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Abstract

Game tree search remains an interesting subject in
artificial intelligence, and has been applied to many
board games, including chess, Chinese chess, and
GO. Given the exponential nature of the growth of
tree size, a naive search of all the possible moves
in the game tree (i.e. the min-max algorithm) is
time consuming, and the search level, as well as
the strength of the program, will be severely lim-
ited. Pruning the unnecessary part of the game
tree (game tree pruning) is an important issue in
increasing search efficiency.

In this paper, we propose a grid-based generic
game tree search tool with alpha-beta pruning.
The user of this tool can contribute program pieces
as the plug-ins specific for a game (e.g., Chi-
nese chess), and the system will automatically dis-
tribute the game tree search tasks to the processors
on the grid. The user only needs to supplies game-
specific information including the legal move gen-
erator, the evaluation function, and the end game
determination. The control logics of alpha-beta
pruning, workload distribution, and result integra-
tion are all automatically taken care of by the tool.
Experimental results from an MPI implementation
on a cluster of eight processors are reported in this
paper, and we will report the results on the Tai-
wan UniGrid (consisting of eight clusters) once the
operating environment is set up.

1 Introduction

Game tree search is an interesting topic in arti-
ficial intelligence. Using the enormous comput-
ing power of a modern computer, a computer pro-
gram can enumerate all the possible scenarios af-
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ter a given game situation, and choose the best
move. Game tree search has been applied to many
board games, including chess, Chinese chess, and
go. The state-of-the-art computer chess program
(e.g. Deep Blue) is now able to beat the top human
chess grandmaster. The current best Chinese chess
program is ranked about six dan, and is expected
to achieve the strength of grandmaster soon. On
the contrary, the progress of computer Go is rel-
atively slow, due to the fact Go emphasizes more
on strategic thinking than tactical evaluation. Now
the current best program can only achieve the level
of six kyu, which is much much weaker than most
of the human Go player.

The basic strategy of game tree search is to enu-
merate all the possible moves from a given config-
uration, and choose the best one. Inevitably the
cost of search goes as an exponential function of
the search depth. Since the number of legal moves
is usually very large in most games (e.g. chess),
A brute force search of all the possible moves is
time consuming, and the search level, as well as
the strength of the program, will be severely lim-
ited. As a result, to avoid the part of the game
that will not affect the final answer, or to “prune”
the unnecessary part of the game tree (game tree
pruning), is an important issue in search efficiency.

The current most often used game tree pruning
technique is alpha-beta pruning. We divide the
game tree into odd and even levels. During an odd
level we choose a move that will maximize our gain
in the game, no matter how our opponent reacts.
During an even level our opponent chooses a move
that will minimize our gain in the games, indepen-
dent of how we respond. Suppose we have finished
the evaluation of a move A, which will bring in G in
gain. Now suppose we choose a different move B,
and find out that the opponent has a counter-move
that will make our gain less than G. Without evalu-
ating any other counter-moves from our opponent,
we declare that the move is inferior to the move A,
and prune, i.e., skip the evaluation of the subtree
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represented by B, in order to speed up the search.

We propose a generic game tree search system
with alpha-beta pruning for grid infrastructure.
The user of this tool can contribute program pieces
as the plug-ins specific for a game (e.g., Chinese
chess), and the system will distribute the game
tree search tasks to processors in the grid. The
system takes care of control logics of alpha-beta
pruning, workload distribution, and result integra-
tion. The user supplies plug-ins including the le-
gal move generator, the evaluation function, and
the end game determination. We consider the end
game of Chinese chess as our first application, and
concentrate on continuous checking end game (sN).
We implement our communication in MPI, which
is compatible with Globus and most grid systems.

2 Game Tree Search

C. E. Shannon [5] introduced the concept of game
trees along with a simple algorithm for searching
them. A simple game tree for a two-player game is
presented in Figure 1. A node in the tree represents
a position in the game while a branch represents
a move available at a particular position. Player
1 is on move at rectangular nodes and player 2
is on move at circle nodes. For example, at the
Root node, player 1 is on move and the player has
two moves available: a and b. Each leaf node is
assigned a score that indicate how valuable that
position is. A positive score indicates that player
1 is winning, while a negative score indicates that
player 2 is winning. A score of 0 indicates a draw.
The magnitude of the scores also conveys impor-
tant information. The higher the score, the more
favorable the position is for player 1. Similarly, the
lower the score, the more favorable the position is
for player 2.

