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Abstract

Tree-structured computations are relatively easy to process in parallel.
As leaf processes are recursively spawned they can be assigned to indepen-
dent processors in a multi-computer network. However, to achieve good
performance the on-line mapping algorithm must maintain load balance,
ie. distribute processes equitably among processors. Additionally, the al-
gorithm itself must be distributed in nature, and process allocation must
be completed via message-passing with minimal communication overhead.

This paper investigates bounds on the performance of deterministic
and randomized algorithms for on-line tree embeddings. In particular, we
study tradeoffs between computation overhead (load imbalance) and com-
munication overhead (message congestion). We give a simple technique
to derive lower bounds on the congestion that any on-line allocation al-
gorithm must incur in order to guarantee load balance. This technique
works for both randomized and deterministic algorithms. We prove that
the advantage of randomization is limited. Optimal bounds are achieved
for several networks including multi-dimensional grids and butterflies.

1 Introduction

Tree-structured computations arise naturally in diverse applications of
the divide-and-conquer paradigm; for example, N-body simulations, the
evaluation of functional expressions, backtrack searches, and branch-and-
bound procedures. As the computation evolves, the corresponding tree
grows and shrinks. Each node of the tree can recursively spawn subpro-
cesses, and communicate with its parent. The most significant feature of
tree computations is that each node can spawn children independently of
and, therefore, in parallel with other nodes.

How do we exploit this inherent parallelism on a multicomputer net-
work containing as few as two or as many as one hundred thousand pro-
cessors? For maximum speedup, the processes must be evenly distributed



in the network. If neither the structure nor the size of the tree can be
predicted at compile time, then a reasonable strategy might be to assign
each newly spawned process to a randomly chosen processor. This gives
even load distribution with high probability. Unfortunately, it also causes
large congestion; many processes are spawned simultaneously and each
sends startup information to its assigned processor over a long distance
in the network. For any given network, one might reasonably suspect a
trade-off between computational overhead (poor load distribution) and
communication overhead (high congestion).

For the boolean hypercube and its derivative networks, e.g. the but-
terfly and cube-connected-cycle networks, simple and efficient algorithms
have recently been developed and analyzed [1, 4]. These algorithms map
processes to randomly chosen processors, but the random choice is con-
fined to processors within a short distance from the spawning processor.
In particular, every N-node tree can be dynamically spawned within the
N-node hypercube so that, with high probability, each processor receives
O(1) tree nodes and such that the maximum congestion in the network
is O(1) [4]. Using this randomized tree embedding technique for butter-
fly, Ranade showed that optimal speedup can be achieved for backtrack
search problems [6].

For the complete network Karp and Zhang showed that by assigning
newly generated branch-and-bound tree nodes to random processors, the
parallel branch-and-bound algorithm achieves linear speedup with high
probability [3, 10]. The analysis in [3] was later simplified by Ranade [5].

In this paper we extend our study of on-line embeddings to additional
multi-computer networks. We derive lower bounds on the congestion that
any on-line, deterministic algorithm must incur in order to guarantee load
balance. The bounds are tight, to within constant factors, for several net-
works including multi-dimensional grids and butterflies. The determinis-
tic lower bound for butterflies contrasts sharply with previous randomized
upper bounds [4]. We also adapt the techniques of [4] to develop a ran-
domized algorithm for grids, and show that its performance is better than
the deterministic lower bound. Finally, we give tight lower bounds on the
expected congestion for randomized algorithms.

Our lower bounds are all based on the simpler problem of allocating
tree nodes to two processors. It is well known that bounded-degree trees
have small separators, and this seems to suggest that only a small amount
of communication should be needed to distribute tree nodes evenly. Nev-
ertheless, we show that, even in the simple case of two processors, large
communication overhead is inevitable for balanced on-line embeddings.

The remainder of this paper is organized as follows. Section 2 de-
fines the on-line embedding model and the cost measures studied in this
paper. Section 3 presents lower bounds for deterministic algorithms. Sec-
tion 4 discusses a deterministic off-line algorithm that embeds dynamic
trees under a strict balance requirement. Section 5 presents randomized
algorithms with improved performance. Section 6 presents lower bounds
for randomized algorithms. Section 7 concludes the paper.



2 Models

We model the problem of growing trees on networks as an on-line em-
bedding problem. Informally, the on-line tree embedding problem may be
described as follows. We start with the root of a binary tree placed at
some node of a multi-computer network. At any instant, each node with
0 or 1 child may choose to spawn a new child. Each newly spawned child
must be assigned to a network node, and a path in the network must be
chosen from the parent node to the child node. Furthermore, the decision
of where to place the newly spawned child must be entirely local, i.e., the
embedding algorithm can perform only local computations and no global
data structures are allowed.

The on-line embedding algorithm is further constrained in that pro-
cesses cannot migrate. Once embedded, a tree node cannot subsequently
be moved to a different node in the network. These requirements are crit-
ical for fine-grain multi-computers [8]. Disallowing process migration is a
common policy in practice; migration can conceivably lead to thrashing
and cripple a large multi-computer network.

This framework for maintaining a dynamically evolving tree differs
substantially from a model studied recently by Wu and Kung [9]. The
latter model allows for a global data structure which all processors can
access simultaneously. Moreover, newly spawned nodes do not need to
be assigned processors immediately; the allocation can be deferred until
some processor becomes idle. While the arguments and techniques used
to prove tight upper and lower bounds are not affected drastically, the
resulting bounds are substantially different.

