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Abstract

This paper describes our experiences developing high-
performance code for astrophysical N-body simulations.
Recent N-body methods are based on an adaptive tree
structure. The tree must be built and maintained across
physically distributed memory; moreover, the commu-
nication requirements are irregular and adaptive. To-
gether with the need to balance the computational
work-load among processors, these issues pose interest-
ing challenges and tradeoffs for high-performance im-
plementation.

Our implementation was guided by the need to keep
solutions simple and general. We use a technique for im-
plicitly representing a dynamic global tree across multi-
ple processors which substantially reduces the program-
ming complexity as well as the performance overheads
of distributed memory architectures. The contributions
include methods to vectorize the computation and min-
imize communication time which are theoretically and
experimentally justified.

The code has been tested by varying the number and
distribution of bodies on different configurations of the
Connection Machine CM-5. The overall performance on
instances with 10 million bodies is typically over 30% of
the peak machine rate. Preliminary timings compare
favorably with other approaches.

1 Introduction

Computational methods to track the motions of bodies
which interact with one another, and possibly subject
to an external field as well, have been the subject of
extensive research for centuries. So-called “N-body”
methods have been applied to problems in astrophysics,
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semiconductor device simulation, molecular dynamics,
plasma physics, and fluid mechanics. In this paper we
restrict attention to gravitational N-body simulation.

The problem is stated as follows. Given the initial
states (position and velocity) of N bodies, compute
their states at time 7. The common, and simplest, ap-
proach is to iterate over a sequence of small time steps.
Within each time step the acceleration on a body is
approximated by the instantaneous acceleration at the
beginning of the time step. The instantaneous accel-
eration on a single body can be directly computed by
summing the contributions from each of the other N —1
particles. While this method is conceptually simple,
vectorizes well, and is the algorithm of choice for many
applications, its O(N?) arithmetic complexity rules it
out for large-scale simulations involving millions of par-
ticles.

Beginning with Appel [4] and Barnes and Hut [6],
there has been a flurry of interest in faster algorithms.
Experimental evidence shows that heuristic algorithms
require far fewer operations for most initial distributions
of interest, and within acceptable error bounds. Indeed,
while there are pathological bad inputs for both algo-
rithms, the number of operations per time step is O(N)
for Appel’s method, and O(N log N) for the Barnes-Hut
algorithm when the bodies are uniformly distributed in
space and provided that certain control parameters are
appropriately chosen.

Greengard and Rokhlin [8] developed the fast multi-
pole method with O(N) arithmetic complexity which is
accurate to any fixed precision. Sundaram [16] subse-
quently extended this method to allow different bodies
to be updated at different rates; this reduces the arith-
metic complexity over a large time period. Thus far,
however, because of the complexity and overheads in
the fully adaptive 3 dimensional multipole method, the
algorithm of Barnes and Hut continues to enjoy appli-
cation in astrophysical simulations.

Salmon [13] implemented the Barnes-Hut algorithm,
with multipole approximations, on message passing ar-
chitectures including the NCUBE and Intel iPSC. War-
ren and Salmon [17, 18] report impressive performance



from extensive runs on the 512 node Intel Touchstone
Delta. Singh etal. [14, 15] also implemented the Barnes-
Hut algorithm for the experimental DASH prototype.
This paper contrasts our approach and conclusions with
both these efforts.

Parallel implementations of various versions of the
fast multipole method are described in [9, 10, 12, 14, 19].

The remainder of this abstract is organized as fol-
lows. Section 2 reviews the Barnes-Hut algorithm, the
issues in parallel implementation, and recent related
work. Section 3 describes our implementation and the
reasons behind our design choices. Section 4 discusses
experimental results from simulations, and Section 5
concludes.

2 The Barnes-Hut algorithm

All tree codes exploit the idea that the effect of a cluster
of bodies at a distant point can be approximated by a
small number of initial terms of an appropriate power
series. The Barnes-Hut algorithm uses a single-term,
center-of-mass, approximation.

