Tight Bounds for On-line Tree Embeddings

(Extended Abstract)

Sandeep Bhatt!?

David Greenberg!

Tom Leighton® Pangfeng Liu!

! Department of Computer Science, Yale Univ., New Haven CT 06520.
2 Computer Science Department 256-80 Caltech, Pasadena CA 91125.
? Mathematics Department and Laboratory for Computer Science, MIT, Cambridge MA 02139

Abstract

Many tree—structured computations are inherently par-
allel. As leaf processes are recursively spawned they can
be assigned to independent processors in a multicom-
puter network. To maintain load balance, an on-line
mapping algorithm must distribute processes equitably
among processors. Additionally, the algorithm itself
must be distributed in nature, and process allocation
must be completed via message—passing with minimal
communication overhead.

This paper investigates bounds on the performance
of deterministic and randomized algorithms for on-line
tree embeddings. In particular, we study tradeoffs be-
tween performance (load-balance) and communication
overhead (message congestion). We give a simple tech-
nique to derive lower bounds on the congestion that
any on-line allocation algorithm must incur in order to
guarantee load balance. This technique works for both
randomized and deterministic algorithms, although we
find that the performance of randomized on-line algo-
rithms to be somewhat better than that of determinis-
tic algorithms. Optimal bounds are achieved for several
networks including multi-dimensional grids and butter-
flies.

1 Introduction

Tree—structured computations arise naturally in diverse
applications of the divide-and-conquer paradigm; for ex-
ample, N-body simulations or the evaluation of func-
tional expressions and game-trees. As the computa-
tion evolves, the corresponding tree grows and shrinks.
Each node of the tree can recursively spawn subpro-
cesses, and possibly also communicate with its parent.
The most significant feature of tree computations is that
each node can spawn children independently and, there-
fore, in parallel with other nodes.

How do we exploit this inherent parallelism on a
multicomputer network containing as few as two or as

many as one hundred thousand processors? For maxi-
mum speedup, the processes must be evenly distributed
in the network. If neither the structure nor the size of
the tree can be predicted at compile time, then a rea-
sonable strategy might be to assign each newly spawned
process to a randomly chosen processor. This gives even
load distribution with high probability. Unfortunately,
it also causes large congestion when many processes are
spawned simultaneously and each travels over a long dis-
tance in the network to its assigned processor. For any
given network, one might reasonably suspect a trade—off
between performance (load distribution) and efficiency
(congestion).

For the boolean hypercube and its derivative net-
works, the butterfly and cube-connected-cycle networks
for example, simple and efficient algorithms have re-
cently been developed [1, 3]. These algorithms map
processes to randomly chosen processors, but the ran-
dom choice is confined to processors within a short dis-
tance from the spawning processor. In particular, every
N-node tree can be dynamically spawned within the
N-node hypercube so that, with high probability, each
processor receives O(1) tree nodes and such that the
maximum congestion in the network is O(1) [3].

In this paper we extend our study of on—line embed-
dings to different multicomputer networks. We derive
lower bounds on the congestion that any on-line, deter-
ministic algorithm must incur in order to guarantee load
balance. The bounds are tight, to within constant fac-
tors, for several networks including multi-dimensional
grids and butterflies.
for butterflies contrasts sharply with previous random-
ized upper bounds [3]. We also adapt the techniques
of [3] to develop a randomized algorithm for grids, and
show that its performance is better than the determin-
istic lower bound. Finally, we give tight lower bounds
on the expected congestion for randomized algorithms.

Our lower bounds are all based on the simpler

The deterministic lower bound

problem of allocating tree nodes to two processors. The
existence of small off-line bisectors for trees suggests
that with just two processors only a small amount
of communication should be needed. However, we
show that even in this simple case large communication
overhead is inevitable for on-line embeddings.

The remainder of this abstract is organized as fol-
lows. Section 2 defines the on-line embedding model
and the cost measures studied in this paper. Section 3
presents lower bounds for deterministic algorithms. Sec-
tion 4 presents randomized algorithms with improved
performance. Section 5 examines lower bounds for ran-
domized algorithms.

