An atomic model for message-passing

Pangfeng Liul

William Aiello?

Sandeep Bhatt?

! Dept. of Computer Science, Yale University, New Haven CT 06520.
2 Bell Communications Research, Morristown NJ 07960.

Abstract

This paper presents a simple atomic model of
message-passing network systems. Within one syn-
chronous time step each processor can receive one
atomic message, perform local computation, and
send one message. When several messages are des-
tined to the same processor then one is transmitted
and the rest are blocked. Blocked messages cannot
be retrieved by their sending processors; each pro-
cessor must wait for its blocked message to clear be-
fore sending more messages into the network. De-
pending on the traffic pattern, messages can remain
blocked for arbitrarily long periods.

The model is conservative when compared with
exisiting message-passing systems. Nonetheless, we
prove linear speedup for backtrack and branch-
and-bound searches using simple randomized algo-
rithms.

1 Introduction

Many parallel computers support the message-
passing programming model. Send and receive
primitives hide low-level architectural details re-
lated to the network. Such abstractions are ideal
for programming many large applications. We pro-
pose an atomic model to study the performance
of message-passing programs. The model is simple
and much more restricted in its capabilities in com-
parison with existing systems. Nevertheless, we

show that it allows efficient solutions (linear speed-
up) for backtrack and branch-and-bound searches.

Message-passing instructions appear in two vari-
eties: blocking and non-blocking. Blocking instruc-
tions require synchronization between the sender
and receiver: a send instruction terminates only
when the corresponding receive is executed by a
remote process. Omne advantage of blocking in-
structions is that no system buffering is required.
However, the delay in waiting for a send instruc-
tion to complete means that computation and com-
munication cannot overlap; this can reduce over-
all performance significantly. Another disadvan-
tage is that the programmer must carefully arrange
send /receive instruction pairs to avoid deadlock.

Non-blocking instructions allow a process to
execute multiple send instructions before any of
the corresponding receive instructions is executed.
This allows for the possibility of increased efficiency
since communication and computation can over-
lap. However, more system resources, buffering
and bandwidth for example, are required for a non-
blocking scheme otherwise pending messages (those
sent but not yet received) will be excessively de-
layed or potentially lost. Moreover, since system
resources are finite, the programmer must ensure
that the number of pending messages is bounded
at all times. It is natural to ask whether the effi-
clency gained by using non-blocking instructions is
lost if the number of pending messages is severely
limited.

We investigate this question formally within the
atomic model which permits only one pending mes-
sage per processor. In brief, each processor is given
one send buffer and one receive buffer, each capa-
ble of holding one atomic message. The system
alternates between message transmission and com-

putation cycles. During a computation cycle a pro-
cessor retrieves a message from its receive buffer,
performs a computation, enques newly generated
messages into a message queue, and writes the first
message in the queue into the send buffer if the
send buffer is empty. During the transmission cy-
cle, the network attempts to transmit every mes-
sage in each send bufler to the receive buffer of the
destination. If more than one message is destined
for the same processor, exactly one is successfully
transmitted. The rest remain in their send buffers.
The one which is transmitted is chosen by a net-
work arbiter. The worst-case arbiter makes choices
to maximize the running time. The FIFQO arbiter
gives priority to messages with smaller time-stamp;
messages with the same time-stamp can be deliv-
ered in arbitrary order.

The atomic model is motivated by the desire to
analyze the performance of message-passing pro-
grams in an architecture-independent manner. For
this reason, we have chosen to abstract the network
as an arbiter which takes one unit of time to trans-
fer messages from send buffers to receive buffers
at the destination. We believe this is reasonable
in applications that involve the atomic transfer of
large data sets. Unit-delay assumptions are also
made in the literature on PRAMs and complete
networks [3]. Unlike these models however, we do
not allow multiple messages to be received in one
step by a processor. A related model for optical
communication was investigated in [2]. A key fea-
ture which distinguishes the atomic model is that
once a message has been sent it cannot be retrieved;
the sending processor must wait for the network to
clear the send buffer after the message has been
copied into the receive buffer at the destination.

Inspite of the restriction on the rate at which
the network can deliver messages to a destination,
as well as the adversarial nature of the arbiter,
we show that simple algorithms can attain linear
speed-up.

