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ABSTRACT

Network of workstation (NOW) is a cost-effective alterna-
tive to massively parallel supercomputers. As commercially
available off-the-shelf processors become cheaper and faster,
it is now possible to build a PC or workstation cluster that
provides high computing power within a limited budget.
However, a cluster may consist of different types of proces-
sors and this heterogeneity within a cluster complicates the
design of efficient collective communication protocols. This
paper shows that a simple heuristic called fastest-node-first
(FNF) [3] is very effective in reducing broadcast time for
heterogeneous cluster systems. Despite the fact that FNF
heuristic fails to give the optimal broadcast time for a gen-
eral heterogeneous network of workstation, we prove that
FNF always gives the optimal broadcast time in several spe-
cial cases of clusters. Based on these special case results, we
show that FNF is an approximation algorithm that guaran-
tees a competitive ratio of 2. From these theoretical results
we also derive techniques to speed up the branch-and-bound
search for the optimal broadcast schedule in HNOW.

1. INTRODUCTION

Network of workstation (NOW) is a cost-effective alterna-
tive to massively parallel supercomputers [2]. As commer-
cially available off-the-shelf processors become cheaper and
faster, it is now possible to build a PC or workstation clus-
ter that provides high computing power within a limited
budget. High performance parallelism is achieved by di-
viding the computation into manageable subtasks, and dis-
tributing these subtasks to the processors within the clus-
ter. These off-the-shelf high-performance processors provide
a much higher performance-to-cost ratio so that high per-
formance clusters can be built inexpensively. In addition,
the processors can be conveniently connected by industry
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standard network components. For example, Fast Ethernet
technology provides up to 100 Mega bits per second of band-
width with inexpensive Fast Ethernet adaptors and hubs.

In parallel to the development of inexpensive and standard-
ized hardware components for NOW, system software for
programming on NOW is also advancing rapidly. For exam-
ple, the Message Passing Interface (MPI) library has evolved
into a standard for writing message-passing parallel codes [1,
8, 12]. An MPI programmer uses a standardized high-level
programming interface to exchange information among pro-
cesses, instead of native machine-specific communication li-
braries. An MPI programmer can write highly portable par-
allel codes and run them on any parallel machine (including
network of workstation) that has MPI implementation.

Most of the literature on cluster computing emphasizes on
homogeneous cluster — a cluster consisting of the same type
of processors. However, we argue that heterogeneity is one
of the key issue that must be addressed in improving par-
allel performance of NOW. First it is always the case that
one wishes to connect as many processors as possible into
a cluster to increase parallelism and reduce execution time.
Despite the increased computing power, the scheduling man-

agement of such a heterogeneous network of workstation (HNOW)

becomes complicated since these processors will have differ-
ent performance in computation and communication from
one another. Secondly, since most of the processors that are
used to build a cluster are commercially off-the-shelf prod-
ucts, they will very likely be outdated by faster successors
before they become unusable. Very often a cluster consists
of “leftovers” from the previous installation, and “new com-
ers” that are recently purchased. The issue of heterogeneity
is both scientific and economic.

Every workstation cluster, be it homogeneous or heteroge-
neous, requires efficient collective communication [3]. For
example, a barrier synchronization is often placed between
two successive phases of computation to make sure that all
processors finish the first phase before anyone goes to the
next. In addition, a scatter operation distributes input data
from the source to all the other processors for parallel pro-
cessing, then a global reduction operation combines the par-
tial solutions obtained from individual processors into the fi-
nal answer. The efficiency of these collective communication
will affect the overall performance, sometimes dramatically.



Heterogeneity of a cluster complicates the design of efficient
collective communication protocols. When the processors
send and receive messages at different rates, it is difficult
to synchronize them so that the message can arrive at the
right processor at the right time for maximum communica-
tion throughput. On the other hand, in homogeneous NOW
every processor requires the same amount of time to trans-
mit a message. For example it is straightforward to im-
plement a broadcast operation as a series of sending and
receiving messages, and in each phase we double the num-
ber of processors that have received the broadcast message.
In a heterogeneous environment it is no long clear how we
should proceed to complete the same task.

This paper shows that a simple heuristic called fastest-node-
first (FNF'), introduced by Banikazemi et.al. [3], is very ef-
fective in designing broadcast protocols for heterogeneous
cluster systems. Despite the fact that FNF heuristic does
not guarantee optimal broadcast time for every heteroge-
neous network of workstation, we show that FNF does give

the optimal broadcast time for several special cases of HNOW.