2 Models

We model the problem of growing trees on networks as
an on-line embedding problem. Informally, the on-line
tree embedding problem may be described as follows.
We start with the root of a binary tree placed at some
node of a multicomputer network. At any instant, each
node with 0 or 1 child may choose to spawn a new
child. Each newly spawned child must be assigned to a
network node, and a path in the network must be chosen
from the parent node to the child node.

The on-line embedding algorithm is constrained
in that processes cannot migrate. Once embedded, a
tree node cannot subsequently be moved to a different
node in the network. These requirements are critical
for fine—grain multicomputers [4]. Disallowing process
migration is a common policy in practice; migration
can conceivably lead to thrashing and cripple a large
multicomputer network.

Growth sequences Although many tree nodes can
spawn children simultaneously, it will suffice for our
lower bound arguments to assume that the tree grows
one node at a time.

Formally, an instance of the on-line tree embedding
problem is a sequence of directed edges, e; = (wj, w;),
1 < j < i, in which w; is the ¢th node spawned and
has parent w;. Node w; is the root. A growth sequence
is a sequence of edges such that, for each k, the set
{e; 1 i < k} of edges forms a directed tree, with each
node having outdegree at most 2.

The restriction to binary trees is arbitrary, any
bounded degree would do, but since the networks we
consider have bounded degree; trees with unbounded
fanout lead, uninterestingly, to poor worst—case perfor-
mance.

Embeddings and their quality An embedding of a
tree T in a network H is a mapping of nodes of T" to
vertices of H, together with a mapping from edges of T’

to paths in H. The mapping of nodes is not required
to be one-to-one; multiple processes can share the same
processor. An on-line embedding induced by a growth
sequence is a sequence of embeddings, in which each
embedding is an extension of the previous one. This
enforces the policy of disallowing process migration.

Two standard measures of the quality of an embed-
ding are dilation and congestion. The dilation of an
embedding is the maximum length path in the network
corresponding to an edge of T'. The congestion of an em-
bedding is the maximum number of edges of T" whose
images traverse any edge in H.

An embedding of a k-mnode tree is said to be a—
balanced, o > 1, if no more than a[k/P] tree nodes are
assigned to any of the P nodes of H. The overloading
factor, «, is typically a small constant, independent of
the size P of the network.

An on-line embedding for a growth sequence p is
continuously a—balanced, if for every ¢, the ith embed-
ding (induced by the first i elements of p) is a—balanced.
On the other hand, if only the final embedding in the
sequence is a—balanced, then we say that the on-line
embedding is terminally a—balanced. Obviously, termi-
nal balance is a weaker requirement than continuous
balance.

For a given embedding of a tree 7', an edge e = (u, v)
is said to be a cut edge if the end points u and v of
e are mapped to distinct nodes of H. FEach cut edge
corresponds to a child spawned at a remote processor;
the number of cut edges can critically affect congestion.

3 Deterministic Lower Bounds

3.1 The two processor case

Given a deterministic on-line algorithm we show
how to construct an N-node tree for which the algorithm
either requires ©(N) cut edges or fails to achieve
terminal balance. On-line allocation for two processors
is equivalent to coloring each tree node either black or
white. Without loss of generality, suppose that the root
is colored black. The adversarial tree construction works
in phases: in the first phase, we spawn two children
from every black node. This phase ends when all the
leaves are white. Phase 2 continues with this strategy,
spawning two children from every white node until all
the leaves are black. The tree is grown in this “layer by
layer” method, producing leaves of alternating colors in
successive phases.

Since the 2-coloring algorithm is deterministic, the
color committed on-line to each newly spawned node
is “known,” i.e., computable by the “adversary” con-
structing the growth sequence. This ensures that the
construction outlined above is well-defined.

The claim that the number of cut edges grows

linearly with the size of tree, under the requirement of
terminal balance, is based on the following observation.
At the end of every phase each leaf is connected to its
parent by a cut edge. Since every internal node has two
children, more than half the edges of the tree (those
incident to leaves) are cut edges.