Main results. This paper studies three problems:
message scattering, backtrack search, and branch-
and-bound search. For each of these problems we
analyze the case when all messages are destined for
independently chosen random nodes. Our rough
intuition is that when messages are headed for ran-
dom destinations, the number of conflicting mes-
sages is unlikely to become too large. However,

when the size of the computation is much larger
than the number of processors, this is not always
true and one has to prove that the effects of the
conflicts do not add up significantly.

In the backtrack search problem, each internal
vertex of a search tree 7 corresponds to a partial
solution to a problem while each leaf represents a
solution with a certain cost. The goal of back-
track search is to find the minimum cost leaf in
the search tree. The search tree is not given in
advance, rather it is spawned on-line as the search
proceeds. The search begins with the root of the
tree in a given node; when each internal vertex is
expanded two (or any bounded number of children)
are spawned and must each be examined. When a
leaf is examined, the cost is calculated and no fur-
ther expansion along that branch is possible. If
the total number of vertices in the search tree is
n, and the maximum depth of any leaf is h, it is
easy to see that the time to examine all leaves is
at least Q(n/p+ h), where p denotes the number
of processors.

Branch-and-bound search is similar to backtrack
search, except that only a subtree of the search tree
must necessarily be explored. Following Karp and
Zhang [3], we model a branch-and-bound tree as a
binary search tree, each of whose vertices has an
associated cost. The cost of each vertex is strictly
less than the cost of each of its children (for sim-
plicity we assume that all vertex costs are distinct).
The problem is to find the leaf with minimum cost
in the tree. Clearly, every tree vertex whose cost is
less than the minimum cost leaf must be expanded
because one of its children could potentially be the
minimum cost leaf. These vertices form a critical
subtree, call it 7 of the overall search tree.

As before, the time to complete the search is
Q(n/p + h) where n is the number of vertices in
the critical subtree, and h is the height of the crit-
ical subtree. Non-critical vertices can, in principle,
be pruned by the search process and need not be
explored.

Tight upper bounds for branch-and-bound, and
hence for backtrack search, were given by Karp and
Zhang [3] on the complete network which allows
multiple messages to be simultaneously received at
each node, and on the concurrent PRAM which es-
sentially allows unsuccessful writes to be detected.
The basic idea was to send each node to a random

processor for further exploration. Ranade [5] gave
an elegant alternative proof of the Karp-Zhang re-
sult. By extending Ranade’s techniques we show
that the random destination strategy yields linear
speedup for backtrack search in the atomic model.

Theorem 1 Using random destinations, the prob-
ability that a binary backtrack search tree of size n
and depth h takes time more than k(n/p+h) in the
atomic transmission model with worsl-case arbiter
1s polynomially small in n, for k sufficiently large.

Achieving linear speedup for branch-and-bound
in the atomic model is a little harder. The sub-
tle distinction is that pending non-critical vertices
can delay pending critical vertices. In the Karp-
Zhang model this can never happen. Since we have
no control over the number of non-critical vertices,
and we do not know the shape of the critical sub-
tree, it is conceivable that the delays can become
arbitrarily large under the worst-case arbiter which
consistently favors non-critical vertices over critical
vertices. However, under a FIFO arbiter we estab-
lish the following result.

Theorem 2 Let the critical subtree, T of a
branch-and-bound search tree have size n and depth
h. Using randomized deslinations, the probability
that the time, in the alomic model with FIFO ar-
biter, exceeds k(n/p + h) is polynomially small in
n when n > p*logp, and k is sufficiently large.

The remainder of this abstract is organized as
follows. Section 2 defines the model. In Section
3 we introduce and analyze the problem of mes-
sage scattering. Section 4 gives a brief outline of
the technical approach. Sections 5 and 6 give the
proofs of Theorems 1 and 2 respectively. Section 7
concludes with comments on further work.

2 The atomic message-passing
model

We model a message-passing multicomputer as a
collection of p nodes connected via an interconnec-
tion network [6].