First we show that there exists an optimal broadcast sched-
ule in which all the fastest processors receive the broadcast
messages before all the others (called fastest-node-first prin-
ciple). Consequently when there are only two classes of pro-
cessors, FNF always gives the optimal broadcast time. This
result is very useful in practice since most clusters consist of
a small number of classes of processors.

In addition, we show that when the communication time of
any processor p in the cluster is a multiple of any faster pro-
cessor ¢, then p should be scheduled after q. Consequently
FNF gives optimal broadcast time in such clusters. This
result by itself is not very practical since most clusters do
not have such property. However, based on this result, we
show that FNF is actually an approximation algorithm that
guarantees a broadcast time within twice of the optimum for
any cluster.

Besides the theoretical results, we also introduce new search
techniques derived from the theoretical results. For exam-
ple, we can use the fastest-node-first principle, combined
with a monotonic cost property in [3], to dramatically re-
duce the search space. These techniques are useful in prac-
tice when one has a cluster consisting of more than two types
of processors, and the FNF performance guarantee described
above is consider insufficient.

The rest of the paper is organized as follows. Section 2 de-
scribe the communication model in our treatment of broad-
cast problem in HNOW. Section 3 describes the fastest-
node-first heuristic for broadcast in HNOW. Section 4 gives
the theoretical results. Section 5 discusses techniques in the
heuristic search of the optimal broadcast schedule, and Sec-
tion 6 concludes.

2. COMMUNICATION MODEL

There have been two classes of models for collective com-
munication in homogeneous cluster environments. The first
group of models assumes that all the processors are fully
connected. As a result it takes the same amount of time for
a processor to send a message to any other processor. For
example, both the Postal model [5] and LogP model [14]

use a set of parameters to capture the communication costs.
In addition the Postal and LogP model assume that the
sender can engage in other activities after a fixed startup
cost, during which the sender injects the message into the
network and is ready for the next message. Optimal broad-
cast scheduling for these homogeneous models can be found
in [5, 14]. The second group of models assume that the pro-
cessors are connected by an arbitrary network. It has been
shown that even when every edge has a unit communica-
tion cost (denoted as the Telephone model), finding a op-
timal broadcast schedule remains NP-hard [9]. Efficient al-
gorithms and network topologies for other similar problems
related to broadcast, including multiple broadcast, gossip-
ing and reduction, can be found in [7, 10, 11, 13, 16, 18, 19,
20].

Various models for heterogeneous environments have also
been proposed in the literature. Bar-Noy et al. introduced
a heterogenous postal model [4] in which the communication
costs among links are not uniform. In addition, the sender
may engage another communication before the current one
is finished, just like homogeneous postal and LogP model.
An approximation algorithm for multicast is given, with a
competitive ratio logk where k is the number of destination
of the multicast [4]. Banikazemi et al. [3] proposed a simple
model in which the heterogeneity among processors is char-
acterized by the speed of sending processors. Based on this
model, an approximation algorithm for reduction with com-
petitive ratio 2 is given in [17]. We adopt the simple model
from [3] for its simplicity and the high level abstraction of
network topology. Other models for heterogeneous clusters
include [6, 15].

The model is defined as follows. A heterogeneous cluster
is defined as a collection of processors po, pi, ..., Pn—1, €ach
is capable of point-to-point communication with any other
processor in the cluster. Since we are interested in the com-
munication capability only, each processor is characterized
by its speed of sending messages. Formally, we define the
transmission time of a processor to be the time it needs to
send a unit of message to any other processor. Note that
by this definition the time required to transmit a message is
determined by the sender.

The communication model requires that the sender and re-
ceiver processors cannot engage in multiple message trans-
missions simultaneously. That is, a sender processor must
complete its data transmission to a receiver before sending
the next message to anyone else. This restriction is due to
the fact that every processor and communication network
have limited bandwidth, therefore we would like to exclude
from our model the unrealistic algorithm that a processor
simply sends the broadcast message to all the other proces-
sors at the same time. Similarly, the model prohibits the si-
multaneous receiving of multiple messages by any processor.
That is, the model disallows the unrealistic implementation
of a reduction operation by having one processor receive the
messages from all the other processors simultaneously. Al-
though in practice many message passing libraries provide
non-blocking send and receive primitives, these simultane-
ous message transmissions are eventually serialized in the
hardware level.