We use the following terminology. A tree node is
in the ith layer if the path from the root to the node
contains ¢ — 1 cut edges. The root is defined to be in
layer 1. Let n; be the number of nodes in the ith layer.
Each node spawned during phase ¢ lies either in layer ¢
or in layer i + 1.

LEMMA 3.1. For every deterministic algorithm A,
and o < 2, there exists a growth sequence p of length N
(N sufficiently large), such that if the on-line embedding
of p is terminally a-balanced then the number of cut
edges is Q(N).

Proof. Let @« = 2 — 6 and choose ¢ > 0 so that
€ < 6/4. Using the adversarial strategy above, grow a
tree with V nodes, N > «/(2 — 4e — a).

We consider two cases: either the embedding of
p is complete before phase 1 terminates, or else the
embedding is completed during phase k, k > 1.

In the first case every white node is a leaf and the
number of cut edges equals the number of white leaves.
In order to maintain terminal balance, there must be at
least N — «[N/2] > eN white nodes, and consequently
at least e N cut edges.

In the second case let n; be the number of nodes
in the 2th layer. We again distinguish between two
subcases: either Z’f_l n; > €N, or E’f_l n; < eN.

We first observe that every node in layer £ — 1 is
an internal node. Together with the fact that every
internal node has two children, we conclude that there
are 1 + E’f_l n; cut edges, each connecting a node in
layer k—1 to anode in layer k. Thus, in the first subcase
the number of cut edges is greater than eN.

In the second subcase ng + ng41 > N(1—¢€). From
the terminal balance condition, we also have n; <
a[N/2]. These two imply that npy1 > N(1 —€) —
a[N/2] > eN.

Since the embedding terminated during phase k,
and before phase £+ 1 began, it follows that every node
in layer k + 1 is a leaf that is connected to its parent
by a cut edge. From the preceding argument it again
follows that the number of cut edges is greater than e/N.
|

Lemma 3.1 implies that every deterministic on-line,
load-balancing algorithm requires a linear number of cut
edges on some finite sequence. Since the theorem holds
for terminal balance, it holds for continuous balance as
well.

The on—line lower bound contrasts sharply with the
off-line bound. Every length—N growth sequence can be
terminally %*balanced with just one cut. Less trivially,
we can show that every length-N growth sequence can
be continuously a—balanced with O(log2 N) cuts, for
any 1 < a < 2. This is achieved using multi—color
bisectors [2].

Lemma 3.1 can be also used to construct one
infinite sequence such that every continuously—balanced
algorithm is forced, on infinitely many prefixes, to make
linearly many cuts. This infinite sequence is constructed
using a standard diagonalization argument.

Multiple processors

Lemma 3.1 can be extended to a bounded number
of processors. With P colors instead of two, we use a
similar argument to the one above. The only difference
is that each phase grows only one subtree, rooted at a
leaf grown in the previous phase. A phase ends when
all the leaves grown in that phase are colored differently
from the root.

LEMMA 3.2. For every deterministic algorithm A,
P > 2, and o < P, there exists a growth sequence p
of length N (N sufficiently large), such that if the on-
line embedding of p is terminally a—balanced among P
processors then the number of cut edges is Q(N).

Remark. In some computations it is important to
evenly distribute only the leaves. Lemma 3.2 can be
extended to this case as well.

3.2 Congestion and Dilation Bounds

We use Lemma 3.2 to derive lower bounds on
the congestion and dilation of balanced algorithms as
follows. We assume that the tree size, N, is Q(P) where
P is the size of the network. We partition the given
network into B blocks of equal size. We refer to an edge
that connects nodes in different blocks as a cross-link.

An a-balanced embedding of an N node tree as-
signs at most a[N/B] tree nodes per block.! By
Lemma 3.2, in the worst case, Q(N) edges of the tree
must be cut. If there are C' cross-links in the net-
work partition, then some cross-link must accommo-
date Q(N/C) cut edges of the tree, causing congestion
Q(N/C). Observe that an upper bound on C' yields a
lower bound on congestion.

The P-node two-dimensional grid can be parti-
tioned into B blocks with B+/P cross links. Conse-
quently, the congestion is Q(N/+/P). For the P-node
butterfly C' = O(P/ log P); the congestion is Q(Ll?ﬁi).