For convenience of analysis we require that the
system be synchronous, and operate in discrete
time steps. This assumption simplifies the analysis

NETWORK
RECEIVE SEND SYSTEM
BUFFER BUFFER
RECEIVE SEND
M M
Q A E Q SYSTEM
U N s U OR
E A s E PROGRAM
U G A U
E E G E
R E
ENQUE
PROCESSOR PROGRAM
+
MEMORY

Figure 1: The structure of a node.

of throughput; we do not exploit it in the design of
correct algorithms.

Each node consists of a receive buffer, a proces-
sor, local memory, a queue manager, a message
queue, and a send buffer. Each buffer can hold
one atomic message. Every node can perform lo-
cal computation using its processor and local mem-
ory. It can also receive a message using the receive
buffer and enque messages into the message queue.
The message queue is maintained by a queue man-
ager which may be under the control of the pro-
cessor or the system. A message from the message
queue is injected into the network by placing it into
the send buffer. For our purposes, it is convenient
to model the actions at a node as repeated execu-
tions of the following reactive cycle which occurs
during one synchronous time step:

1. The send phase (performed by the processor
or system):

e MAINTAIN QUEUE: Put newly enqueued
messages into an appropriate place in the
message queue.

e SEND: Inject the message at the head of
the queue into the send buffer if empty.

2. The transmission phase (peformed by the
network system):

o TRANSMIT: Take messages from send
buffers to receive buffers according to
message destinations. If more than one
message is destined for the same receive
buffer, the one which succeeds is selected
by the network arbitration policy.

3. The computation phase (performed by the
processor):

e RECEIVE: Probe the receive buffer to re-
ceive an incoming message, if any, into
local memory.

e COMPUTE: Perform local computation,
possibly on the newly received message,
and generate new messages.

e ENQUE: Pass the newly generated mes-
sages to the queue manager.

Observe that there are two ways a message can
be delayed. First, a message may have to wait in
the message queue until it is selected to be placed
in the send buffer. Second, once a message is
in the send buffer, it may be delayed in the net-
work. We wish to make as few assumptions as
necessary on the message queue. Our results for
backtrack search search are independent of queue
maintainance. Our result for branch-and-bound
depends on maintaining the message queue as a
priority queue.

When more than one message, occupying send
buffers of different nodes, are simultaneously des-
tined for the same node, the network must deliver
one message. Since every node executes a RECEIVE
instruction during its reactive cycle, this require-
ment of the network satisfies the network contract
of the CM-5 [4]: “The data network promises to
eventually accept and deliver all messages injected
into the network by the processors as long as the
processors promise to eventually eject all messages
from the network when they are delivered to the
processors.” With the reactive cycle and the net-
work contract we are assured that deadlocks cannot
occur.

We wish to make as few assumptions as necessary
about the network arbitration policy when multiple
messages are destined for the same node. We will

consider two different network arbitration policies.
The worst-case policy selects the message which
maximizes the overall time to complete the task at
hand. The FIFO policy dictates that, for any pair
of messages with the same destination, they will
be accepted in the order of earliest occupancy of
their respective send buffers. In other words, if the
messages reach their send buffers at different time
steps, then the earlier one will be delivered first. If
two messages reach their send buffers at the same
time, then the order of delivery is arbitrary.

For message scattering and backtrack search our
analysis is valid under worst-case arbitration, for
branch-and-bound we require FIFO arbitration to
prove optimal speedup.

3 Message scattering

The message scattering problem is informally
stated as follows: suppose that each node has a
list of m messages to send (in order) to remote
nodes. How much time does it take, under the
worst-case (adversarial) arbitration policy, until all
messages are received at their destinations? This
problem arises naturally in several applications; in
fact, the current paper is motivated by our ongoing
project on the large scale astrophysical simulations
of galaxies [1].

The off-line version of this problem in which the
lists can be reordered is easily solved using stan-
dard edge-coloring techniques. If r is the maxi-
mum number of messages received by any node,
then max{r, m} steps are necessary and sufficient.

However, the distributed version of the problem,
without reordering, is not as simple. We will show
in the full paper that with each of p nodes sending
m messages (m can be arbitrarily larger than p)
the worst-case time is Q(mp). In other words, the
average throughput of the system is O(1) messages
received per time step, independent of the size of
the system.