To organize a hierarchy of clusters, the Barnes-Hut
algorithm, sketched in Figure 1, first computes an oct-
tree (BH-tree) partition of the three-dimensional box
(region of space) enclosing the set of bodies. The par-
tition is computed recursively by dividing the original
box into eight octants of equal volume until each un-
divided box contains exactly one body. Figure 4 is an
example of a recursive partition in two dimensions. Al-
ternative tree decompositions have been suggested [3];
the Barnes-Hut algorithm applies to these as well.

For each time step:

1. Build the BH tree

2. Compute centers-of-mass bottom-up

3. For each body
start a depth-first traversal
of the tree, truncating the search
at internal nodes where the
approximation is applicable;
update the contribution of the node
to the acceleration of the body

4. Update the velocity and position of

each body

Figure 1: The Barnes-Hut algorithm

Each internal node of the BH-tree represents a clus-
ter. Once the BH-tree has been built, the centers-of-
mass of the internal nodes are computed in one phase
up the tree, starting at the leaves. Step 3 computes ac-
celerations; each body traverses the tree in depth-first
manner starting at the root. For any internal node, if

the distance D from the corresponding box to the body
exceeds the quantity R/6, where R is the side-length of
the box and 6 is an accuracy parameter, then the effect
of the subtree on the body is approximated by a two-
body interaction between the body and a point mass
located at the center-of-mass of the tree node. The tree
traversal continues, but the subtree is bypassed.

Once the accelerations on all the bodies are known,
the new positions and velocities are computed in Step
4. The entire process, starting with the construction of
the BH-tree, is repeated for the desired number of time
steps.

For convenience we refer to the set of nodes which
contribute to the acceleration on a body as the essential
nodes for the body. Each body has a distinct set of
essential nodes which changes with time.

One remark concerning distance measurements is in
order. There are several ways to measure the distance
between a body and a box. Salmon [13] discusses several
alternatives in some detail. For consistency, we mea-
sure distances from bodies to the perimeter of a box
in the Lo, metric. This is a conservative choice, and
for sufficiently small 6 avoids the problem of “detonat-
ing galaxies” [13]. In our experiments we use § = 1;
this corresponds to § = 0.5 for the original Barnes-Hut
algorithm.

The overhead in building the tree, and traversing
it while computing centers-of-mass and accelerations
is negligible in sequential implementations. With ten
thousand particles, more than 90% of the time is de-
voted to arithmetic operations involved in computing
accelerations. Less than 1% of the time is devoted to
building the tree. Thus, it is reasonable to build the
BH-tree from scratch at each iteration.

2.1 Issues in parallel implementation

The Barnes-Hut algorithm provides sufficient paral-
lelism; all bodies can, in principle, traverse the tree si-
multaneously. However, a good implementation must
resolve a number of issues. To begin with, the bodies
cannot all be stored in one node of a distributed-memory
machine. With the bodies partitioned among the pro-
cessors, the costs of building and traversing the BH-
tree can increase significantly. In contrast, the time for
arithmetic operations will, essentially, decrease linearly
as the number of processors increases. This tension be-
tween the communication overhead and computational
throughput is of central concern to both applications
programmers and architects.

The challenges to developing high-performance code
can be summarized as follows.

1. The BH-tree is irregularly structured and dynamic;
as the tree evolves, a good mapping must change
adaptively.



2. The data access patterns are irregular and dy-
namic; the set of tree nodes essential to a body can-
not be predicted without traversing the tree. The
overhead of traversing a distributed tree to find the
essential nodes can be prohibitive unless done care-
fully.

3. The sizes of essential sets can vary tremendously
between bodies; the difference often ranges over an
order of magnitude. Therefore, it is not sufficient
to map equal numbers of bodies among processors;
rather, the work must be equally distributed among
processors. This is a tricky issue since mapping the
nodes unevenly can create imbalances in the work
required to build the BH-tree.

Finally, our aim is not simply to develop an effi-
cient implementation of one algorithm. Rather we seek
techniques which apply generally to other N-body al-
gorithms as well as other applications involving dis-
tributed tree structures.