After defining the communication model, we can define other
terminologies for the broadcast problem in a heterogeneous
system. We define a broadcast tree as follows. Each node in
the broadcast tree represents a processor in the cluster, and
the root of the tree is the source processor for the broad-
cast. The children of a tree node p are the processors that
receive the broadcast message from p. The ready time of
a processor c¢ is the time ¢ completes receiving the broad-
cast message from the parent of ¢, and is ready to send out
messages of its own. In other words, the ready time of a
processor c is the time that the parent of ¢ started sending
the message to ¢, plus the transmission time of the parent
of c. Figure 1 illustrate a broadcast tree for a cluster of five
processors, with transmission time 1, 1, 2, 3, 2 respectively.
The number inside a tree node is its transmission time, and
the number next to it is its ready time. Note that since all
the message sent from the same source is serialized, the re-
ceive time of two siblings differ by at least the transmission
time of their parent.

Figure 1: An broadcast tree for five processors.

3. FASTEST-NODE-FIRST TECHNIQUE
It is difficult to find the optimal broadcast tree that mini-
mizes the total broadcast time in a heterogeneous cluster,
therefore a simple heuristic called fastest-node-first (FNF) is
proposed in [3] to find a reasonably good broadcast sched-
ule. The heuristic works as follows. In each iteration the
algorithm chooses a sender from the set of processors that
have received the broadcast message (denoted by A), and
a receiver from the set that have not (denoted by B). The
algorithm picks the sender s from A so that s will finish
this transmission as early as possible, considering all the
transmission that has been scheduled so far, and chooses
the receiver r as the processor that has the minimum trans-
mission time in B. Then r is moved from B to A and the
algorithm iterates to find the next sender/receiver pair. The
intuition behind this heuristic is that by sending the message
to those fast processors first, it is likely that the messages
will propagate more rapidly.

The fastest-node-first technique is very effective in reducing
broadcast time. The FNF has been shown in simulation to
find the optimal broadcast time, with high probability, when
the transmission time are randomly chosen from a given ta-
ble [3]. The FNF technique also delivers good communica-
tion efficiency in actual experiments. In addition, FNF is
simple to implement and easy to compute.

Despite its efficiency in scheduling broadcast in heteroge-
neous systems, fastest-node-first heuristic does not guaran-
tee optimal broadcast time [3, 6]. A simple example is shown
in Figure 2, and a more complicated one is given in [6]. The
number inside a tree node indicates its transmission time,
and the number next to it is its ready time. Let p be the
only processor with transmission time 2 in this cluster. Ac-
cording to the fastest-node-first principle, the root processor
will first send the message to p before the rest of the proces-
sors. The resulting broadcast tree (on the left) has a total
communication time of 5. On the other hand, an optimal
scheduling is for the root to send the message to p in the sec-
ond round, as indicated by the tree on the right in Figure 2.
The optimal broadcast tree requires only 4 time steps, one
less than the tree by FNF on the left.

Figure 2: An counterexample that FNF always pro-
duces the optimal broadcast time.

4. THEORETICAL RESULTS

Despite the fact that FNF cannot guarantee optimal broad-
cast time, we show that FNF is optimal in some special cases
of heterogeneous clusters. Based on the results on these spe-
cial cases, we show that fastest-node-first has a completive
ratio of two.

We will need the following two theorems from [3] to prove
the optimality of FNF in the special cases of heterogeneous
system.

THEOREM 1. [8] There ezists an optimal broadcast tree T
in which all processors sends message without delay. That
is, for all processor p in T, starting from its ready time, p
repeatedly sends a message with a period of its transmission
time until the broadcast ends.

THEOREM 2. [3] There ezxists an optimal broadcast tree
T in which every processor has a transmission time no less
than the transmission time of its parent.

With Theorem 1, we can simply discard those trees that
will delay messages, and still find the optimal schedule. The
proof of Theorem 2 follows from the observation that by ex-
changing a child node with its parent that has a longer trans-
mission time, the final broadcast time will not increase. As
a result we assume, without lose of generality and through-
out this paper, that every processor in an optimal broadcast
tree has a transmission time no less than its parent’s.