The value of a game tree is the score of the leaf
node that is reached when both sides exercise their
best options. The problem we need to solve is to
find the option at the root that leads to the game
tree value. For example, in Figure 1, the ideally
best option for player 1 is to move toward position
N because it has the highest score (8) from his
viewpoint. Assume that player 1 chooses move s
to start to make progress toward position N . As far
as player 2 is concerned, move e will play right into
player 1’s hand. To prevent this from happening,
a careful player 2 will choose move d instead, and
so player 1 has to follow up the move and choose

move k, resulting in final score of −1.

If at the root node, player 1 chooses move b,
then player 2 has three follow-up moves available,
f , g and h. If player 2 chooses move f , player 1
will follow up and choose move o, resulting in final
score of 4. Similarly, final scores of 6 and 7 will
be returned if player 2 chooses move g and move
h respectively. Since move f results in the lowest
score (4), player 2 will choose move f . Now let’s
look at the root node again, since move a and move
b result in a score of −1 and 4 respectively, the
best score that player 1 can achieve when player 2
exercises his/her best options is 4.
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Figure 1: A simple game tree of two players.
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Figure 2: A simple game tree with pruned
branches.

2.1 Min-Max Algorithm

C. E. Shannon [5] introduced a simple algorithm
min-max for searching game trees. In the tree of
Figure 1, at the nodes where player 1 is on move,
player 1 will choose the move that maximizes the
score. Similarly, the nodes where player 2 is on
move, player 2 will choose the move that minimizes
the score. Therefore, we can classify the tree nodes
into two kinds of nodes: maximizing or minimizing.

The min-max algorithm traverses the entire tree
in a depth-first fashion, and depending on whether
a node is maximizing or minimizing, the algorithm
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keeps track of the largest or the smallest score, re-
spectively. When a leaf node is reached, its score
is determined by an evaluation function. Figure 3
depicts the min-max algorithm.

MinMax(node)
{
if node is leaf then

return Evaluate(node)
if node.type == maximizing then

score = - infty
else score = + infty

for (i = 1, node.number_of_branches)
{
value = MinMax(node.branch[i])
if node.type == maximizing then
{

if value > score then
score = value

}
else
{

if value < score then
score = value

}
}
return score

}

Figure 3: The Min-Max Algorithm

Since Min-max explores every node in the game
tree, the algorithm is not practical for a game tree
with many branches or depths. For example, a
chess position has about 32 to 35 possible moves.
A chess tree of depth n would contain 35n nodes.
Clearly it will not be practical to use the min-max
algorithm for a chess tree with depth of more than
6. In complex board games such as chess, it is
important to search as deeply as possible. Min-
max does not allow for a very deep search, because
the effective branching factor is extremely high.

2.2 Alpha-Beta Algorithm

The min-max algorithm can be improved in the fol-
lowing way, using Figure 1 as an example. We start
at the root node, which initially has a score of −∞.
Node A is a minimizing node and hence starts with
+∞. The process of recursive calls continues until
the leaf node I is reached and its score 2 is turned

to node C. The initial score of −∞ at node C is
replaced by the new score 2, and then by the score
5 at node J in the next search. Node C returns its
final score of 5 to node A and node A replaces its
initial score +∞ with this new score of 5. The re-
cursive call continues for the second branch of node
A, move d, which then returns a final score of −1.
Since the new score −1 is smaller than the old one
5, node A’s score is replaced by −1. Next, node
A explores branch e. Node E, a maximizing node,
has an initial score of −∞. On exploring branch
m, node E obtains a score of 6, which is where the
improvement can be made. Since node E is a max-
imizing node, the score can only go higher than 6.
However, it is also known that at node A, a min-
imizing node, the score is −1. Node A will not
accept any value that is greater than −1. There-
fore, the unexplored branches rooted at node E (in
this case, branch n) do not need to be searched be-
cause they have no effect on the score at node A.
Figure 2 shows the braches that can be pruned.