2.1 Growth sequences

Although many tree nodes can spawn children simultaneously, it will suf-
fice for our lower bound arguments to assume that the tree grows one node
at a time. Formally, an instance of the on-line tree embedding problem
is a sequence of directed edges, e; = (wj,w;), 1 < j < 4, in which w; is
the i-th node spawned and has parent w;. Node w; is the root. A growth
sequence is a sequence of edges such that, for each k, the set {e; : 1 < k}
of edges forms a directed tree, with each node having outdegree at most
two.

The restriction to binary trees is arbitrary, any bounded degree would
do, but since the networks we consider have bounded degree, trees with
unbounded fanout lead, uninterestingly, to poor worst-case performance.

2.2 Embeddings and their quality

An embedding of a tree T in a network H is a mapping of nodes of T to
vertices of H, together with a mapping from edges of T to paths in H.
The mapping of nodes is not required to be one-to-one; multiple processes
can share the same processor. An on-line embedding induced by a growth
sequence is a sequence of embeddings, in which each embedding is an
extension of the previous one. This enforces the policy of disallowing
process migration.



Two standard measures of the quality of an embedding are dilation and
congestion. The dilation of an embedding is the maximum path length
in the network corresponding to an edge of T. The congestion of an
embedding is the maximum number of edges of T' whose images traverse
any edge in H.

An embedding of a k-node tree is said to be a-balanced, a > 1, if no
more than a[k/P] tree nodes are assigned to any of the P nodes of H.
The overloading factor, «, is typically a small constant, independent of
P, the size of the network.

In some tree-structured computations, the computational activity is
limited to the leaves of the tree. In such cases, it is important only to
evenly distribute the leaves within the network. An on-line embedding of
a tree with £ leaves is said to be a-balanced on the leaves, a > 1, if no
more than a[f/P] leaves are assigned to any of the P processors of the
network.

Finally, an on-line embedding for a growth sequence p is continuously
a-balanced, if for every i, the i-th embedding (induced by the first i ele-
ments of p) is a-balanced. On the other hand, if only the final embedding
in the sequence is a-balanced, then we say that the on-line embedding is
terminally a-balanced. Obviously, terminal balance is a weaker require-
ment than continuous balance. Also note that in order to distinguish
the two balance requirements under the on-line model, the length of the
growth sequence will be given to the embedding algorithms.

3 Deterministic Lower Bounds

For a given embedding of a tree 7', an edge e = (u,v) in 7T is said to be a
cut edge if the end points w and v of e are mapped to distinct processors.
Each cut edge corresponds to a child spawned at a remote processor, thus
requiring communication through the network. The number of cut edges
can critically affect congestion.

3.1 Lower bound on two processor cut edges

Given a deterministic on-line algorithm we show how to construct an N-
node binary tree for which the algorithm either requires ©(IV) cut edges or
fails to achieve terminally a-balanced, for & < 2. We describe an adversary
which progressively grows a tree such that if the algorithm does not use
many cut edges then the final embedding will not be balanced.

On-line allocation for two processors is equivalent to coloring each tree
node either black or white. Without loss of generality, suppose that the
root is colored black. The adversarial tree construction works in phases:
in the first phase, we spawn two children from every black node. This
phase ends when all the leaves are white. Phase 2 continues with this
strategy of spawning from one color only, spawning two children from
every white node until all the leaves are black. The tree is grown in this
“layer by layer” method, producing leaves of alternating colors at the ends
of successive phases.



Since the 2-coloring algorithm is deterministic, the color committed
on-line to each newly spawned node is “known,” i.e., computable by the
adversary constructing the growth sequence. Thus for each possible de-
terministic algorithm the adversary can produce a well-defined tree.

We will show that the number of cut edges grows linearly with the size
of the adversarial tree, under the requirement of terminal balance. The
proof is based on the following observation. At the end of every phase
each leaf is connected to its parent by a cut edge. Since every internal
node has two children, more than half the edges of the tree (those incident
to leaves) are cut edges.

We use the following terminology. A tree node is in layer 4 if the path
from the root to the node contains 7 — 1 cut edges. Let n; be the number
of nodes in layer i. Each node spawned during phase 7 lies either in layer
i or in layer ¢ + 1.

Lemma 1 For every deterministic algorithm A, a < 2, and e < (2—a)/4
there exists a growth sequence p of length N > a/(2 — a — 4¢) such that
if the on-line embedding of p is terminally a-balanced then the number of
cut edges is greater than eN.

Proof.

We consider two cases: either the embedding of p is completed before
phase 1 terminates, or else the embedding is completed in a later phase.

The embedding is completed before phase 1 terminates. In
this case every white node is a leaf and the number of cut edges equals
the number of white leaves. In order to maintain terminal balance, there
must be at least N — «[N/2] white nodes. This number is greater than
N —a(N/2+41/2), which exceeds eN when N > /(2 —a —4¢). Therefore
there are at least eV cut edges.

The embedding is completed during phase k, k¥ > 1. Let n;
be the number of nodes in layer . We again distinguish between two
subcases: either Z’f_l n; > eN, or ZI;_I n; < eN.