On a positive note, we show in this section that
when each of the messages is destined for a ran-
domly chosen node (all destinations independent
and uniformly drawn) then, with high probability,
the time to completion is O(m). This means that
the average throughput is ©(p) messages received
per time step, asymptotically the maximum possi-
ble. Formally, we establish the following theorem.

Theorem 3 Suppose that each node sends m mes-
sages, and that for each message all destinations
are equally likely and independent of choices of all
other messages. The probability that the time un-
til all messages have been received exceeds km is

bounded by O(e™™), for k sufficiently large.

Proof. We adapt Ranade’s proof [5] of the result
of Karp and Zhang [3].

Let T be the completion time of the protocol, the
last time step at which a message is received. Let
message M,, be a message received at time step
T, and let S be the node which was the source of
message M,,. Let M, denote the ith message sent
by node 5, and let T; denote the time step at which
M, was received at its destination @);.

Definition. Suppose that message m is selected
for transmission, i.e., m enters the send buffer at
time step 7, and is destined for node ¢. Then we
say that m became ready for q at time step 7.

Lemma 1 There erists a partition
I = Iy,...,1L, of the interval [1,T] and a set
R of T — m messages (not including those sent by
S) each of which satisfies the following property: if
the message became ready during 11; its destination

node is @);.

Proof of Lemma. Message M; is received at ¢J;
at time step 7;. Let 7" < T’ be the maximum time
step at which); does not receive a message. At
each time step of the interval A; = [T 4+ 1,T;] Q;
receives a message. Each of these messages became
ready during the same interval A;.

Observe that message M;_1 was received at time
step T;_1, and message M; became ready at time
step 1;_1 + 1. Therefore, 17" < 1;_;. This means
that there is no gap between any pair of consecutive
intervals A;, A;4q1. Given the intervals Aq,..., A,
we construct a partition Il as follows:

1,, = A,
1I; AZ'—UH]‘, 1<t <m.
i>i

By construction, it follows that every message
received by (); during II; became ready during II;,

and at least T" — m messages received by @);’s dur-
ing 1I;’s were not sent by 5. This establishes the
lemma. [

To complete the proof of the theorem, we sum,
over all possible partitions, choice of source 5, and
choice of T'—m messages, the probability that these
T — m messages chose their destinations in accor-
dance with the partition.

The probability that a message which becomes
ready during II; chooses ¢); as its destination equals
21—). The probability that each of T'— m messages

(T=m) | The number of

makes the right choice is p~
choices for 5, the partitions and the T"— m mes-

sages equals p(™) ((%«_fg%m). The probability that

T > km is at most p(T;;m) ((%_fglm)p_(T_m). For
k sufficiently large, this quantity is smaller than
O(e™™). |

4 Techniques for tree searches

4.1 Algorithmic issues

This section outlines the algorithmic and proof
strategies for backtrack and branch-and-bound
search in the atomic model. The branch-and-
bound strategy is essentially that of Karp and
Zhang [3]; their model allows any number of mes-
sages to be received at a node in one time step.
Our technical contribution is to extend their result
to the weaker atomic model. The proofs of both
results build on the ideas of the previous section.

While the goal of both search procedures is to
find the minimum-cost leaf, there is an essential
difference. Backtrack search examines every ver-
tex of the search tree. In branch-and-bound search
the cost associated with each vertex monotoni-
cally increases with the distance from the root, so
that only the critical subtree, consisting of vertices
with cost no greater than the minimum-cost leaf,
need be examined. For efficient branch-and-bound
search, the time devoted to examining non-critical
vertices must not dominate that for examining the
critical subtree.

Within each synchronous reactive cycle, each
processor: (1) receives a tree vertex, if any, from
its receive buffer, (2) examines and expands the
vertex, and (3) puts the children onto the message

queue, headed for an independently chosen random
destination. For backtrack search we place no re-
quirements on the message queue discipline. How-
ever, for branch-and-bound search we require that
the message queue be a priority queue, so that the
tree vertex selected for transmission is the one with
minimum cost.

Using priority queues for branch-and-bound
search means that non-critical vertices cannot be
selected for transmission when there is at least one
critical vertex inside the message queue. However,
a critical vertex can arrive inside the message queue
while a non-critical vertex occupies the send buffer.
In this case, the critical vertex will have to wait for
selection, but it is easy to see that a critical ver-
tex can be delayed by a non-critical vertex in this
manner at most once.