2.2 Related work

We sketch the important aspects of of Salmon’s the-
sis [13] which motivated us initially, as well as the more
recent reports of Warren and Salmon [17, 18], and of
Singh etal. [14, 15]. We also point out the differences of
our techniques from these approaches.

Salmon [13] and Warren and Salmon [17] weight each
body by the number of interactions in the previous time
step. The volume enclosing the bodies is then recur-
sively decomposed by orthogonal hyperplanes into re-
gions of equal total weight. Figure 5 shows the result-
ing decomposition, often called the orthogonal recursive
bisection, ORB for short. When bodies move across
processor boundaries, or their weights change, work im-
balances can result. The ORB is recomputed at the end
of each time step.

Each processor builds a local tree for its set of bod-
ies which is later extended into a locally essential tree.
The locally essential tree for a processor contains all the
nodes of the global tree that are essential for the bodies
contained within that processor. Once the locally essen-
tial trees have been built, the rest of the computation
requires no further communication. Both implementa-
tions use quadrupole moments for higher accuracy.

The global tree is neither explicitly nor implicitly
built. The process of building the locally essential trees
requires non-trivial book-keeping and synchronization.
The book-keeping is complicated by the “store-and-
forward” nature of the process: when a processor re-
ceives information, it sifts through the data to retrieve
any information that is locally essential, figure out what
information must be forwarded, and discards the rest.
The flow of information follows the dimension order of
the hypercube.

We too use the ORB decomposition and build lo-
cally essential trees so that the final compute-intensive
stage is not slowed down by communication. However,
there are significant differences in implementation: (1)
we build a distributed representation of a global tree
in a separate phase, (2) the locally essential trees are
built using a sender-driven protocol that is significantly
simpler, more efficient, and network independent, (3)
we update the ORB decomposition and global BH-tree
incrementally only as necessary rather than recompute
them at every iteration, and (4) the computation to up-
date positions and velocities is vectorized to minimize
time.

Since we carefully vectorized the final sequential stage
it was imperative that the overhead due to paralleliza-
tion be as small as possible. Experimental results and
comparisons are given in Section 4.

More recently, Warren and Salmon [18] reported a
modified algorithm which uses a different criterion for
applying center-of-mass approximations. The new im-
plementation does not build locally essential trees; in-
stead they construct an explicit representation of the
BH-tree. Each body is assigned a key based on its po-
sition, and bodies are distributed among processors by
sorting the corresponding keys. Besides obviating the
need for the ORB decomposition, this also simplifies
the construction of the BH-tree. These advantages are
balanced by other factors: (1) the computation stage is
slowed down by communication; the latency is hidden
by multiple threads to pipeline tree traversals and to
update accelerations, but the program control structure
is complicated and less transparent, (2) the advantages
of sender-directed communication are lost, and (3) the
data structures are not maintained incrementally. Sec-
tion 4 gives more details on timing results are compar-
isons.

The DASH shared-memory architecture group at
Stanford [14, 15] has investigated the implications of
shared-memory programming for the Barnes-Hut algo-
rithm as well as the 2-dimensional adaptive fast multi-
pole method. Each processor first builds a local tree;
these are merged into a global tree stored in shared
memory. Work is evenly distributed among processors
by partitioning the bodies using a technique similar to
[18].

The arguments in [14] about the advantages of
shared-memory over message-passing implementations
are based largely on comparisons to the initial imple-
mentations of Salmon [13] and Warren and Salmon [17].
Since our message-passing implementation is consider-
ably simpler and more efficient, the import of the ar-
guments of [15, 14] is less clear. For example, contrary
to their claims, ORB can be implemented efficiently.
Indeed it is expensive to compute ORB from scratch
at every time step, but it is simple to incrementally



adjust the partition quickly. The same is true for the
BH-tree. While shared-memory systems might ease cer-
tain programming tasks, the advantages for developing
production-quality N-body codes are not entirely clear.