When Z’f_l n; > eN.
We first observe that every node in layer £ — 1 is an internal node.
Together with the fact that every internal node has two children, we
conclude that there are 1 + Zl_l n; cut edges, each connecting a
node in layer £ — 1 to a node in layer k. Thus, in this subcase the
number of cut edges is greater than eN.

When Z’f_l n; < eN.
In this subcase ny + ng41 > N(1 —€). From the terminal balance
condition, we also have n; < a[N/2]. These two imply that nx+1 >
N1 —¢€) —a[N/2] > N1 —-—€—a/2) —a/2 > eN when N >
a/(2 —4e — ).
Since the embedding terminated during phase k, and before phase
k + 1 began, it follows that every node in layer k + 1 is a leaf that is
connected to its parent by a cut edge. From the preceding argument
it again follows that the number of cut edges is greater than e N. W



Lemma 1 implies that every deterministic, on-line, load-balancing al-
gorithm requires a linear number of cut edges on some finite sequence.
This lower bound for terminally balanced algorithms holds for continu-
ously balanced algorithms as well.

3.2 Multiple processors

As we show in this section, Lemma 1 can be extended in a straightforward
manner to any bounded number of processors. With P colors (processors)
instead of two, we use a similar construction to the one in Lemma 1. The
only difference is that each phase grows only one subtree, rooted at a leaf
grown in the previous phase. Each phase ends when all the leaves grown
during that phase are colored differently from the root of the subtree. We
also use the same terminology. A tree node is in the layer ¢ if the path
from the node to the root contains i — 1 cut edges. The symbol n; denotes
the number of nodes in layer 4.

Lemma 2 For every deterministic algorithm A, P > 2, a < P, and € <
1+ (1—a/P) there ezists a growth sequence p of length N > a/(1—2e—a/P)
such that if the on-line embedding of p is terminally a-balanced among P
processors then the number of cut edges is greater than eN.

Proof.

We consider two cases: either the construction of p ends in the first
phase or in a later phase.

The construction ends in the first phase. In this case every
node in the second layer has a cut-edge to its parent. In order to maintain
terminal a-balance, the number of nodes in the second layer must be
at least N — o[ N/P]. Therefore the number of cut edges is at least
N —a[N/P]| >N —a(N/P+1) >eN when N > a/(1 —2¢— %).

The construction ends during the k-th phase for & > 1. Let
Ty, be the subtree constructed during the k-th phase and r € T) be the
root of Ty. Ty is partitioned into two subsets, L and R. L is the set of
nodes which are in layer £ + 1 and R = T, — L. Notice that L contains
only leaves of T} since p ends in phase k.

Every node in the tree induced by p — T} has 0 or 2 children (except
the parent of r), hence the number of leaves in p — Ty is (N — |Tk|).
Additionally, every leaf in (p — Tx) U L has a cut edge to its parent, so
the number of cut edges is at least 2(N — |L| — |R|) +|L| > 1(N — |R)).
Therefore, by bounding the size of R we get a lower bound on the number
of cut edges. The size of R is at most a[2] because it consists of only
one color (the color of r). Therefore the number of cut edges is at least
S(IN=IR) > 3(N—afF) 2 (N —a(E+1)) > F(1—-a/P)—§ >eN
when N > a/(1 — % — 2¢). ]

As mentioned in the previous section, in some tree structured compu-
tations, it is important to evenly distribute only the leaves of the tree. We
next generalize Lemma 2 to get a lower bound on the number of cut-edges
when only the leaves need to be terminally balanced.



Lemma 3 For every deterministic algorithm A, P > 2, a < P and € <
1(1— &) there ezists a growth sequence p of length N > 2a/(1 — % — 2¢)
such that if the on-line embedding of p is terminally a-balanced on the
leaves then the number of cut edges is greater than eN.

Proof.

We use the adversarial strategy in Lemma 2 to grow a tree with NV
nodes, N > 2a/(1 — £ — 2¢). In order to simplify the calculation, we
assume, without loss of generality, that IV is even, so that there are exactly
N/2 leaves in the N-node tree.

In the N-node tree grown by the adversary, let S denote the set of
leaves which have the same color as their parents. Every leaf that has the
same color as its parent must have been spawned in the last phase. Every
leaf not in S is connected to its parent by a cut-edge, so that the number
of cut edges is at least N/2 — |S|.

Since all leaves in S are grown in the same phase, they have the same
color as the root of the subtree that is grown during that phase. In order
to satisfy the terminal a-balance requirement on the leaves, the size of S
is at most a[25]. Hence the number of cut edges is at least N/2 — |S| >

N/2—a(35+1) > N(3 — &) —a>eN when N >2a/(1— 2 —2). &

3.3 Lower bounds on network congestion and di-
lation

The lower bound of Lemma 2 on the number of cut-edges required by
any deterministic algorithm for P processors can be used to derive lower
bounds on the worst-case congestion and dilation in different networks.
In this section we derive tight lower bounds for multi-dimensional grids
and butterfly networks.

We partition the given P-processor network into B blocks of equal
size. We refer to an edge that connects processors in different blocks as a
cross-link. An a-balanced embedding of an N node tree assigns at most
aN/B tree nodes per block; for convenience we let N be a multiple of P
so that all divisions are exact. For any specified a, we choose B such that
a/B < 1, so that each block in the partition can receive at most a small
fraction of the tree nodes.