Knuth and Moore [3] proposed an efficient algo-
rithm, alpha-beta, for sequential game tree search.
The idea to cut-off unncessary branches is to keep
two scores in the search. The first one is alpha
(lower bound), which keeps track of the highest
score obtained at a maximizing node higher up in
the tree and is used to perform pruning at minimiz-
ing nodes. Any move made from the maximizing
node with score less than or equal to alpha is of no
improvement and can be pruned, because there is a
strategy that is known to result in a score of alpha.
The second score is beta (upper bound, which keeps
track of the lowest score obtained at a minimizing
node higher up in the tree and is used to perform
pruning at maximizing nodes. Beta can be viewed
as the worst-case scenario for the oppoent, because
there is a way for the opponent to force a situation
no worse than beta. If the search finds a move
that returns a score of beta or greater, the rest of
the legal moves do not have to be searched, because
there is some choice the opponent will make to pre-
vent that move from happening. The resulting al-
gorithm, called alpha-beta algorithm, is shown in
Figure 4.
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AlphaBeta(node,alpha,beta)
{
if node is leaf then

return Evaluate(node)

if node.type == maximizing then
score = alpha

else score = beta

for (i=1, node.number_of_branches)
{

if node.type == maximizing then
{
value = AlphaBeta(node.branch[i],
score,beta)

if (value >= beta) then
return beta

if value > score then
score = value

}
else
{
value = AlphaBeta(node.branch[i],
alpha, score)

if value <= alpha then
return alpha

if value < score then
score = value

}
}
return score

}

Figure 4: The Alpha-Beta Algorithm

3 A Game Tree Evaluation

System and Its Parallel Im-
plementation

3.1 Game Tree Evaluation System

In many board games, both players know where
the pieces are, they alternate moves, and they are
free to make any legal move. The object of the
game is to checkmate the other player, to avoid
being checkmated, or to achieve a draw if that’s
the best thing given the circumstances.

A board game program selects moves via use of
a search function. A search function is a function
that is passed information about the game, and
tries to find the best move for side that the pro-
gram is playing. An obvious sort of search function
to use is a tree-searching function. For example,
a game of chess can be considered as a large n-
ary tree. The position that is on the board now
is the root position or root node. Positions that
can be reached in one move from the root position
are reached by branches from the root position.
These positions are called successor positions or
successor nodes. Each of these successor positions
has a series of branches emanating from it, each of
which represents a legal move from that position.
A heuristic function, traditionally called ”Evalu-
ate”, is used to assign values to these positions.
These values are usually educated guesses. Eval-
uate is a function that returns an exact value for
the position, if possible, and an heuristic value if
an exact value is not available. Using chess as an
example, the function Evaluate can be defined as
follows. The function returns a very large positive
value if Black is checkmated, a very large negative
value if White is checkmated, and a constant value,
probably zero or something near zero, if the game is
drawn now (for instance if the side to move is stale-
mated, or if there are bare kings). If the position
doesn’t represent the end of the game, an heuris-
tic value is returned. The value returned by the
heuristic function will always be positive if White
has won or is winning, negative if Black has won
or is winning, and around zero if the game is even
or is a draw. The generation of legal moves from
a board position and the definition of the function
Evaluate may vary depending on the game. Our
game tree evaluation system provides interfaces for
the users to plug-in these functions.

Our game tree evaluation system is implemented

130 Proceedings of the First Workshop on Grid Technologies and Applications (WoGTA '04)



as a set of C codes with MPI primitives for inter-
processor communication. The main codes consist
of three modules, master, worker, and game. The
master and worker modules implement a master-
worker model for parallel tree search, which will be
described in more details in Section 3.2. The game
module defines programming interfaces for the user
plug-in functions, generate moves and evaluate.
These two functions are defined as follows.

void generate_moves(int *move_num,
char *board_states[MAX_BRANCH])

{
move_num = decide number of legal moves;
for (board_state_index = 0, *move_num)
decide the value of

board_states[board_state_index];
}

int evaluate(char *state)
{
compute the score at the given
position (state).