Since there is no delay within the broadcast tress, we can
represent a broadcast tree as a sequence of processors sorted
in their ready time. Recall the set A and B in the description
of FNF. Since no delay is allowed, any scheduling method
must schedule s, the processor in A that could have com-
pleted a transmission at the earliest time, to send a message
immediately. Formally we define S = (so, ..., Sn—1) to be a
sequence of n processors sorted in their ready time, i.e. the
processors will be moved from B to A in the order defined
by S. Therefore, for FNF the processors will appear in S
in non-decreasing transmission time order, i.e. the proces-
sors will receive the broadcast according to their transmis-
sion time. Let r(s;) denote the ready time of s;, then the
total broadcast time of S (denoted by Thracs:(S)) is by def-
inition 7(sp—1). A broadcast sequence S is optimal if and
and only if for any other permutation of S (denoted by S'),
tbrdcst(s) S tbrdcst(sl)-

Let t(p) be the transmission time of a processor p, and
NSs(p,t) be the number of messages successfully sent at and
before time ¢ by p in the sequence S. Formally, NSs(p,t)
is the minimum non-negative integer k such that r(p) + k
t(p) > t, for t > r(p). Following this notation, we can define
the ready time r(s;) recursively by the following equations.

0

7(s0)

7(si)

i—1
min{t| » " NSs(sj,t) > i}, 1<i<n—1(1)

=0

4.1 Fastest Nodes First

We first establish the lemma that all the fastest processors
should send messages before all the others. Without lose
of generality, we assume that the transmission time of the
fastest processors is 1. Consider an optimal sequence S =
(so, 81, ..., Sn—1). From Theorem 2 we can argue that t(so) =
1, and r(s;) must be an integer if t(s;) = 1 since only a
fastest processor can send a message to a fastest processor.

Suppose there are fastest processors appearing after slower
processors in S. Let p = s; be the first such processor in S.
We show that among the slower processor appearing before
p, one of them (denoted by ¢) became ready one time step
ahead of p, i.e. r(q) =r(p) — 1.

LEMMA 1. Let S = (80,81, ..., Sn—1) be an optimal broad-
cast sequence, and p = s; be the first fast processor appearing
after slower processors in S. If r(s;) =t, then there exists
an i < j such that t(s;) > t(s;) and r(s;) =t — 1.

PRrROOF. First we show that there exists a set of processor
with ready time ¢t — 1. Since p is a fastest processor, ¢ must
be an integer by Theorem 2. In addition, the root of the tree
must be an fastest processor, and it will send out messages
at integer time steps, including ¢ — 1.

We prove the lemma by contradiction. Let’s assume all pro-
cessors that became ready at ¢ — 1 are fastest processors,
and w be one of them. We will consider two cases. First
we assume that there is no slower processor with ready time

between t — 1 and ¢t. As a result p will not be the first fast
processor appearing after slow processors since w became
ready at time ¢t — 1, and the slower processor appearing be-
fore p must appear before w as well.

In the second case, there do exist a set of slower processors
(denoted by Q) with ready time between t — 1 and ¢. Let P
be the set of processors that sent messages to processors in
Q. We argue that all the processors in P are slow processors
since all the fast processors send messages at integer time.
Therefore, the ready time of any processor in P is before ¢t —1
since their transmission time is greater than 1. However, we
know that a fastest processor w is ready at time ¢ — 1, which
became ready after those slower processors in P. As a result
p cannot be the first fastest processor appearing after slower
processors either. [ |

Let S be an optimal sequence and p = s; denote a fastest
processor that appears after the slower processor ¢ = s; with
ready time 7(p)—1in Lemma 1. We show that by exchanging
pwithgin S,ie. let S = (50, ..., Si—1,Ds Sit1, oy Sj—1, G, Sj+1
..., SN—1), the total broadcast time will not increase. In other
words, S’ has the same optimal broadcast time as S does.
First we establish the new ready time for p and g after the
exchange.

LEMMA 2. By modifying S into S’ as described above, the
ready time of p is made earlier from t to t — 1, and the
ready time of q is delayed fromt — 1 to t' < t. As a result
NSS’(paT)J"NSS’(qu) > NSS(va)+NSS(q7T)7 forT >
t.