Once a message has been selected for transmis-
sion, it is still subject to receive delays. Receive
delays depend on the network policy and are be-
yond the control of the programmer, so we would
like to make as few assumptions as necessary. For
backtrack search we are able to carry out the anal-
ysis without making any assumptions on network
arbitration. For branch-and-bound however, our
analysis requires that the network observe a FIFO
arbitration policy.

In conclusion, our analysis for branch-and-bound
search makes stronger assumptions on both the
message queue discipline, and the network arbi-
tration policy. The first assumption is required
to guarantee that progress is made on the critical
subtree and is reasonable from an algorithmic view-
point. The second assumption, concerning network
arbitration, is required for technical reasons: we
bound the running time as a function of the size of
the critical subtree, not the entire search tree which
can be arbitrarily larger. Currently we do not know
if the FIFO assumption can be weakened, and it is
conceivable that it can.

4.2 Proof techniques

In this section we describe some of the ideas com-
mon to the analysis for both backtrack and branch-
and-bound search. In both problems our goal is to
analyze the time to expand a critical tree! of size
n and depth h on a p-node system. For branch-

Every vertex in backtrack search is critical.

and-bound search the quantities » and h can each
be much smaller than the size and depth of the
complete search tree.

In the analysis of the running time we proceed as
follows. At time step t = 1 the root is assumed to
be expanded in node 1, without loss of generality,
and the children enqueued with random destina-
tions. Suppose that the running time is 7', i.e., the
last time step at which a critical vertex is received.
Pick one of the critical vertices received at time
step T" — it must be a leaf in the critical subtree.
Call the path s1,sg,...,s, from the root (s1) to
this critical leaf (sp) the special path and the ver-
tices along this path the special vertices. Let @);
denote the destination queue of special vertex s;.

The first step of the proof is similar to the proof
of Lemma 1. For a fixed run of the algorithm we
construct a partition, II = {Il;,...,1[;}, of the
time interval [1,7]. Next, we construct a signa-
ture set R of non-special, critical vertices each of
which became ready for some (); during the corre-
sponding time interval II;. Roughly speaking, the
signature set, R, is constructed such that the re-
ceive delay periods of its children are disjoint, and
the sum of these receive delays is large, i.e., close
to T.

The signature set R is either large or small,
where large and small are defined by a threshold
ol', where a is some suitably chosen constant. We
first show, just as in the proof of Lemma 1, that,
with high probability, R is small when T is large.

Lemma 2 For suitable constants k, a, the proba-
bility that T > k(% + h) and |R| > oT is polyno-
mially small in n.

Proof. Omitted in this abstract.

The second part of the proof argues that the
event that 7 is large and R is small is polynomially
small. The intuition is that the receive-delay of a
vertex is expected to be a small constant, so that it
is unlikely for a small number of signature vertices
to suffer a large total receive-delay. Unfortunately,
since the delays of the children of the signature ver-
tices are not independent random variables, Cher-
noff bounds cannot be immediately invoked.

Briefly, in analyzing backtrack search we track
the destinations of the children of the signature ver-
tices to construct a new set of queues, a new parti-
tion of time, and a new signature set. The new sig-

nature set is guaranteed to be large; consequently,
the remainder of the proof follows the proof of
Lemma 2. The analysis of branch-and-bound is
based on the observation that, under FIFO arbitra-
tion, the delays of the signature set can essentially
be treated as a martingale, thereby allowing us to
use Chernoff bounds.

5 Analysis of backtrack search

This section presents the proof of linear speedup for
backtrack search (Theorem 1) under the assump-
tion that all nodes are sent to independently and
uniformly chosen random destinations.

We begin with some terminology and definitions.
As before, the set S = {sq,...,s,} denotes the spe-
cial vertices along a maximally delayed root-to-leaf
path. Let T; be the time step at which vertex s; is
received at its destination node ();, with boundary
conditions Ty =1l and T}, = T.

Definition. A node @ is empty at time step t if
neither the send buffer nor the message queue of @)
contains a vertex at the end of time step t.