It is equally easy to obtain lower bounds on dilation.

TGiven o we choose a suitable value for B so that each node of

the network can receive at most a small fraction of the tree nodes.

For a partition of the network into blocks, define the
boundary of a block to be the set of processors incident
to cross—links. Furthermore, let ngy be the number of
processors within distance d from the boundary. Now
observe that in any embedding with dilation d, every
tree node incident to a cut edge must lie within distance
d from a boundary node of some block. Since there
are Q(N) cut-edges in the worst case, the total number
of network nodes within distance d of boundary nodes
must be large enough to accommodate Q(N) tree nodes.

By removing the edges in every \/F/Bfth column,
the P-node two-dimensional grid can be partitioned into
B blocks of equal size, so that ng = O(d\/P) for each
block. From the balance constraint each processor has
at most a[N/P] tree nodes. In order to accommodate
Q(N) tree nodes, it follows that d = Q(+/P). Similarly,
by removing the edges at every O((log P)/B)-th level,
the P-node butterfly can be partitioned so that ng =
O©(dP/log P). Tt follows that, for the butterfly, d =
Q(log P).

THEOREM 3.1. For every deterministic algorithm
A, and o > 1, there exists a growth sequence p of
length N (N sufficiently large) such that if the on-line
embedding of p is terminally a—balanced then (1) on the
P-node, k-dimensional grid (constant k) the dilation is
Q(PY*) and the congestion is Q(N/P=*) and (2)
on the P-node butterfly the dilation is Q(log P) and the

congestion Q(Ll?fi).

The bounds on dilation are tight since they match
the diameters of the respective networks. To achieve
the bounds on congestion a deterministic algorithm uses
a single global fetch-and-add register to distribute the
tree nodes to the mesh or butterfly in some fixed order.
The global register is implemented via a spanning tree
and contributes at most constant congestion. Further
details will be in the final paper.

4 Randomized Algorithms

4.1 n-way Balancing The key tool for our random-
ized algorithms is the n-way balancing transformation
[3] which evenly distributes a binary tree of size N into
a ring of n = log N processors. The n-way balancing
transformation works as follows. A tree node is distin-
guished if it is in level ¢ = 0 mod n/3. For each distin-
guished node v we pick a random number S(v) between
0 and n/3—1 inclusively as the stretch count. The trans-
formation inserts a single dummy node in each edge in
the subtree of height S(v) rooted at v. The resulting
tree after this transformation is denoted by B(T'). De-
fine level set ¢ to be the set of all tree nodes in a level
congruent to ¢ modulo n. Let the processors of the ring
be po, p1-.. pn—1 in clockwise order. The algorithm em-
beds the tree nodes in level set ¢ of B(T') into processor

pi.

This transformation embeds every sufficiently large
binary tree into a ring evenly with high probability, and
with dilation two.

LEmMA 4.1. ([3]) With probability 1 — N, ¢ > 0,
the above log N —way balancing algorithm dynamically
embeds every N-node tree into the log N -node ring so
that O(N/log N) tree nodes are mapped to any ring
node.

When the number of processors in the ring is less
than log N, we instead map a virtual log N-length
ring onto our smaller ring. In particular, with two
processors, the first half of the virtual ring is mapped
to one node and the second half to the other. Since
the dilation of the mapping on the virtual ring is two,
only the eight nodes of the virtual ring within distance
two of the breaks contribute to the cut edges. Since
these eight nodes contain at most O(N/ log N) nodes of
a binary tree, the number of cut edges is bounded by
O(N/log N).

When the number of processors in the ring exceeds
log N, we divide the ring into log N groups, each
containing an equal number of nodes. We use log N-
way balancing to assign tree nodes to groups, and
a deterministic strategy is used within each group.
For the length—-L ring, the dilation is bounded by
O(L/log N), while the congestion is O(N/log N). The
bound on dilation is optimal; any mapping of the N—
node complete binary tree on the L-node ring requires
dilation Q(L/log N). The congestion is a factor of log N
less than the worst-case lower bound for deterministic
on-line algorithms and matches the lower bound, shown
in Section 5, on the expected value of the congestion for
any randomized algorithms.