By Lemma 2, in the worst case, (V) edges of the tree must be cut. If
there are C cross-links in the network partition, then some cross-link must
accommodate Q(N/C) cut edges of the tree, causing congestion Q(N/C).
Observe that an upper bound on C yields a lower bound on congestion.

By removing the edges in every v/P/B-th column, the P-node two-
dimensional grid can be partitioned into B blocks of equal size with Bv/P
cross links. Consequently, the congestion is Q(N/+/P). For the P-node
butterfly C = O(P/ log P) when the edges at every O((log P)/B)-th level
are removed; therefore, the congestion is Q(N—l;’,gi).

It is equally easy to obtain lower bounds on dilation. For a partition
of the network into blocks, define the boundary of a block to be the set
of processors incident to cross-links. Furthermore, let ng be the number
of processors within distance d from the boundary. Observe that, in any



embedding with dilation d, every tree node incident to a cut edge must
lie within distance d from a boundary node of some block. Since there
are Q(N) cut-edges in the worst case, the total number of network nodes
within distance d of boundary nodes must be large enough to accommo-
date Q(NNV) tree nodes.

By removing the edges in every v/P/B-th column, the P-node two-
dimensional grid can be partitioned into B blocks of equal size, so that
ng = O(dV/P) for each block. From the balance constraint each processor
has at most a[N/P] tree nodes. In order to accommodate Q(N) tree
nodes, it follows that d = Q(+/P). Similarly, by removing the edges at
every O((log P)/B)-th level, the P-node butterfly can be partitioned so
that ng = ©(dP/log P). It follows that, for the butterfly, d = Q(log P).

These lower bounds can be matched by determinitic algorithms which
map tree nodes in round-robin manner to processors so that the tree nodes
are evenly distributed. First we observe that the lower bounds on dilation
is alredy a constant factor of the diameters of the corresponding networks,
therefore the dilation upper bounds immediately follow. Next we choose
the route that connects adjacent tree nodes. For the two-dimensional
grids the algorithm picks the direct route from a parent tree node to its
children that makes at most one turn in the grid. As a result a tree edge
whose image goes through a horizontal network link will have at least one
endpoint embedded in the same row of processors as the communication
link. Since the number of tree nodes embedded into a row of processors is
O(N/+/P) from the balance requirement, we conclude that the congestion
on every horizontal link is O(N/v/P). A similar argument holds for ver-
tical links and the congestion bound follows. For butterfly networks we
use standard off-line routing algorithms to meet the O(N—lg’ﬁi) congestion
bounds.

The lower bounds on congestion and dilation for two-dimensional grids
above extend in a straightforward manner to grids with multiple dimen-
sions. We summarize our observations in the following theorem.

Theorem 1 For every deterministic algorithm A, and constant o > 1,
there ezists a growth sequence p of length N (N sufficiently large) such
that if the on-line embedding of p is terminally a-balanced, then (1) on the
P-node, k-dimensional grid (constant k) the dilation is Q(PY*) and the
congestion is Q(N/P*~*), and (2) on the P-node butterfly the dilation

is Q(log P) and the congestion Q(212EL).

3.4 Infinite growth sequences

In the previous sections we have shown that every deterministic, balanced
(either terminally or continuously) algorithm is required to make Q(NN)
cuts, on some growth sequences of sufficiently large length N. Turning
the question around, one is led to ask: is there a growth sequence which
is universally bad in the sense that every balanced algorithm is forced to
make linearly many cuts?

As we will see in the next section, for every length-N growth sequence
there is an off-line algorithm which is continuously a-balanced between
two processors for 1 < a < 2, and requires only O(log? N) cut-edges.



However, in this section we show the existence of an infinite growth se-
quence on which every on-line continuously balanced algorithm requires,
infinitely often, linearly many cut edges. Formally, we establish the fol-
lowing theorem.

Theorem 2 There erists an infinite growth sequence ¢ such that, for
every overloading factor 1 < a < 2, every on-line deterministic algorithm
A which produces a continuously a-balanced embedding on two processors
will, on infinitely many prefizes ¢1, P2, ... of lengths N1, Na, ... make at
least eN; cuts, with e = a(2 — @) /4(2 + ).

Before proceeding to the proof of the above theorem, we explain the
idea behind the proof. The infinite sequence is constructed using a stan-
dard diagonalization argument that invokes Lemma 1 repeatedly. We
begin with an enumeration, (A1, A2,...) of all algorithms as a sequence
in which every algorithm appears infinitely often.

The universal growth sequence is constructed in stages. The portion
constructuted in phase 7 is denoted ¢;, and the entire growth sequence at
the end of phase i is denoted G;, so that Go consists of the root of the tree,
and G; = G;—1 0 ¢; for i > 0 (the symbol o denotes concatenation). The
idea is to construct ¢; such that algorithm .A; requires linearly many cuts
on G;. Since the number of cuts made by A; on the initial prefix G;_1 can
be very small, we make ¢; large enough so that the number of cut-edges
forced in ¢; is a fraction of the length of G;. This latter idea is formalized
in the following lemma.

Lemma 4 Suppose that A is a continuously a-balanced, deterministic
algorithm (o < 2), and that ¢ is a growth sequence of length n. Then, for
every N > 2an/(2—a), there is a growth sequence ¢op of length n+ N on
which A makes at least e(N + n) cut-edges, where e = a(2 — a)/4(2 + ).