3 Implementation overview

We separate control into a sequence of alternating com-
putation and communication phases. This helps main-
tain simple control structure; efficiency is obtained by
processing data in bulk. For example, up to a certain
point, it is better to combine multiple messages to the
same destination and send one long message. Similarly,
it is better to compute the essential data for several
bodies rather than for one at a time. Another idea that
proved useful is sender-directed communication, send
data wherever it might be needed rather than request-
ing it whenever it is needed. Indeed, without the use
of the CM-5 vector units we found that these two ideas
kept the overhead because of parallelism minimal.

[Pangfeng: The same.]

Figure 2 gives a high-level description of the code
structure. Note that the local trees are built only at the
start of the first time step. Steps 1.2, 3, and 4 require
no communication; Step 3 is the most time-consuming
step.

3.1 Data partitioning

We use orthogonal recursive bisection (ORB) to dis-
tribute bodies among processors. The space bounding
all the bodies is is partitioned into as many boxes as
there are processors, and all bodies within a box are
assigned to one processor. At each recursive step, the
separating hyperplane is oriented to lie along the small-
est dimension; the intuition is that reducing the surface-
to-volume ratio is likely to reduce the volume of data
communicated in later stages. Each separator divides
the workload within the region equally. When the num-
ber of processors is not a power of two, it is a trivial
matter to adjust the division at each step accordingly.

[Pangfeng: The same.]

The ORB decomposition can be represented by a bi-
nary tree, the ORB tree, a copy of which is stored in
every processor. The ORB tree is used as a map which
locates points in space to processors. Storing a copy at
each processor is quite reasonable when the number of
processors is small relative to the number of processors.

We chose ORB decomposition for several reasons. It
provides a simple way to decompose space among pro-
cessors, and a way to quickly map points in space to
processors. This latter property is essential for sender-
directed communication of essential data, for relocat-
ing bodies which cross processor boundaries, and for
our method of building the global BH-tree. [Pangfeng:

0. build local BH trees

for every time step do:
1. construct the BH-tree representation
1.1 adjust node levels

[Pangfeng: Need a new phase here.

The computation of the alpha values of particles require
ordering of particles in each filament. Then we can com
partial moments and combine them together in the next ph

]

1.2 compute partial node values on local
trees
1.3 combine partial node values at
owning processors
2. owners send essential data
3. calculate accelerations
4. wupdate velocities and positions of
bodies
5. update local BH-trees incrementally
6. 1if the workload is not balanced
update the ORB incrementally
enddo

Figure 2: Outline of code structure



This is also important for computing alpha because we
need to know where the neighbor of a particle is if it
is not in the local tree.] Furthermore, ORB preserves
data locality reasonably well' and permits simple load-
balancing. Thus, while it is expensive to recompute
the ORB at each time step [14], the cost of incremental
load-balancing is negligible as we will see in the next
section.

The ORB decomposition is incrementally updated in
parallel as follows. The ORB tree structure is statically
partitioned among processors as follows: each leaf rep-
resents a processor and each internal node is stored at
the same processor as its left child. At the end of a time
step each processor computes the total number of inter-
actions used to update the state of its particles. A tree
reduction yields the number of operations for the sub-
set of processors corresponding to each internal node.
A node is overloaded if its weight exceeds the average
weight of nodes at its level by a small, fixed percentage,
say 5%. It is relatively simple to mark those internal
nodes which are not overloaded but one of whose chil-
dren is overloaded; call such a node an initiator. Only
the processors within the corresponding subtree partic-
ipate in balancing the load for the region of space as-
sociated with the initiator. The subtrees for different
initiators are disjoint so that non-overlapping regions
can be balanced in parallel.

[Pangfeng: The same]

At each step of the load-balancing step it is necessary
to move bodies from the overloaded child to the non-
overloaded child. This involves computing a new sep-
arating hyperplane; we use a binary search combined
with a tree traversal on the local BH-tree to determine
the total weight within a parallelpiped. Because of space
limitations we do not describe the use of the BH-tree in
load-balancing.

[Pangfeng: The same]

We found that updating the ORB incrementally is
cost-effective in comparison with either rebuilding it
each time or with waiting for a large imbalance to occur
before rebuilding.