Observe that if ¢ is empty at ¢ then ¢ could
not have received an internal vertex at time step
t; however, it is possible that) received a leaf at
time step t.

Definition. An interval I = [a,b], denotes the
sequence of time steps between a and b, inclusive.
Let I™ denote the interval [a + 1,5+ 1].

Let 7 be the maximum time step ¢ < 1} such
that @); is empty at {. Let N; denote the interval
[1 +7T¢,T;41 — 1]. By definition, @; is non-empty
throughout Nj;.

Also, for ¢« < h, let T7*" denote the maximum
time step ¢ < 17 at which @); does not receive a
vertex. Let A; denote the interval [14+ 777,14+ TF].
By definition, (); receives a vertex at every time
step of A;; we call A; an arrival window for @;.

Next, we define a partition 1T = {IIy,...,1[5_1}
of the interval [1,7" — 1] as follows. Let A; = A; U
N, =141/ ,T;41 — 1], 1 <i<h, and

1 = Ap

II; AZ'—UH]', 1<i<h-—1.
i>i

Let R; be the set of non-special internal vertices
which become ready for); during the interval II;,
and let R = U;<p R;. The set R is the signature
set we will consider. First, note that by Lemma 2
the probability that 7" > k(% + h) and [R| > oT is
overwhelmingly small. In what follows we bound
the probability that T > k(3 + k) and |R| < oT.

Lemma 3 For every 1 < i < h: (i) Q; receives an
internal vertex al time 1+1F. (ii) A; is an arrival
window for Q;, and (iit) at every time step in the
interval NZ-+, the output buffer of @@; attempts to
inject a vertex into the nelwork.

Proof. Follows from definitions, omitted.

From part (iii) of the Lemma, it follows that the
send buffer of ¢J; contains a tree vertex during each
time step of the interval N{" N H;-", 1 <@ < h
Let C; = {¢i; : 1 < j < my} be the set of tree
vertices that appear in the send buffer of ¢J; during
NZ»+ N Hf. We claim that the parent of every vertex
in C; must be in the signature set (in fact in R;).
Otherwise, (J; would have received a message at
time step I7*" which, by definition, is not possible.

Denote by W;; (1 < j < m;) the portion of the
time interval N N 11T during which vertex ¢;; oc-
cupies the send buffer of ;. Since ¢;; is blocked
throughout all (except possibly the last time step)
of W;;, it follows that W;; is an arrival window for
the destination node @);; of vertex c;;.

We are now ready to bound the desired prob-
ablity. First, note that |R| < o1 implies that
|C| < 2(|R| + |S]) < 2(h 4+ oT'). We next refine
the partition II into arrival windows as follows: for
each interval 1I; the initial segment W;, = II; N A;
is an arrival window for @);; beyond that W;; is an
arrival window for ();;, 1 <t < h, 1 <j <m;. All
the arrival windows taken together form a partition
of the interval [1,77].

We need one more definition. For the arrival
window (W;;,Q;;), where Wy; = [t1,13], let t < 14
be the maximum time step at which);; does not
receive a message. Define W = [t + 1,15] so that
(W, Qi5) is the mazimal backward extension of the
arrival window. Note that every message received
by Qi; during the interval W must have become
ready for @);; during the same interval. Let (J* be
the sequence of all the queues @;;, 1 <i<h, 1 <
J < ki

From the extended windows W7, 1 < i < h,
0 < 7 < k;, we next obtain a second partition II*
as follows:

* *
;4 kn_1 Wiy kp_1
* _ * *
I, = W - U 1,
I>iv(l=iAm>j)

Let X;; denote the set of vertices v such that
v ¢ CURUS, and v is received by @);; during
IT7;. From the discussion above any vertex in Xj;
must become ready for @;; during IT7;. Finally, let
X = UX;;. Since the arrival windows cover the
interval [1,77], it follows that | X| >1 — |V/|.

To sum up the discussion above, an execution
template £ is an octuple (5, R,C, X,Q, Q" 11, 11*)
whose elements are defined as before. Each execu-
tion template fixes the destinations of vertices in
S, R, C,and X.