Proof.

For ease of exposition, we assume that N +n is even. We use Lemma, 1
to grow the sequence p of length N from a leaf of ¢. We define layers on
the subtree induced by p as in Lemma 1 and use n; to denote the number
of nodes in layer i of p.

We consider two cases: either the embedding of p is complete before
phase 1 terminates, or else the embedding is completed during phase £,
k>1.

The embedding is complete before phase 1 terminates. In
this case, every node in the second layer is incident to a cut edge so the
number of cut edges in p equals n2. In order to maintain a-balance, the
number of nodes n, must be at least N —a[X+2]. Therefore, the number
of cut edges is at least N — a(¥E2). Since N > 2an/(2 — a), we have
that N > 2a(N +n)/(2 + a), so that the number of cut edges is greater

than a(2 — @)(N +n)/2(2 + a) = 2¢(N + n).

The embedding is complete after phase 1 terminates. We
further divide the second case into two subcases, depending on whether

’f_lni > e(N +n), or Zf_lni < e(N +n).



When Z’ffl n; > €(N +n)
In this subcase, every node in the first £k —1 layers is an internal node
and has two children, so the number of cut edges between layers k
and k — 1 equals 3" n; + 1, which exceeds (N + n).

When E’f_l n; < (N + n)
In this subcase ng+ng1 > N—e(IN+n). From the balance condition
we have that ny < of 227, so that ng41 > N—e(N+n)—2(N+n).
Using the inequality N > 2a(N +n)/(2 + «), it follows that ng4+1 >

(224-_aa —€—5)(IN 4+ n), which exceeds (N + n). ]

Proof of Theorem 2 Theorem 2 follows from applying Lemma 4 in
the diagonalization argument outlined earlier, with e = a(2—)/4(2+ ).
|

4 Deterministic Algorithm for Off-line Model

In the off-line model the entire growth sequence is given in advance. The
off-line embedding algorithm can preprocess this sequence to produce a
sequence of embeddings. Since bounded-degree trees have small separa-
tors, terminal balance is easy to guarantee between two processors. The
more interesting case is when the off-line algorithm is required to be con-
tinuously balanced.

Our off-line upper bound contrasts sharply with the on-line lower
bound. An N-node binary tree can be partitioned into two subsets, each
containing at least | N/3]| nodes, by removing a single edge. Therefore an
embedding algorithm can, by making a single cut-edge, guarantee termi-
nal %-balance between two processors. Of course, this is possible only if
each edge has a distinct identity which can be recognized by the algorithm
when the child node adjacent to the edge is spawn.

Less trivially, we can show that, for every a, every length-N growth
sequence can be continuously a-balanced between two processors with
O(log® N) cuts, for any 1 < o < 2. This is achieved using multi-color
bisectors [2].

Lemma 5 ([2]) The nodes of every N-node binary tree, each of whose
nodes has one of k distinct colors, can be bisected into two equal size (to
within one) subsets by removing at most klog N edges. Furthermore, for
each of the k colors, the set of all nodes of the same color are divided
equally (to within one) between the two subsets in the bisection.

The algorithm first partitions the input growth sequence p into groups
of consecutively spawned nodes. The partition {V;}, with V; of size V;
is determined as follows: The first Vi nodes in the growth sequence are
placed in the first partition V;. The number N; is chosen to be an even
number greater than 2/, where v = 220‘_;2. The second group V> contains
the next N2 nodes; N3 is chosen to be the largest even number no greater
than yN;. In general, V; contains NNV; tree nodes where N; is the largest

even number no greater than y E;:l Nj.

10



Once the partition is formed, the off-line algorithm applies Lemma 5
to the input tree in which every node in V; has color i. When the tree is
processed on-line, edge-by-edge, the new child is allocated depending on
whether or not the current edge lies in the separator set S; if it does, the
child is placed in the remote processor, otherwise it is placed in the same
processor as the parent.

We now show that this algorithm maintains continuous a-balance. We
first bound the number of groups in the partition. To this end, define a
sequence, {M;}, such that M; = N1 and M; = 72;;11 M; for all i > 2.

Lemma 6 M; = yNi(1+7)"2 fori > 2.

Proof.

By induction on i. Since M2 = N, the basis, 4 = 2 is established.
For the inductive step,

i
Mit1 = v Z M;
Jj=1

i—1
= ’yZM]‘ + v M;
j=1

= M;+yM;
(14 ~)M;
YNi(1+7)"

Since, for every ¢ > 2, N; equals the largest even integer no greater
than M;, we can bound each N; from below as follows.

Lemma 7 N; > M; —2(1 +7)""2 fori > 2.

Proof.

By induction on i. Again, N» > M> — 2 by definition, so the basis is
established. For the inductive step,

Niz1 > 72]\@-—2
j=1
> Y M-y 214977 -2
j=1 j=2

i i—2
= Y Mi—2y) (1+9) -2
j=1 j=0

= M —2(1+9)""
||

Lemma 8 The above off-line algorithm partitions any length N grow se-
quence into O(log N) groups, and produces O(log? N) cut edges.

11



Proof.