3.2 Building the BH-tree

Unlike the first implementation of Warren and
Salmon [17], we chose to construct a representation of
a distributed global BH-tree. An important considera-
tion for us was to investigate abstractions that allow the
applications programmer to declare a global data struc-
ture, a tree for example, without having to worry about
the details of distributed-memory implementation. For
this reason we separated the construction of the tree
from the details of later stages of the algorithm. The

LClustering techniques which exploit the geometrical proper-
ties of the distribution will preserve locality better, but might lose
some of the other attractive properties of ORB.

interested reader is referred to [7] for further details
concerning a library of abstractions for N-body algo-
rithms.

Representation. We represent the global BH-tree
as follows. Since the oct-tree partitions are oblivious of
the input distribution, each internal node represents a
fixed region of space. We say that an internal node is
owned by the processor whose domain contains a canon-
ical point, say the center of the corresponding region.
The data for an internal node, the multipole represen-
tation for example, is maintained by the owning proces-
sor. Since each processor contains the ORB-tree it is
a simple calculation to figure out which processor owns
an internal node.

The only complication is that the region correspond-
ing to a BH-node can be spanned by the domains of
multiple processors. In this case each of the spanning
processors computes its contribution to the node; the
owner accepts all incoming data and combines the indi-
vidual contributions. This can be done efficiently when
the combination is a simple linear function, as is the
case with all tree codes.

Construction. Each processor first builds a local
BH-tree for the bodies which are within its domain. At
the end of this stage, the local trees will not, in general,
be structurally consistent. The next step is to make
the local trees be structurally consistent with the global
BH-tree. This requires adjusting the levels of all internal
nodes which are split by ORB lines. We omit the details
of the level-adjustment procedure in this extended ab-
stract. A similar process was developed independently
in [14]; an additional complication in our case is that we
build the BH-tree until each leaf contains a number, L,
of bodies. Choosing L to be much larger than 1 speeds
up the computation phase, but makes level-adjustment
somewhat tricky.

The level adjustment procedure also makes it easy
to update the BH tree incrementally. We can insert
and delete bodies directly on the local trees because we
do not explicitly maintain the global tree. After the
insertion/deletion within the local trees, level adjust-
ment restores coherence to the implicitly represented
distributed tree structure.

[Pangfeng: The following paragraph has to be re-
placed.]

Once level-adjustment is complete, each processor
computes the centers-of-mass and multipole moments
on its local tree. This phase requires no communica-
tion. Next, each processor sends its contribution to an
internal node to the owner of the node. Once the trans-
mitted data have been combined by the receiving pro-
cessors, the construction of the global BH-tree is com-
plete. This method of reducing a tree computation into



a one local step to compute partial values, followed by a
communication step to combine partial values at shared
nodes is generally useful method.

[Pangfeng: The description of how to compute alpha
goes here.]

Give the definition of alpha function.

Emphasize that the computation requires communi-
cation because the two neighboring particles may not
be in the same local tree.

Emphasize that we need a linear ordering of all local
particles to 1. compute alpha function 2. find out which
particles should be sent out.

Describe the splay search tree implementation. We
use a search tree to store the indices of particles for one
filament. It is easy to insert/delete indices into/from
the tree, and to obtain a linear ordering of all indices.
We use a splay tree implementation because it is self-
adjusting.

Emphasize that we can use the same sender-orineted
protocol for the communicaiton. The reason is that
when we go through the local particles in the linear
order, if either of a particle’s neighbor is missing, this
paticle will be sent out (the data dependency is symmet-
rical). Therefore it is the responsibility of the owner of
a data to send its informaiton.

We also keep track of the maximum distance between
two neighbors so that we can compute the area to send
a particle out. (This is much easier under ORB).