We bound the probability of the event T" > k(%—l—
h) and |R| < o) by summing the probabilities of
all possible execution templates. The probability
of a fixed execution template is

p—|CURUS|p—(T—|CURUS|)

~h IRl y=[S—(RUC)

= php T—|CURUS]|)

lp=(.

Next, we count the number of different execution
templates. The destinations of vertices from C' and
R are specified by @), so the number of unspecified
queues in Q* is [S — (R U ()| and the number of
ways to choose @ and Q* is pp!°~(BYUO) The total
number of execution templates is therefore no more
than

) o S (T (1)

Bounding the product of the above two terms
yields the following lemma.

Lemma 4 For suitable constants k, a the probabil-
ity that T > k(%—l—h) and |R| < T is polynomially
small in n.

Finally, Theorem 1 follows from Lemmas 2, 4.

6 Branch-and-bound search

This section presents the proof of linear speedup for
branch-and-bound search (Theorem 2) under the

assumption that the network arbiter observes the
FIFO policy. Under this policy, incoming vertices
are received in FIFO order, i.e. the vertex that is
ready first is received first, while vertices that are
ready at the same time are received in arbitrary
order. Termination detection can be handled in a
manner similar to [5].

Our proof proceeds as follows: with every pos-
sible execution we associate a signature set R. As
before, R is defined so that by Lemma 2 it is un-
likely for both 7" and R to be large. For the second
case, we argue that the delay is very likely to be
bounded by O(|R|) so that it is unlikely for 7" to
be large and R to be small.

6.1 The signature set

As before, let special vertex s; be received by @);
at time T;. From the definition s;41 is generated
in @; at 1; and received at (;41 at Tj4q, for all
1 < v < h. Our goal is to find a set of vertices whose
receive-delay periods (time spent in send buffers)
are disjoint and cover the interval [T3, T;41].

From every Tiy1 (1 < @ < h) we trace back
in time until 77**, which is the largest time step
smaller than 7;17 at which the send buffer of @);
does not contain a critical vertex. By definition,
the send buffer of (); is occupied by a critical
vertex every time step during the interval I'; =
[T7° 4+ 1,T;41] (1 < i < h). Let C; be the set of
critical vertices that are injected into the network
from @); during I';. The interval I'; can be parti-
tioned into intervals corresponding to the receive
delays of the critical nodes C;.

Among the parents of vertices in C}, let f; be one
that is ready for (); earliest of all, and let Tifbe the
time step when f; becomes ready. Since s;41 is a
member of C}, its parent,s;, cannot be ready for ();
before Tif .

If there is a gap between the receive delay inter-
val of f; and those of nodes in C; then it must
be the case that, during that interval, the send
buffer of @; contains a non-critical vertex until
time step 775. Let g; be this vertex, and let 77
be the time step at which it became ready. Let
A; = [min(T7,79), Tiy1 — 1],

Lemma 5 For every wverltex in C;, ils parent
must be ready for); during A;. Furthermore,
Uz}'bz_ll A = [17T - 1]'

Proof. From the preceding discussion, observe
that A; can be covered by the union of receive de-
lays of f;, C;, and possibly g;. Also, Tif < 1T; so
that A; contains the interval [T;, T;41]. It follows
that the A;’s, taken together, cover the interval
[1,T —1].]

With the A;’s as defined above we next construct
a partition II as follows:

Mp1 = Ap
I, = AZ'—UH]‘, 1<i<h-1.
7>

Finally, we define the signature set to be the set
of all non-special tree vertices that become ready
for @); during II,.

There are three kinds of receive delays that cover
II;: the earliest ready parent f;, the non-critical
node g;, and those vertices in C); that are ready
during I'; N II;. We denote by F,G,C the set of
chosen vertices whose receive delays cover the in-
terval [1,7 — 1]. Since the parent of every vertex
in C is either in 5 or in R, it follows that the total
number of receive delays selected to cover the inter-
val [1,7'—1]is at most 2h42(|S|+|R|) = 4h+2|R|.

As before, we use Lemma 2 to bound the proba-
bility that T" and R are both large. In what follows,
we bound the probablity that 7" is large when R is
small.