Suppose that we wish to equitably allocate the tree
nodes on-line among P processors, with the goal of
minimizing the total number of cut-edges. When P is
any fixed constant, the strategy mentioned above uses
O(N/log N) cuts. However, when P is log N, each
of the N edges is cut. By modifying the log N-way
balancing technique slightly, we can reduce the total
number of cuts to O(N/log &). As we will see in the
next section, this bound is the best possible.

We modify the algorithm so that each node in every
%log %fth level set of the transformed tree is mapped
to a processor chosen uniformly at random among the
P processors. Those nodes not in these level sets are
embedded into the processor where their parents are
embedded. Since only edges at every %log %fth level
are cut, the total number of cut edges is O(N/ log %)
Although we omit details in this abstract, we can
show that for P = O(N/logN), the tree nodes are
equitably distributed among the P processors. For

larger values of P, the same bound is achievable, but
the algorithm becomes more complicated and requires
global information.

4.2 Two-dimensional grids

Any embedding of the N-node complete binary
tree in the P-node two-dimensional grid, with at most
O(N/P) tree nodes per grid node, requires dilation
Q(\/}_’/ log N). This follows from the fact that in
any such embedding, some pair of tree nodes must be
mapped distance Q(+/P) apart, while the distance in
the tree between the two nodes is O(log N). This lower
bound on dilation is tight for off-line embeddings. In the
previous section we saw that every on-line deterministic
algorithm requires dilation Q(\/ﬁ) in the worst case. In
this section we present a randomized algorithm which
achieves the O(v/P/log N) bound.

We shall see in Section 5 that the expected value
of the congestion is Q(ﬁ%og]\f)' The randomized
algorithm presented here will meet this bound.

For convenience, we work with the 2 D—torus instead
of the grid. Since the 2D-torus can be embedded
efficiently within the grid, our bounds for the torus are
tight, to within a constant factor, for the grid.

Our randomized algorithm for the torus extends the
previous algorithm for rings. We partition the P-node

VP
log N by

%. The block in the row ¢ and column j is denoted
by B;;. We use the log N-way balancing transformation
twice, independently for each dimension, to obtain two
trees T, and 7.. The random stretch counts in two
trees are chosen independently. Every node that is in
level set i of 7, and level set j of T; is mapped to B;;.
Within a block the tree nodes are distributed evenly in
a deterministic manner.

THEOREM 4.1. With probability 1 — N=°, ¢ > 0,
the above algorithm dynamically embeds every N-node
tree T in the VP x /P grid so that each grid node
receives O(N/P) tree nodes, and such that the dilation

is O(%) and the congestion is O(\/FILOgJV)'

Proof Sketch. Using Lemma 4.1 we first argue that
N
I

torus into log2N square blocks, each of size

each column of blocks receives a total of O(;5) tree
nodes with high probability. Next, given tﬁat each
column has O(%) nodes, we bound the probability
that the distribution in some column is uneven. In
particular, we show that, with probability 1 — N~¢,
¢ > 0, each block receives O(N/log> N) tree nodes.
With deterministic allocation within each block, each
grid node receives O(N/P) tree nodes. (As in the
deterministic algorithm sketched at the end of Section 3
the allocation within blocks will require the simulation
of a global register for each block.)

The image of a tree edge can traverse at most
3 blocks in each dimension, therefore the dilation is

bounded by 6%. The tree edges are mapped to
the shortest patgh in the network with at most one
turn. Denote the processor in row i and column j
by F; ;. Without loss of generality, pick a horizontal
communication link ¢ between F;; and F; ;4. From
the dilation bound, at least one end point of every tree
edge whose image traverses £ must lie within the interval
Pz’,j—S\/F/logN through Pi,j+3\/17/logN' Since each grid
node has O(N/P) tree nodes and each tree node has at
most degree 3, the total number of tree edges that can

possibly go through £ is bounded by O(%).]