[Pangfeng: We may need to descibe what we meant
by multipole moments because we replace “mass” (a
scalar) by the alpha (a vector)]

Once level-adjustment is and the computation of al-
pha complete, each processor computes the multipole
moments on its local tree. This phase requires no com-
munication. Next, each processor sends its contribution
to an internal node to the owner of the node. Once
the transmitted data have been combined by the receiv-
ing processors, the construction of the global BH-tree is
complete. This method of reducing a tree computation
into a one local step to compute partial values, followed
by a communication step to combine partial values at
shared nodes is generally useful method.

3.3 Locally essential trees.

Once the global BH-tree has been constructed it is
possible to start calculating accelerations. The naive
strategy of traversing the tree, and transmitting data-
on-demand, has several drawbacks: (1) it involves two-
way communication, (2) the messages are fine-grain so
that either the communication overhead is prohibitive
or the programming complexity goes up, and (3) pro-
cessors can spend substantial time requesting data for
BH-nodes that do not exist.

[Pangfeng: The same.]

It is significantly easier and faster to first construct
the locally essential trees. The owner of a BH-node
computes the destination processors for which the node
might be essential; this involves the intersection of the
annular region of influence of the node with the ORB-
map. Each processor first collects all the information
deemed essential to other nodes, and then sends long
messages directly to the appropriate destinations. Once
all processors have received and inserted the data re-
ceived into the local tree, all the locally essential trees
have been built.

[Pangfeng: The same.]

Calculating accelerations The final phase to com-
pute accelerations does not require any communication.
In order to use the CM-5 vector units effectively we cal-
culate the accelerations of groups of bodies. Instead
of measuring distances from bodies to BH-boxes, we
instead measure distances between bounding boxes for
groups of bodies and BH-boxes. This guarantees that
the resulting calculations are at least as accurate as de-
sired.

[Pangfeng: The same.]

Grouping bodies does increase the number of calcu-
lations, but it also makes them more regular. More
significant is the reduction in the time spent traversing
the tree. This idea of grouping bodies was earlier used
by Barnes [5].

[Pangfeng: We may want to change the following de-
scription of caching. We do not use caching here because
of memory overhead, especially when we are using small
theta in this CFD code.]

A further reduction in tree traversal is possible by
caching essential nodes. The key observation is that
the set of essential nodes for two distinct groups that are
close together in space are likely to have many elements
in common. Therefore, we maintain a software cache
for the essential nodes.

A judicious choice of caching strategy is necessary to
ensure that cache maintenance overheads do not under-
mine the gains elsewhere. It is also important to order
the different groups such that the total number of cache
modifications is minimized.

[Pangfeng: Do we want this theorem here?]

Suppose that N is the size of the BH-tree. The num-
ber of interactions computed by the Barnes-Hut algo-
rithm is Q(NlogN). We show that the number of
cache modifications for the sequential code is signifi-
cantly smaller when the groups are ordered according
to a recursive tree traversal.

Theorem 1 With recursive tree traversal, the number
of cache modifications is O(N), when either (a) 6 =1,
or (b) the bodies are uniformly distributed.



The general case, when both the distribution and 6
are arbitrary is open.

3.4 Reducing communication times

[Pangfeng: We can also put the computaiton of alpha
as an example of all-to-some.]

The communication phases can all be abstracted as
the “all-to-some” problem. Each processor contains a
set, of messages; the number of messages with the same
destination can vary arbitrarily. The communication
pattern is irregular and unknown in advance. For ex-
ample, level adjustment is implemented as two sepa-
rate all-to-some communication phases. The phase for
constructing locally essential trees uses one all-to-some
communication.

The first issue is detecting termination: when does
a processor know that all messages have been sent and
received? The naive method of acknowledging receipt of
every message, and having a leader count the numbers
of messages sent and received within the system, proved
inefficient.

[Pangfeng: We may want to emphasize that the con-
trol network of CM-5 makes this approach very effi-
cient.]

A better method is to use a series of global reductions
the control network of the CM-5 to first compute the
number of messages destined for each processor. After
this the send/receive protocol begins; when a proces-
sor has received the promised number of messages, it is
ready to synchronize for the next phase.