6.2 Bounding large delays

Our intuition is that the total time covered by a
small set of receive delays is likely to be small as
well. In order to show that the sum of m non-
overlapping delays is, with high probability, O(m),
we start with the following lemma.

Lemma 6 Let Xq,...,X,, be m random variables,
each in the range [0..p — 1] and let X =Y, X;.
If for every 1 < i < m, and 0 < aq,..
p — 1, the conditional expectation E(X; | X; =
T1,..., Xio1 = x1) < 1, then Pr(X > am) <
(%)a% when o > 2e.

<y Li—1, S

Lemma 7 Let V = {v1,...,v,} be m tree ver-
tices with independent and uniformly chosen des-
tinations whose receive delay periods are non-
overlapping. The probability that the sum of the
corresponding m receive delays is greater than Gm

B—1)m
is smaller than (3) 71 when § > 2e 4 1.

Proof. Let X; be the number of vertices waiting
to be received in front of v; when v; is ready. The
total delay of V is m + -, X;.

We argue that given Xq,..., X;_1, the expected
value of X; is no more than 1. When v; is about to
make its random choice, it is given a distribution
of the numbers of vertices waiting for each proces-
sor. This distribution is given a prior: the random
choice of v;, so the distribution v; can see is in-
dependent from the random choice v; is about to
make. The expected value of X; is no more than
one since there are at most p — 1 other tree nodes
waiting to be sent and v; will pick a destination
uniformly at random.

The event that the total delay is more than Gm
implies the sum of all X; is more than (5 — 1)m.
From Lemma 6 this will happen with probability
smaller than (1)(®=V™ when (8 — 1) > 2e. |

We will apply Lemma 7 to bound the total re-
ceive delays of the sets F, G, of vertices. First,
with every possible execution of the algorithm we
associate a canonical choice of the sets F,G,C. If
the total receive delay is T then the receive delay
of vertices in one of the three sets must be 7'/3 or
greater. Now, fixing any one of these sets gives no
information about the destinations and so we can
apply Lemma 7 to bound the total receive delay of
the individual sets. Putting everything together,
we obtain Theorem 2.

7 Conclusions

In this paper we have developed a simple model
which captures some aspects of message passing
systems. The model can be extended in several
ways to include, for example, non-uniformity of
routing times and more system buffering capacity.

We believe that the model is simple enough to
carry out further algorithmic analysis which we ex-
pect will shed light on the limitations of bounded
resources in parallel systems.

8 Acknowledgments

We are grateful to Lennart Johnsson for encourag-
ment and support, and to Marina Chen, Charles
Leiserson, Abhiram Ranade and Peter Winkler
for helpful discussions. The work of Sandeep
Bhatt and Pangfeng Liu was supported in part
by NSF/DARPA grant CCR-89-08285, DARPA
contract DABT 63-91-C-0031 monitored by Army
DOC, and Air Force grant AFOSR-89-0382.

References

[1] S. Bhatt, M. Chen, C. Lin, and P. Liu. Ab-
stractions for parallel N-body simulation. In
Scalable High Performance Computing Confer-
ence SHPC(C-92, 1992.

[2] M. Gereb-Graus and T. Tsantilas. Efficient op-
tical communication in parallel computers. In
4th Annual ACM Symposium on Parallel Algo-
rithms and Architectures, 1992.

[3] Richard M. Karp and Yanjun Zhang. A ran-
domized parallel branch-and-bound procedure.
In 29th Annual ACM Symposium on Theory of
Computing, 1988.

[4] C. Leiserson, Z. Abuhamdeh, D. Douglas,
C. Feynman, M. Ganmukhi, J. Hill, W. D.
Hillis, B. Kuszmaul, M. St. Pierre, D. Wells,
M. Wong, S. Yang, and R. Zak. The network
architecture of the connection machine CM-5.
In 4th Annual ACM Symposium on Parallel Al-
gorithms and Architectures, 1992.

[5] Abhiram Ranade. A simpler analysis of
the Karp-Zhang parallel branch-and-bound
method. Technical Report UCB/CSD 90/586,
University of California, 1990.

[6] Charles L. Seitz. Multicomputers. In Devel-
opments in Concurrency and Communicalion,
C.A.R Hoare (ed) Addison-Wesley, 1990. pp
1531-201.