}

3.2 Parallel Game Tree Search

There are several parallelization methods for game
tree search reported in the literature [1, 2, 4]. Some
were targeted for shared-memory machines and
the others were designed with distributed-memory
machines in minds. Of the shared-memory algo-
rithms, the most recent and efficient one is dy-
namic tree splitting (DTS) [2]. DTS maintains
a global list of active split-points (SP-LIST). An
idle processor consults SP-LIST to find work to
do. DTS was able to achieve spectacular speed-up
on some shared-memory machines. However, since
DTS was designed with shared memory in mind
and used global lists in its implementation, it was
not suitable for distributed-memory machines.

For distributed-memory machines, principle
variation splitting (PVSplit) [1], has been a popu-
lar algorithm for searching game trees. In PVSplit,
the first branch at a PV node must be searched
before parallel search of the remaining branches
may begin. Experiments with PVSplit on mas-
sively parallel systems have shown that speed-up is
limited to a large extent by synchronization over-
head.

In this section, we present our parallel imple-
mentation of game tree search in distributed envi-

ronment. Since the min-max algorithm is not prac-
tical, we will focus on the alpha-beta algorithm in
our parallel implementation. Parallelization of the
alpha-beta algorithm is difficult. A parallel im-
plementation involves several overheads: (1) com-
munication overhead, (2) search overhead, and (3)
delay caused by imbalance load. The sequential
alpha-beta algorithm updates its two bounds, al-
pha and beta, as the search of the game tree pro-
gresses. When search in parallel, if a processor
finds an improvement to alpha or beta, it needs to
inform other processors working on other branches
so that they can make use of the tighter bounds.
Passing updated alpha and beta between proces-
sors requires communication overhead. Search
overhead is the consequence of parallel alpha-beta
algorithm. When parallel search is initiated at one
node, the best score might not have been discov-
ered yet. As a result, parallel search is conducted
with a wider search window than in the sequential
case. Furthermore, in parallel search, a processor
might perform useless work when a better bound
is discovered that has proven that the branch that
processor is exploring can be pruned.

Our approach to balancing these overheads is
based on a simple master-worker model. At the
start, the master processor is given ownership of
the Root node while the worker processors remain
idle. The master processor first decides the split-
point according to the number of worker proces-
sors. The tree is split at level L if the number of
nodes at level L + 1 is greater than or equal to the
number of worker processors. The pool of nodes
at level L+1 represent the search work to be done
by the worker processors. An idle worker processor
sends a message to the master requesting for work.
If there are nodes available in the pool, the master
chooses one node and sends the node id and cur-
rent value of alpha and beta (the bounds) to the
worker. If a worker finds an improvement to the
bounds, then the new score is transmitted to the
master. Next time when another worker requests
for work, the master will despatch work with the
updated bounds. A worker processor may also dis-
cover a pruning condition with the node it is given.
In this case, the search is complete and the worker
processor proceeds to request another work from
the master or returns to idle state if there is no
work available. Our master-worker parallel imple-
mentation has the following properties.

• Our implementation reduces communication
overhead as much as possible. Whenever a
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new bound is discovered, it is not broad-
casted among the processors, instead, the new
value is only transmitted from a completing
worker to the master, and then from the mas-
ter to a worker that requests new work from
the master. This point-to-point communi-
cation assumption is appropriate for a grid-
based or a distributed environment because
(1) broadcasting is expensive in distributed
systems, and (2) in distributed systems, there
might not be communication links between
the worker processors, making broadcasting
impossible. With our approach, a worker is
informed of the newest bounds as soon as it
requests work from the master. updating of
bounds.

• In our master-worker implementation, a
worker processor never sits idle when there is
work available, thus reducing load imbalance
in game tree search.