From Lemmas 6 and 7, we conclude that N; > (yN1 — 2)(1 4 )2
for all ¢ > 2. With N; > 2/+, it follows that the sequence {V;} increases
exponentially, so the number of groups in the partition is bounded by
O(log N). And since the number of colors is bounded by O(log N), the
resulting bisector S contains O(log® N) edges from Lemma, 5. ]

Now we formally establish the continuously balancing property for the
above off-line algorithm in the following theorem.

Theorem 3 For every growth sequence p of length N, and 1 < a < 2, the
off-line algorithm requires at most O(log® N) cut-edges and is continuously
a-balanced between two processors for all prefizes of p of length M > Ni.
(Where N1 is as defined above.)

Proof.

The number of cut-edges is bounded in Lemma 8. Since exactly half of
the tree nodes in every V; are assigned to each processor, the numbers of
nodes in both processor are always equal at the end of every V;, therefore
we only need to show that the algorithm gives a continuously a-balanced
embedding while processing every V;. First, every V;, 1 < j <i—1,is
perfectly balanced, so the number of white nodes equals the number of
black nodes just before V; is processed. Second, the number of white nodes
in V; equals the number of black nodes. Independent of the order in which
the white and black nodes within V; appear, we claim that a-balance is
always guaranteed. To see this, consider the extreme case in which all the
black nodes appear before the white nodes. The total number of black
nodes after half the nodes in V; appear equals %(Z;:l N;) + $Ni. We
claim that this is no more than the quantity allowed under a-balance
which equals %(E;:l N; + N;/2). To see this, consider the difference

i—1 i—1
«a 1 1
6} <§1Nj +Ni/2> - 5(211\9)— 5 Vi
s im

i—1

a—1 1—a/2

= %5 YN - N
Jj=1

i—1 i—1
a—1 2—a 2a-—2
> N — ——. N;
= 2 Zl ’ 4 2 -« ’
=

=1

5 Randomized Algorithms

5.1 n-way Balancing

The key tool for our randomized algorithms is the n-way balancing trans-
formation [4] which evenly distributes a binary tree of size N into a ring
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of n = log N processors. The n-way balancing transformation works as
follows. A tree node is distinguished if it is in level 2 = 0 mod n/3. For
each distinguished node v we pick a random number S(v) between 0 and
n/3 as the stretch count. The transformation inserts a single dummy node
in each edge in the subtree of height S(v) rooted at v. The resulting tree
after this transformation is denoted by B(T'). Define level set ¢ to be the
set of all tree nodes in a level congruent to ¢ modulo n. Let the processors
of the ring be po, p1... pn—1 in clockwise order. The algorithm embeds
the tree nodes in level set i of B(T') into processor p;. Figure 1 illustrates
an example of 6-way balancing.

T B(T)

Figure 1: A 6-way balancing example taken from [6]. The solid circles indi-
cate where the dummy nodes will be inserted, and the numbers next to the
distinguished nodes are the stretch counts.

This transformation embeds every sufficiently large binary tree into a
ring evenly with high probability, and with dilation two since at most one
dummy node will be inserted into each edge in T'.

Lemma 9 ([4]) With probability 1 — N=°, ¢ > 0, the above log N-way
balancing algorithm dynamically embeds every N-node tree into the log N-
node ring so that O(N/log N) tree nodes are mapped to any ring node.

When the number of processors in the ring is less than log IV, we in-
stead map a virtual log N-length ring onto our smaller ring. In particular,
with two processors, the first half of the virtual ring is mapped to one node
and the second half to the other. Since the dilation of the mapping on
the virtual ring is two, only the eight nodes of the virtual ring within
distance two of the breaks contribute to the cut edges. Since these eight
nodes contain at most O(IN/log N) tree nodes, the number of cut edges
is bounded by O(N/log N).
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When the number of processors in the ring exceeds log NV, we divide
the ring into log NV groups, each containing an equal number of consec-
utive processors. We use log N-way balancing to assign tree nodes to
groups, and a deterministic strategy is used within each group to dis-
tribute nodes evenly in a group. For the P-node ring, the dilation is
bounded by O(P/log N) because each tree edge traverse at most three
groups. The bound on dilation is optimal; any mapping of the N-node
complete binary tree on the P-node ring requires dilation Q(P/log N).
From the dilation result, for any link / in the ring, only those processors
that are within distance O(P/log N) can contribute congestion on I. Each
processor can have at most O(IN/P) tree nodes in a balanced embedding
and each tree node has at most three edges, therefore the congestion is
O(N/log N) for any link in the ring. The congestion is a factor of log N
less than the worst-case lower bound for deterministic on-line algorithms
and matches the lower bound, shown in Section 6, on the expected value
of the congestion for any randomized algorithms.

5.2 Cut-edges reduction

Suppose that we wish to equitably allocate the tree nodes on-line among
P processors, with the goal of minimizing the total number of cut-edges.
When P is any fixed constant, the strategy mentioned above uses O(N/ log V)
cuts. However, when P is log N, each of the N — 1 edges is cut. By mod-
ifying the log N-way balancing technique slightly, we can reduce the total
number of cuts to O(N/log %). As we will see in the next section, this
bound is the best possible.