The technique for two-dimensional grids can be
easily extended to grids with multiple dimensions. In
particular, for P-node grids with a fixed number £ of
dimensions, the bounds on dilation and congestion are
O(P*/log N) and O(%) respectively.

5 Randomized Lower Bound

We again consider the two-processor model for our
lower bound. Let A be any probabilistic on-line algo-
rithm which is a—balanced, 1 < a < 2. For an N-node
tree the algorithm guarantees that there are at most
aN/2 nodes in either processor. In what follows we
show how to construct an N-node binary tree 74 such
that the expected number of cut edges created by A for
T4 is at least (1 — «/2)?N/18log N. As a consequence,
we can conclude that any balanced on-line tree embed-
ding algorithm can be expected to to make Q(N/log N)
cuts on the worst-case tree.

THEOREM 5.1. For every algorithm A, and a > 1,
there exists a growth sequence p of length N such that
if the on—line embedding of p is terminally a-balanced
then the expected number of cut edges is Q(N/log N).

Proof. The worst-case tree consists of a sequence
of complete binary trees that are grown as follows. We
start with the depth—1 complete binary tree with 3
nodes. Let «a; be the random variable denoting the
fraction of edges in the ith level that are cut edges
and 7 = (1 — a/2). If E(a;) < r/logN, then we
grow the tree one more level, to form the depth-2
complete binary tree with 7 nodes. On the other hand, if
E(ay) > r/log N, then we start a new complete binary
tree at the rightmost leaf of the current complete binary
tree. See figure 1 for an example.

In general we continue growing 74 using the same
rule. If E(a;) < r/log N, then we grow 74 by attaching
two leaves to every level-i node. If E(a;) > r/log N,
then we grow 74 by attaching two leaves to just the
rightmost level-z node. In other words, we extend the

A% S

E(al) < logN al > logN

Figure 1: Tree growth examples

current binary subtree by one level in the former case,
and we start a new binary subtree in the latter case. The
procedure stops when we have grown N nodes. Figure 2
illustrates one possible choice for a 32-node tree. Note
that every level (except possibly the last) contains 2¢
nodes, where a > 0.

AN

$o

O

Figure 2: A 32-node example

For the purposes of our discussion, it is useful to
consider 74 as a collection of complete binary subtrees
{T;}. In particular, we define T; to be the ith maximal
complete binary subtree formed during the construction
of T4. We denote the last subtree formed as T;,. The
last level of T, may be partially empty. We also define
n; to be the number of nodes in 7;, less the rightmost
leaf for ¢+ < m since this node forms the root of the next
tree.

Let C be the random variable denoting the number
of cut edges created by A on 74. In what follows we
show that E(C) > (1 —«/2)2N/18log N when N = 2.
The proof is divided into two cases, depending on the
value of Y727 n;.

Case 1. Y./} 1(1-a/2).

Let z; be the random variable denotmg the number

-1 nl > rN where r =

of cut edges in the last level of T;, 1 < ¢ < m — 1.
The last level of T} has 2 3n; edges and expected fraction
of cut edges greater than r/log N, therefore E(z;) >
in;r/log N. Hence,

EO) > Y B
> i%nﬂ’/logl\f
- % N(r/log N)

(1—a/2)>N/18log N.

Case 2. EZ T ng <N,

Since Y77 n; < (1 — /2)N/3, we know that
Ny > N—(1—a/2)N/3 = (4+a)N/6, and the number of
levels in 713, is log N — 1. Let o; be the random variable
denoting the fraction of cut edges at level j of T}, for
1 < j <logN — 2. By assumption, E(o;) < r/logN.
Also, let s; be the random variable denoting the number
of nodes on level j that remain connected to the root
of T,, if all the cut edges are cut. Then, sy = 1 and
sj > 2851 — 0],2]' for 1 < 57 <logN — 2. Solving the
recurrence for s;, we find that s; > 2/(1—3"1_, o;) for
1<j<logN —2.