4 Experimental Results

We use a “pick-the-last-one-loses” game as an ex-
ample of our parallel alpha-beta game tree system.
The game board is triangular with pieces arranged
as in Figure 5. The player can remove a segment
of consecutive pieces in one move. The segment re-
moved must be parallel to the three axis along the
three directions how pieces are placed. The player
that is forced to remove the last piece loses. For
a given board configuration, our system searches
for a move. If a winning is found, the program
will choose it, otherwise the program will randomly
choose one.

Figure 5: A pick-the-last-one-loses game.

We conduct our simulation in a cluster consist-
ing of eight processors. In addition, the manage
host is a SMP machine so there are nine available

processors in total. All these processors are Pen-
tium III 1GHz processors, and each processor has
512M byte of memory.

The board configurations are chosen as follow.
We set the height of the triangular board to 5 and
6. We randomly place pieces in the board, and
number of pieces ranging from 6 to 14. We use
the number of nodes searched and time elapsed as
our metrics of performance evaluation. For each
number of pieces we measure these numbers, and
take the average from 20 runs.

We compare the performance of the sequential
version and MPI version program. We observed
that when the height of the triangle is 6 and the
number of pieces is smaller than 8, the sequen-
tial version is faster than the MPI version pro-
gram. The reason is that there is not much work-
load to distributed in these small cases. However,
when the number of pieces reaches 9, the execution
time from the sequential version increases rapidly.
When the number of pieces reaches 14 the sequen-
tial version is three times slower than the MPI ver-
sion. We also observe the same trend when the
height of the triangle is 5.

From Table 2 we observed that the number of
nodes searched by the sequential version is always
less than those searched by the MPI version pro-
gram. The reason is that the MPI version searches
nodes concurrently, and some processors may still
be searching although the path has been found in
some other processors node. We do not find a reg-
ular pattern in the difference between the number
of nodes searched by the sequential version verses
the MPI version program. It seems that the dif-
ference depends on the board configuration, and
even when two board configurations differ by one
piece, the number of tree nodes searched may be
very different between the two implementations.

5 Conclusions

In this paper, we propose a grid-based generic
game tree search tool with alpha-beta pruning.
The user of this tool can contribute program pieces
as the plug-ins specific for a game, and the system
will automatically distribute the game tree search
tasks to the processors on the grid. The user only
needs to supplies game-specific information includ-
ing the legal move generator, the evaluation func-
tion, and the end game determination. The con-
trol logics of alpha-beta pruning, workload distri-
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bution, and result integration are all automatically
taken care of by the tool.

Our experimental results from an MPI imple-
mentation suggest that alpha-beta pruning is not
easy to parallelize. When the number of pieces is
14 in a triangular board of height 6, we report a
speedup of 3.13 on a cluster of 8 processors. This
suggests that the important bounds in alpha-beta
pruning should be exchanged between worker pro-
cessors in a more efficient way.

The future work include an implementation on
the Taiwan UniGrid, which consists of eight clus-
ters. The implementation should be straight for-
ward since the GLOBUS toolkit support MPI com-
munication library, based on which our system is
implemented. Also we will investigate other games,
including Chinese chess end game, to demonstrate
the versatility of our system.

Number of pieces on the board
6 7 8 9 10 11 12 13 14

MPI (height=5) 0.05 0.05 0.10 0.20 0.40 2.95 13.85
SEQ (height=5) 0.00 0.00 0.05 0.20 1.00 9.50 42.20
MPI (height=6) 0.05 0.05 0.10 0.20 0.50 2.95 29.35 183.10 1762.80
SEQ (height=6) 0.00 0.00 0.05 0.25 1.60 8.35 106.05 631.50 5524.45

Table 1: The total execution time in seconds.

Number of pieces on the board
6 7 8 9 10 11 12

MPI (height=5) 964 2254 20539 109940 396740 3957260 19796435
SEQ (height=5) 510 1716 11611 66934 292256 2907487 12759256
MPI (height=6) 908 2558 16730 91395 497349 3377081 33766472
SEQ (height=6) 468 1888 6752 57436 414297 2095231 26623136

Table 2: The number of game tree nodes searched.
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