PROOF. Since the first i — 1 processors of S’ are the same
asin S, the ready time of pin S’ is t —1, as same as the ready
time of ¢ in S. Similarly the ready time of s,, in §’, for i <
m < j, is as same as in S because no matter p or ¢ became
ready at time ¢ — 1, it will not send any message until time
t. On the other hand, the ready time of ¢ in S’ is delayed
by one time step. Now consider the new NS function for
S’. Since p is moved forward one time step, an interval as
long as its transmission time, NSgq: (p,T) = NSs(p,T) + 1
for T > t. On the other hand, g is delayed by one time step,
which is less than its own transmission time. As a result
NSs(q,T) < NSs:(q,T) < NSs(q,T)+ 1 for T > t, and
the lemma follows. |

After establishing the effects of exchanging the two proces-
sors on the new NS function, we argue that the ready time
of the last n — j processors will not be delayed from S to
S’. We prove this statement by induction and the following
lemma servers as the induction base.

LEMMA 3. The ready time of sj+1 in S is no later than
nS.

PROOF. The lemma follows from Lemma 2 and the fact
that the ready time the first j — 1 processors in the sequence



is not changed, except p and q. Here we use the subscript
to indicate whether the function is defined on S or S’.

rsi(sj+1)

J
min{t| Y " NSs:(s1) > j +1}
=0
j—1
= min{t|( Y NSs/(s)))+ NSs:(p) + NSsi(q) > j +1}
1=0,l#i
j—1
= min{t|( Y NSs(s:))) + NSs/(p) + NSsi(q) > j + 1}
1=0,l#i
j—1
< min{t|( ) NSs(s1)) + NSs(p) + NSs(q) > j+ 1}
1=0,l#i

= rs(sj+1)

Now we complete the induction.

LEMMA 4. The ready time of s; in S’ s no later than in
S, forj+1<1<n-1.

PrOOF. We complete the proof by the induction step.
Assume that the receive time of sj4, in S’ is no later than
in S forl<m<n-—j—1

s (8j+m+1)
j+m
= min{¢| Z NSsi(s1) > j+m+1}
1=0
Jj—1 Jj+m

THEOREM 3. There exists an optimal broadcast sequence
in which all the fastest processors appear before all the other
ProCcessors.

4.2 Special Cases

‘We consider two special cases in which FNF guarantees min-
imum broadcast time. First we consider the case that there
are only two classes of processors in the cluster. The second
case is that the transmission time of any slower processor is
a multiple of any faster processors.

4.2.1 Two classes of processors

THEOREM 4. The fastest-node-first algorithm gives opti-
mal broadcast time when the number of classes of processors
is two, but does mot guarantee the optimal broadcast time
when the number of classes of processors is three.

ProoF. Given any optimal broadcast sequence consisting
of two classes of processors, we can always make the ready
time of a faster processor earlier should it appear after any
slower processors, and the resulting sequence is still optimal.
‘We can repeat this process until no such faster processor ex-
ists, and the resulting sequence is as same as the one given
by FNF. The second part of the theorem follows from Fig-
ure 2. |

In practice it is very likely that a cluster consists of only
a small number of types of processors since they are often
purchased in batches. This result ensures that the FNF algo-
rithm can achieve optimal broadcast time when the number
of classes of processors is 2. For clusters consist of more
types processors, FNF is also proven effective through sim-
ulations [3].

4.2.2 Multiple of transmission time

The fastest-node-first algorithm also gives optimal broadcast
time when the transmission time of any slower processor in
the cluster is a multiple of any faster processors. With-

= min{#|(( Z NSsi (1)) + NSs:(p) + NSsi(q) + Z NSosise of gemeralify, let’s again assume that the transmis-

sion time of the fastest processors is 1. First we show that
Lemma 1 is true for all processors, instead of only for the

1=0,l#% I=j+1
Jj—1 Jjt+m
< min{t|(( Y NSs(s1) + NSs(p) + NSs(q) + Y NSs €afpss guesnfer sch clusters.
1=0,l#i I=j+41
j—1 Jj+m
<

1=0,1#i
= Rs(j+m+1)

The last inequality follows from the induction hypothesis
that all the processors from s;41 to sj+m have earlier ready
time in S’ than in S, so they will have larger NS function,
and a smaller ¢ to satisfy Equation 1. One immediate result
from Lemma 3 and 4 is that for any broadcast sequence,
including the optimal ones, it will never increase the total
broadcast time by making the fastest processors ready as
early as possible. Now we have the following theorem.

min{t|(( Y NSs(s1)) + NSs(p) + NSs(q) + Y NSs(
I=j+1

MMA 5. S = (so, 81, ..., Sn—1) be an optimal broad-
Sclcga}tlié]qfﬁr%e_'- oi a clu(ster where the) transmission time of
any processor is a multiple of any faster processor. Suppose
there exists a processor p = s; that becomes ready after a
slower processor in S, then there exists an i < j such that
q = si 18 a slower processor and r(q) = r(p) — 1.