We modify the algorithm so that we choose € so 1 > ¢ > 0 and for each
node in every elog %-th level set of the transformed tree, we map it to a
processor chosen uniformly at random among the P processors. We call
these nodes leaders. Those nodes not in these level sets are embedded into
the processor where their parents are embedded. We show that with high
probability this algorithm gives balanced embedding and optimal number
of cut edges when P = O(N/ logﬁ N).

We need the following lemma [4] which states that, with high prob-
ability, the sum of independent random variables is at most a constant
times their expected sum.

Lemma 10 ([4]) Let z1,..,2m be independent random variables in the
range from 0 to V with E(x;) = pi, Let X =Y x; and let p =Y | pui =
E(X). Then for any constant 8, Pr(X > Bu) < exp(—B%).

Theorem 4 With probability 1 — N~ ¢, ¢ > 0, the above algorithm dy-
namically embeds every N-node binary tree into P processors where P =
O(N/log = N) so that O(N/P) tree nodes are mapped to any processor
and the number of cut edges is O(N/log X).

Proof.

First we estimate the number of cut edges. Since only edges at ev-
ery elog %-th level of B(T) are cut, from Lemma 9 the total number of
cut edges is O(N/log %). This bound matches the lower bound on the
expected number of cut edges, as we will see in the next section.
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Let | = elog %. The transformed tree is divided into m subtrees,
t1,...,tm, by cutting the edges between levels k! and kIl — 1 (for any
integral k.) Each ¢; is rooted at a leader and every node in t; will follow
this leader to a processor. Let M; be the number of nodes in ¢; and z;,p
be the number of tree nodes in ¢; that will be mapped into a particular
processor p. We denote the total number of tree nodes assigned to p by
Xp = Zznzl Tip-

The contributions from each subtree to any processor are independent
and occur with equal probability. Therefore for all 4, 1 < i < m, E(z;p) =
M;/P and E(Xp,) = N/P. Moreover, all z;,’s are mutually independent
and, since each tree contains at most the number of nodes in a complete
binary tree of height elog %, all z; , < 2° log & = ¢, Applying Lemma 10
we get:

Pr(X > a%) = Pr(X > aBE(X))

= exp(~a(N/P)'™)
< exp(—c (log™= N)'™%)

< N7¢
With probability 1 — PN - > 1 — N7° every processor receives
1
O(N/P) tree nodes when P = O(N/logT=< N). For larger values of P,
the same bound is achievable, but the algorithm becomes more compli-
cated and requires global information. |

5.3 Two-dimensional grids

Any embedding of the N-node complete binary tree in the P-node two-
dimensional grid, with at most O(IN/P) tree nodes per grid node, requires
dilation Q(v/P/log N) [7]. This follows from the fact that in any such em-
bedding, some pair of tree nodes must be mapped distance Q(\/I_D) apart,
while the distance in the tree between the two nodes is O(log N). This
lower bound on dilation is tight for off-line embeddings. In the previous
section we saw that every online deterministic algorithm that balances the
load requires dilation Q(+/P) in the worst case. In this section we present
a randomized algorithm which achieves the O(v/P/log N) bound.

We shall see in Section 6 that the expected value of the congestion
is Q(\/ﬁ+)g1v)‘ The randomized algorithm presented here will meet this
bound.

5.3.1 Randomized algorithm for 2D-torus

For convenience, we work with the 2D-torus instead of the grid. Since the
2D-torus can be embedded efficiently within the grid, our bounds for the
torus are tight, to within a constant factor, for the grid.
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Our randomized algorithm for the torus extends the previous algo-
rithm for rings. We partition the P-node torus into log? N square blocks,
each of size 13{5\: by lﬁv. The block in row ¢ and column j is denoted
by B;;. We use the (log N)-way balancing transformation twice, indepen-
dently for each dimension, to obtain two trees T, and T.. The random
stretch counts in the two trees are chosen independently. Every node that
is in level set ¢ of T and level set j of T is mapped to B;;. Within a
block the tree nodes are distributed evenly in a deterministic manner.

Lemma 11 With probability 1 — N~ ¢, ¢ > 0, the above algorithm dynam-
ically embeds every N-node tree T in the /P x /P grid so that each block
column receives O(%) tree nodes.

Proof. Direct result from Lemma 9. [ |

After knowing that each column receives O(IN/ log N) nodes, we show
that within a column, the distribution to a particular block is the sum of
many mutually independent random variables. Then by using Lemma 10
we can show that the algorithm distributes nodes evenly among the blocks
in a column.

Lemma 12 Given that each column receives O(N/ log N) tree nodes, with
probability 1 — N™°, ¢ > 0, the above algorithm dynamically embeds every
N-node tree T in the VP x /P grid so that each block receives O(longN)
tree nodes.

Proof.

The analysis and terminology follows the analysis and terminology in
[4] quite closely.

We will examine how tree nodes are distributed among the blocks in
one column. Let column ¢ be the block column with largest number of
tree nodes, I be the set of nodes from T that are in block column 7 and
call any node in I an i-node. Note that all the i-nodes are in the level set
1 of T,.

Recall that n = log N. Tree T is divided into three zones. Zone 0
contains nodes that are in level sets 0 through n/3 — 1, zone 1 contains
level sets n/3 through 2n/3 — 1, and zone 3 contains the rest. Define the
triple for the i-th level set as the level sets 4, s + n/3 and ¢ + 2n/3.