We noticed that the communication throughput var-
ied with the sequence in which messages were sent and
received. As an extreme example, if all messages are
sent before any is received, a large machine will sim-
ply crash when the number of virtual channels has been
exhausted. In the CMMD message-passing library (ver-
sion 3.0) each outstanding send requires a virtual chan-
nel [1] and the number of channels is limited.

Instead, we used a protocol which alternates sends
with receives. The problem is thus reduced to order-
ing the messages to be sent. For example, sending mes-
sages in order of increasing destination address gives low
throughput since virtual channels to the same receiver
are blocked. In an earlier paper [11] we developed the
atomic message model to investigate this phenomenon.
Consistent with the theory, we find that sending mes-
sages in random order worked best.

4 Experimental Results

[The same.]

Our platform is the Connection Machine CM-5 with
SPARC vector units. All experiments reported here
were run on a 256-node CM-5. Each processing node has

32M bytes of memory and can perform floating point
operations at peak rate of 128 Mflop/s. We use the
Connection Machine CMMD library (version 3.0). The
vector units are programmed in CDPEAC which pro-
vides an interface between C and the DPEAC assembly
language for vector units. The rest of the program is
written in C.

[We need Victor to shred some lights on the inputs.]

Our experiments included three input distributions:
uniform and Plummer distributions [2] with mass M =
1 within a sphere, and two colliding Plummer spheres.
The Plummer sphere has very large density in the cen-
ter. All examples contained about 10 million particles.
Figure 6 shows the time spent per phase for the Plum-
mer sphere. The time can be classified into four cate-
gories. The first is the time to manage the distributed
Barnes-Hut tree. This includes level adjustment, BH-
tree update, and combining the local trees into the
global representation. Less than 5 percent of the to-
tal time is spent for these activities. The corresponding
figures for the uniform distribution and colliding Plum-
mer spheres are similar, the main difference being that
the total execution times were, respectively, 59 seconds
and 73 seconds, rather than 88 seconds for the single
sphere.

The second category is the time for constructing lo-
cally essential trees. The implementation packs infor-
mation into long messages to improve communication
throughput. This phase uses less than 4 percent of the
total time.

The third category is time to compute accelerations.
This category includes the time for vector units to com-
pute interactions among particles, and the time to mod-
ify the essential data cache. The vector units compute
interactions at the rate of 44 Mflop/s. Even at this rate
the time spent by the vector units dominates; only 4
percent of the total time goes to cache modification.

The final category is the time for load balancing. Our
implementation successfully balances the workload with
negligible overhead. The simulation adjusts the work-
load distribution only when the imbalance exceeds 5
percent. As a result the amortized cost for remapping
is extremely small per simulation step.

The implementations sustains an overall rate of over
38 Mflop/s per processor, or 9.8Gflop/sec for the 256-
node configuration. The hand-written CDPEAC assem-
bly routine achieves 44 Mega flops in the interaction
computation. The rest of the overhead is less than 13%.
For the uniform distribution the corresponding figure is
less than 9%.

These figures compare favorably with those reported
by Warren and Salmon [17, 18] (see Figure 3). One im-
portant remark is in order: while our simulations were
run over several minutes of wall-clock time, Warren and
Salmon’s figures are averages over almost 17 hours.



WS92 ‘WS93 Current
machine 512-Delta 512-Delta | 256-CM-5
# bodies(x10°) | 8.8 8.8 10
distribution uniform (?) | uniform uniform
time per step 77 sec. 114 sec. 59 sec.
force calc. 85% 47% 91%
other overhead 15% 53% 9%

Figure 3: Comparisons with implementations of War-
ren and Salmon [17,18]. The second last row is the
percentage of time devoted exclusively to computing in-
teractions (The entry for WS92 includes time for tree
traversal).

Our incremental tree structure is more efficient than
the conceptually simpler method of [18]. The tree build-
ing phase in their implementation takes more than 12%
of the total time. Singh etal. present a method similar
to ours which takes about 5% to build the tree. If the
final phase in both these approaches is speeded up by
grouping bodies as we do then the fraction of time in
building the tree will be significantly higher. In contrast
our code spends less than 5% of the total time to update
the tree.