PRrROOF. The proof is similar to the proof of Lemma 1 and
is in fact easier since now the ready time of all processors are
integers. We consider the first processor p that appears after
a slower processor. Similar to the argument in Lemma 1,
we argue that there exists a set of processors that became
ready one step ahead of p because the root of the broadcast
tree is a fastest processor. If any such processor is slower
than p then the lemma follows. If this is not the case, the



processor slower than p but appears before p will be ready at
time r(p) — 2 or earlier, and p will not be the first processor
that appears after a slower processor. |

Similarly, we argue, as in Lemma 5, that it is always pos-
sible to switch a processor p with a slower processor that
became ready one step ahead of p. This modification will
not increase the total broadcast time, as indicated by the
following lemma. Again notice that this is true for any pro-
cessor, not just only for the fastest ones as in Lemma 5.

LEMMA 6. By switching p with q in Lemma 5, the ready
time of p is moved forward from t to t — 1, the ready time of
q is delayed fromt —1 to t, and NSs:(p,T)+ NSs:(q,T) >
NSs(p,T)+ NSs(q,T), for T >t.

PROOF. Let’s consider the change to NS function from
¢’s point of view. Since ¢ is delayed by only one time step,
NSs is at most greater than NSg/ by 1, and this decrease
only happens at time interval [r(q) + kt(q),(q) + kt(q) + 1),
where k is an positive integer and r(g) is the ready time
of g in S. Note that this interval includes the time r(gq) +
kt(q) but not r(q) + kt(q) + 1. However, during this interval
NS5/ (p) will be larger than NSgs(p) by one since t(q) is a
multiple of ¢(p) and p became ready one step earlier in S’
than in S. This increase compensates the decrease due to ¢
and the Lemma follows. |

With Lemma 6 in place we have the following theorem.

THEOREM 5. The fastest-node-first algorithm gives opti-
mal broadcast time when the transmission time of any slower
processor in the cluster is a multiple of any faster processors.

4.3 Competitive Ratio Analysis

Theorem 5 by itself is not very useful in practice since most
clusters do not have such nice transmission time property.
However, we can use Theorem 5 to show that FNF is actual
an approximation algorithm of competitive ratio 2. This
somehow explains that in simulations FNF always produces
very good schedules (within 1% of the optimal [3]).

We now consider a special class of clusters in which the
transmission time of every processor is a power of 2. With-
out lose of generality we assume that the fastest processor
has a transmission time of 1, and the slowest one has 2*.
We will call this kind of cluster a power 2 cluster. From
Theorem 5 it immediately follows that FNF produces the
optimal broadcast time for all power 2 clusters.

By increasing the transmission time of processors, we can
transform a heterogeneous cluster into a power 2 cluster.
We increase the transmission time of each processor p to be
2Mogt(®)1 i e  the smallest power of 2 that is no less than
the original transmission time. We will show that FNF,
optimal for the transformed cluster, also gives a schedule
within twice of the optimal time for the original cluster.

THEOREM 6. The fastest-node-first scheduling has a total
reduction time no greater than twice of the optimal schedule.

PROOF. Let S be an optimal broadcast sequence for a het-
erogeneous cluster C, and C' be the power 2 cluster trans-
formed from C. Let T and T’ be the broadcast time of S
for C' and C’ respectively, i.e. before and after the power 2
cluster transformation. We argue that this increase in trans-
mission time will at most double the total broadcast time,
i.e. T' < 2T. We can use a simple induction on i to argue
that s;, which is ready at time r(s;) for C, becomes ready
no later then 2r(s;) for C’. The induction step follows from
the fact that all the previous s; for j < i, become ready no
later than 2r(s;) for C’, and their transmission time at most
double from C to C'.