Since r < 1/6, T,,, is a complete binary tree with
at most 1/6N nodes not in the last level. Therefore
Slog N—1 > 28l1og N—2 — Y — N, where Y is the random
variable denoting the number of cut edges on the last
level of T;,,. Let R be the random variable denoting the
number of nodes in 7, that are still connected to the
root of 7T;, when all the cut edges are cut.

logN—-1
R Z E S;
j=0
log N—-2 log N—-2
> (Z 2](1_ Z O'i))‘i‘slogN—l
j=0 i=1
log N—-2 log N—-2
> (Y Y= D i)+ 2810gn-2—Y = 7N
j=0 i=1
logN—-1 log N=2
> Z 0i))—Y —rN
j=0 i=1
log N—-2
= (N=D(1- > o)-Y—rN
i=1

Since the largest component of 74 can have size at
most aN/2 once the cut edges have been removed, we
know that R < aN/2. Thus we have that

6

log N—2
Y>(N=1)(1— Y o0;)=rN—aN/2

j=1

By definition, C' > Y, and, therefore

BE) > BY)
> (N-=1)(1=(logN —2)r/logN)
—rN — aN/2
= (I=r+2r/logN)(N —-1)—rN —aN/2
> (l—-r—r—a/2)N-1

= 1/3(1—a/2)N — 1.

This concludes the proof that A is expected to
create at least (1 — a/2)?N/18log N cut edges when
embedding 74 on-line among two processors.

Remark. The preceding result can be generalized
to show that any on-line algorithm for partitioning an
N-node binary tree into components of size at most
N/P is expected to create at least Q(N/log®) cut
edges for the worst—case tree. The proof is nearly
identical to that given above, except that we use a
threshold of ©(1/log %) instead of ©(1/log N) when
deciding whether or not to start a new complete binary
tree at each level of 74. In addition, we only need to
worry about the top log % levels of T}, in the analysis
for case 2. As we showed earlier in the paper, this bound
is tight, up to constant factors, for all P, 2 < P < N/2.

6 Conclusion

The execution of divide-and-conquer type algorithms on
multicomputers requires a simple strategy for distribut-
ing the subprocesses as they are created. Ideally the
distribution would give a balanced load and not require
large communication overhead. We have shown that
on grid and butterfly networks the worst-case dilation
of any deterministic balanced algorithm is as large as
the diameter of these networks. In the final version we
will show that the same is true for the shuffle-exchange
network as well.

Allowing randomization yields some improvement.
Both the dilation and the congestion can be improved
by a factor of log N. As shown in [3] this reduces
the dilation for the butterfly to a constant. We have
also shown that the dilation and expected worst-case
congestion for meshes cannot be improved by more than
a logarithmic factor.

These large overheads for grids leads to the question
of whether there are algorithms with better performance
for the kinds of trees that arise in practice.

Acknowledgements

The authors thank Jin-Yi Cai for helpful discussions.
Sandeep Bhatt was supported at Caltech by DARPA
Order Number 6202, monitored by ONR under contract
N00014-87-K-0745. Sandeep Bhatt, David Greenberg
and Pangfeng Liu were supported at Yale in part by Air
Force grant AFOSR-89-0382, NSF grant CCR-88-07426,
and NSF/DARPA grant CCR-89-08285. Tom Leighton
was supported at MIT by Air Force grant AFOSR-89-
0271, Army contract DAAL-03-86-K-0171, and DARPA
contracts N00014-89-J-1988 and N00014-87-K-825.

References

[1] Sandeep N. Bhatt and Jin-Yi Cai. Take a walk, grow a
tree. In 29th Annual IEFE Symposium on Foundations
of Computer Science, pages 469-478, 1988.

[2] Sandeep N. Bhatt and Charles E. Leiserson. How to
assemble tree machines. In Advances in Computing
Research 2, pages 95-114, 1984.

[3] Tom Leighton, Mark Newman, Abhiram G. Ranade,
and Eric Schwabe. Dynamic tree embedding in but-
terflies and hypercubes. In 1989 ACM Symposium on
Parallel Algorithms and Architectures, pages 224-234,
1989.

[4] Charles L. Seitz. Multicomputers. To appear in
Developments in Concurrency and Communication,
C.A.R Hoare (ed) Addison—Wesley, 1990. pp 131-201.