4.1 Discussion of results

BH tree Adjustment Figure 8 compares the time to
dynamically adjust the BH tree versus building it from
scratch. The time for rebuilding the tree is taken from
the first time local trees are built. The actual rebuilding
time in later steps is larger because the number of bodies
per processor can vary greatly after the first time step.

The memory allocation routine is the major overhead
in tree building process. Whenever a new BH node is
inserted into the tree, the implementation must allo-
cate memory for it. The memory management routines
(malloc()) provided by UNIX operating systems has ex-
tra overhead and contributes to the slow tree building
process. In the implementation we use our customized
memory allocation routine to acquire memory for BH
tree. Although the customized routine reduces the over-
head in memory management considerable, the rebuild-
ing is still more expensive than adjustment because the
extra overhead in releasing and allocating all the BH
nodes.

In [14] Singh suggests that shared memory archi-
tecture has substantial advantages in programming
complexity over an explicit message-passing program-
ming paradigm, and the extra programming complexity
translates into significant runtime overheads in message-
passing implementation. However, in our implementa-
tion we do not see this happen. Our implementation
uses direct message-passing communication to manage
the BH tree, but the overhead is very small with respect
to the overall execution time.

Caching vs. Traversal Figure 9 shows the effect
of different group size on the time for vector units to
compute interactions. The computation time increases
when the maximum number of bodies in a group (de-
noted by G) increases. As we compute acceleration for
larger groups the bounding box for the group increases
in size. As a result the number of BH boxes opened
unnecessarily also increases, as does the size of essen-
tial data cache. Therefore the time for vector unit to
process essential data increases.

The increase in computation time is not significant
until G increases to around 400 for the following rea-
son. Consider a uniform particle distribution. In order
to double the size of the bounding box the number of
bodies must increase by a factor of eight in three dimen-
sions. Therefore the increase in G must be significant
to increase the cache length. Secondly, only those BH
boxes surrounding the bodies will be affected by the
change in G. Finally, the vector units process essential
data in blocks of sixteen, so a small increase in G may
not affect the total time for vector units to compute
interactions.

Figure 10 shows the effect of G on the time to pre-
pare essential data for interaction computation. When
G increases, the time to collect essential nodes decreases
in both tree traversal and caching method. The effect
on tree traversal strategy is easy to understand. The
number of tree traversals is inversely proportional to G,
so the tree traversal time decreases as GG increases.

Increasing G has two different effects on the time to
modify cache data. First the number of cache mod-
ification decreases as more bodies are processed at a
time, so the time should decrease as G increases. On
the other hand, each cache modification will become
more expensive when G increases. The increased size of
bounding box will decrease cache hit rate because the
distance from one group to the next increases. As a re-
sult more expand/shrink operations become necessary
and increases the cost.

Figure 11 shows the total time for force computation
under different values of G. The combined effect of in-
creasing vector unit times for computing interactions
and decreasing time for preparing essential data gives
minimum total time when G is about 320 for caching
(450 for tree traversal). Although the advantage of
caching gradually disappears when the group size in-
creases to very large values, it outperforms tree traver-
sal for all group size up to 512, and gives the overall
minimum force computation time.

From the experiments we can see that the effect of
reduced number of cache modification is more signifi-
cant than the increased cost per cache modification. As
a result the time for cache modification decreases as
G increases. The reducing rate is slower than the tree
traversal method in which the cost per group does not



change.

Figure 7 also shows that the cache hit rate decreases
as more bodies are processed in a group. The in-
creased bounding box size increases the distance from
one groups of bodies to the next group.

5 Conclusions

Our experiments demonstrate that adaptive and irregu-
lar tree structures for N-body simulations can be imple-
mented efficiently in distributed memory using explicit
message-passing communication. Maintaining incre-
mental data structures substantially reduces the over-
heads due to parallel implementation. We also find that
Barnes’ technique of grouping bodies to compute ac-
celerations reduces the time dramatically by allowing
efficient utilization of the vector units. The results of
further improvements which could not be included in
this version will be reported at the conference.
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