Now we apply FNF scheduling on C’ and let 7" be the
resulting broadcast time. Since C’ is a power 2 cluster, it
immediately follows from Theorem 5 that 7" is no more than
T'. Finally, we apply the same FNF scheduling on C and let
T* be the resulting broadcast time. T* should be no more
than T" since the transmission time of each corresponding
processor is higher in C’ than in C. As a result T* is no
greater than T"') which is no greater than T, which is no
more than 27". [ |

4.4 Broadcast for Specified Source

The previous sections describe theoretical results for the
broadcast problem in which the source of the broadcast can
be any processor. That is, the optimal schedule is the fastest
one among all possible schedules, and as suggested by Theo-
rem 2, there exists an optimal schedule in which the source is
the fastest processor. In practice, however, the application
usually will specify the source of the broadcast, i.e., during
the computation a particular processor has to broadcast an
important information in order for other processors to pro-
ceed. We should show that, under the constraint that the
source is given, Theorem 6 is still valid.

We will use the same notation as in the general case, but
with the following modification. First, we still define a
schedule S = (so, ..., Sn—1) as a sequence of processors, and
so is the specified source for the broadcast. Note that we
can no long assume that so is the fastest processor. Let t(s;)
still be the transmission time of s;, and the fastest processor
has transmission time 1. To simplified the notation we will
assume that the time will start at —t(so), so that the ready
time of the processor that receives the first message from
the source sg, i.e., s1, will be 0. We first show that for any
power 2 cluster, there exist an optimal schedule in which s
is the fastest processor.

LEMMA 7. Let C be a power 2 cluster. There exists an
optimal schedule S = (so, ..., Sn—1) such that s1 is the fastest
PTOCESSOT.

ProoF. Without lose of generality we assume the source
So is not the fastest processor. Let S be any optimal sched-
ule and ¢ be the second processor in S. We consider the



case that g is not the fastest processor in C, i.e., t(q) > 1.
From this assumption we argue that the ready time of the
fastest processor, denoted by p, has ready time as earliest
at min(#(so),t(q)) > 1. Now we switch p and ¢ in S and
let p be the second processor in the sequence S. Similar to
Lemma 2, we argue that the increase of NS function from p
is more than enough to compensate the decrease of ¢ since
p has a shorter transmission time. As a result the modified
schedule is also optimal, and the lemma follows. [ |

With Lemma 7 in place we can argue that there will be
processor ready at time 0, 1, 2, and so on since s; has trans-
mission time 1. Now we can proceed to the following lemma,
which is similar to Lemma 5 and 6.

LEMMA 8. Let S = (so, $1,---, Sn—1) be an optimal broad-
cast sequence for a power 2 cluster, in which so is the spec-
ified source and s1 s the fastest processor. Let p = s; be
the first fast processor appearing after any slower processor
other than sg.

1. If r(p) = t, then there exists an © < j such that ¢ = s;
and t(q) > t(p) and r(q) =r(p) — 1.

2. By switching p with q, the ready time of p is moved for-
ward from t to t—1, the ready time of q is delayed from
t—1 tot, and for the resulting new schedule S', we have
NSS’ (P, T)+NSS’ (Q1 T) > NSS(p: T)+NSS(Q: T); fo'r
T>t.

ProOOF. The proof is also similar to Lemma 5 and 6. We
notice that from Lemma 7 we are certain that there exist a
set of processor that become ready one time step ahead of p.
Then it follows that one of these processor must be slower
processor, otherwise p will not be the first faster processor
appearing after slower ones. The second part of the lemma
follows from similar argument in Lemma 6. Notice that we
exclude sp in the lemma since we cannot exchange the order
of the specified source. [ |

Finally, we conclude that FNF is also optimal for a power 2
cluster when the source is given, and establish the following
competitive ratio.

THEOREM 7. The fastest-node-first scheduling has a total
reduction time no greater than twice of the optimal schedule
when the source is given.

5. HEURISTIC SEARCH

The previous section describes the theoretical results that

guarantees the optimality of FNF method under special cases,
and provides performance guarantee for general cases. How-

ever, in practice one may want to find the optimal broadcast

schedule for a particular cluster that contains more than two

kinds of processors. In such cases we have to search for the

optimal schedule since FNF does not guarantee optimality.

This section describes the techniques that we used to speed

up the search process.

As described in Section 3, any broadcast tree can be con-
verted into a sequence of processors. As a result we can find
an optimal reduction schedule among these (n—1)! possible
sequences, where n is the number of processors in the clus-
ter. However, for a typical cluster (n — 1)! is such a large
number that we apparently cannot try all of these permuta-
tions, even by a branch-and-bound procedure. To overcome
this problem, we conduct experiments to show that by us-
ing Theorem 2 in [3] and Theorem 3 in this paper we can
dramatically reduce the search space.

