 59 89 134 179 224 221 226 233 238 243
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s/f 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Table 3: The optimized dynamic programming method that considers only the monotony along the s
coordinate.

150 0 19 33 50 96 94 91 89 85 105 112 119 122 125 122 120
140 0 18 28 60 76 69 74 86 97 101 111 122 134 139 132 120
130 0 22 34 66 56 60 77 87 97 111 121 145 151 153 142 134
120 0 20 45 56 47 73 88 100 119 141 192 190 176 170 174 184
110 0 15 47 35 59 74 102 169 159 153 169 157 170 178 166 166
100 0 17 33 48 75 103 123 110 116 118 110 110 136 145 146 141
90 0 21 29 59 80 88 90 83 84 92 93 97 94 108 117 126
80 0 14 36 59 54 62 68 72 74 71 75 83 89 84 94 95
70 0 17 39 37 50 59 67 66 62 59 55 55 58 59 61 70
60 0 19 26 44 59 96 87 80 79 70 64 60 57 58 62 61
50 0 13 39 62 58 55 65 68 71 93 123 134 126 122 121 125
40 0 21 27 31 30 37 43 48 47 53 85 119 145 182 201 197
30 0 15 31 42 44 36 33 30 34 33 39 64 109 142 193 257
20 0 14 18 19 20 41 59 83 81 81 77 85 89 104 154 199
10 0 9 8 25 38 39 41 59 115 160 205 202 207 213 218 223
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s/f 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Table 4: The optimized dynamic programming method that considers both the monotony along the s
and f coordinates.

7 Conclusion

This paper shows that the slowest-node-first scheduling is a very efficient reduction protocols for
heterogeneous cluster systems. We show that SNF is an approximation algorithm with competitive
ratio two. Combined with a previous approximation algorithm for broadcast [22, 19], we propose an
all-reduction algorithm which sends the reduction answer to all processors, with competitive ratio
3.5. In addition, we show that SNF does give the optimal reduction time when the cluster consists
of two types of processors, and communication speed ratio between them is at least two. Finally we
apply these theoretical results to branch-and-bound search and show that they can reduce the search
time by a factor of 500.

It will be interesting to extend this technique to other communication protocols and models.
For example, in our model the communication time is determined solely by the sender. In a more
practical and complex model the communication time may be a function of both the send and the
receiver [6]. In addition, it will be worthwhile to investigate the possibility to extend the analysis to
similar protocols like parallel prefix, or all-to-all broadcast. These questions are very fundamental
in designing collective communication protocols in heterogeneous clusters, and will certainly be the
focus of further investigations in this area.
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