We use three techniques to reduce the number of sequences
we have to consider. First of all, we examine the sequences
in such an order that those sequences with faster processors
appearing first will be examined first. Formally we define the
priority of a sequence to be the number processors that have
shorter or equal transmission time than the next processor
in the sequence. In other words, the FNF schedule has the
highest priority, and will be considered first. In addition,
from Theorem 3 we know that we can ignore all sequences
that fastest processors are not at the beginning, and still find
the optimal schedule. This dramatically reduces the search
space since now we only have to schedule those processors
that are not from the fastest processor group.

The second technique is to apply Theorem 2 so that when a
slow processor is scheduled to send the message to a faster
processor, we can stop the search at that subtree immedi-
ately. In addition, it is possible for several senders to com-
plete simultaneously so that more than one processor can be
the receiver at the same time. In that case if any sender is
slower than any of those possible receivers then we can drop
this partial solution completely.

Finally, we use standard branch-and-bound technique to ex-
plore the search tree. If the cost of a partially examined se-
quence is already larger than the current optimal, then the
entire subtree is pruned. This technique is most effective
when the difference among processor speed is large.

We conduct the experiments on a Pentinum 3-450 PC run-
ning FreeBSD 3.2 UNIX. The PC has 128Mbytes memory
and we use gcc 2.7.2-1 to compile the code. The input clus-
ter configurations for our experiments are generated as fol-
low. We assume that the number of classes in a cluster is
3. This assumption is practical since processors are usually
purchased in batches, and the number of batches is usually
small. We vary the cluster size from 10 to 21. For each
processor we randomly assign a communication speed from
the three possible values. For each cluster size we repeat the
experiments for 50 times and compute the average for the
quantities we measured.

We quantify the search ratio of an algorithm as the percent-
age of the entire search tree the algorithm has to examine in
order to find the optimal solution. As a result, an algorithm
that scans n tree nodes before finding the optimal one the
search ratio is §-, where IV is the number of nodes in the
entire search tree.

Table 1 compares the efficiency of our algorithm with a sim-
ple branch-and-bound search. The first two columns indi-
cate the average number of nodes and leaves of the search
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Table 1: The comparison of two search programs.

trees generated. The next three columns are the number of
tree nodes examined, the search time (in second), and the
search ratio from our algorithm. The next three columns
are from a generic branch-and-bound algorithm. The last
column shows the performance ratio between these two al-
gorithms. Guided by various heuristics described earlier, our
algorithm searches much fewer tree nodes than the generic

89-2213-E-194-009.

8.
(1]

2]

(3]

branch-and-bound method, and consequently runs much faster.

For large clusters our algorithm runs about 1300 times faster
than the generic algorithm, and can find the optimal solu-
tion within a fraction of a second, even for clusters consisting
up to 21 nodes.

6. CONCLUSION

FNF is a very useful technique in reducing broadcast time.
We show that in several special cases it always gives optimal
broadcast time. In simulations it can find the optimal solu-
tion with very high probability when the number of proces-
sors is small, and the transmission time is randomly chosen
from a small table[3]. In practice it also delivers good per-
formance in actual NOW systems. The schedule is easy to
compute and can be updated incrementally.

This paper also derives a performance guarantee for FNF
algorithm for general heterogeneous clusters. We show that
FNF guarantees the total time to be within twice of the time
from an optimal schedule. It will be more interesting if one
can derive a bound on the difference, instead on the factor,
between the schedule from the proposed algorithm and the
optimal one.

This paper also suggests techniques to speed up the search
process of finding an optimal schedule. We combined three
key techniques into the algorithm — to schedule all fastest
node first, a sender cannot be slower than its receiver, and
branch-and-bound. This combined approach dramatically
reduces the search space, and provides optimal schedule
within a fraction of a second, for clusters up to 21 processors.

There are many research issues open for investigation. For
example, it will be interesting to extend this technique to
other communication protocols and models. For example, in
our model the communication time is determined solely by
the sender. In a more practical and complex model the com-
munication time may be a function of both the send and the
receiver [6]. In addition, it will be worthwhile to investigate

[5]

[10]

[11]

[12]
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