Zone 1 of T is naturally partitioned into a set of forests fi,..., fm.
Each forest consists of all the trees in zone 1 that have the same nearest
common ancestors at level set 0 (that is the top of zone 0). Let these
ancestors be ri,...,ry, respectively. For each forest f;, 1 < j < m, let
M; be the number of i-nodes in f; and z;,4 be the number of i-nodes that
are mapped into the triple of level set q.

We want to show that I is evenly distributed among all the level sets of
T,. Since the number of nodes in any level set is bounded by the number
of nodes in its triple, it suffices to show that with high probability, any
triple receives at most O(IOLZN) tree nodes from I.

We show that the distribution from I to the triple of an arbitrary
level set g is the sum of many mutually independent random variables.
The tree nodes assigned to level set triple ¢ have contributions from each
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forest. We claim that the size of these contributions, z; 4, are mutually
independent over the forests. The value of x; 4 is defined entirely by the
level of the roots of the f; and by the stretch counts chosen there, which
are independent by definition. The level of the roots of f; depends on the
level of r; and on the stretch count chosen there. Since the stretch counts
are independent the level of the roots and thus the values of z; 4 for any
q are independent.
Now we can apply Lemma 10 by noting that each x;4 is less than
5" and that E(zj4) = Let X, = E;“:l Tj.q- Applying the lemma

1 N
yields: %
N N
PrX, 2 fs) < eap(-— )
log” N 23"log"N
1
BN3
< _
< exp( log2N)
< N

A similar argument is valid for zone 0 and 2, so with probability greater
than 1 — 3N ¢ the number of i-nodes coming from all zones to level set

triple g is O(10g2 +)- Therefore with probability greater than 1 — 3n.N "~ o

every block in column % receives O(10 z7) nodes. And with probability
greater than 1 — 3n?N <> 1-N"° every block in the tori receives
O(IOELZN) nodes. ]

Theorem 5 With probability 1—N~°, ¢ > 0, the above algorithm dynam-
ically embeds every N-node tree T in the VP x /P grid so that each grid

node receives O(N/P) tree nodes, and such that the dilation is O(%)
L N
and the congestion is O(ﬁl—ogN).

Proof.

By Lemma 12 each block will receive O(IOgLQN) tree nodes with high
probability. Since the choices of processor among one block are completely
even, each processor receives O(IN/P) tree nodes with high probability.

The image of a tree edge can traverse at most 3 blocks in each di-
mension, therefore the dilation is bounded by 613@, The tree edges
are mapped to the shortest path in the network with at most one turn.
Denote the processor in row ¢ and column j by F; ;. Without loss of
generality, consider a horizontal communication link ¢ between P;; and
P; ;11. From the dilation bound, at least one end point of every tree
edge whose image traverses £ must lie within the interval P, ;_; /5 /15, v
through P, ; 5 /5104 v~ Since each grid node has O(IN/P) tree nodes and
each tree node has at most degree 3, the total number of tree edges that
can possibly go through ¢ is bounded by O( \F1og T ) ]

The technique for two-dimensional grids can be easily extended to
grids with multiple dimensions. In particular, for P-node grids with a
fixed number k of dimensions, the bounds on dilation and congestion are
O(P* /1og N) and O( respectively.

Py )
P1-1/k10g N
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Theorem 6 With probability 1 — N™¢, ¢ > 0, the generalization of the
above algorithm (which divides the grid into log N blocks along each di-
mension) dynamically embeds every N-node tree T in the Pk x...x pl/k
k-dimensional grid (constant k) so that each grid node receives O(N/P)
tree nodes, and such that the dilation is O(P'/* [log N) and the congestion
is O(s=—H——).

pi-1/k log N

6 Randomized Lower Bound

We again consider the two—processor model for our randomized lower
bound. Let A be any probabilistic on-line algorithm which is a—balanced,
1 < a < 2. For an N-node tree the algorithm guarantees that there are
at most a[%] nodes in either processor. In what follows we show how
to construct an N-node binary tree 74 such that the expected number
of cut edges created by A for T4 is at least (1 — a/2)>N/18log N. As a
consequence, we can conclude that any balanced on-line tree embedding
algorithm can be expected to to make Q(N/log N) cuts on the worst-case
tree.

Theorem 7 For every algorithm A, and a > 1, there exists a growth
sequence p of length N such that if the on—line embedding of p is terminally
a-balanced between two processors then the expected number of cut edges
is Q(N/log N).

Proof.

The worst-case tree consists of a sequence of complete binary trees that
are grown as follows. We start with the depth—1 complete binary tree with
3 nodes. Let (3; be the random variable denoting the fraction of edges in
the ith level that are cut edges and r = 1(1 — /2). If E(81) <r/logN,
then we grow the tree one more level, to form the depth-2 complete binary
tree with 7 nodes. On the other hand, if E(81) > r/log N, then we start
a new complete binary tree at the rightmost leaf of the current complete
binary tree. See Figure 2 for an example.

0 L5, B

E(5) < 10ng E(f1) > 10;1\/

Figure 2: Tree growth examples

In general we continue growing 74 using the same rule. If E(3;) <
r/log N, then we grow T4 by attaching two leaves to every level— node.
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If E(B;) > r/log N, then we grow 7a by attaching two leaves to just
the rightmost level-¢ node. In other words, we extend the current binary
subtree by one level in the former case, and we start a new binary subtree
in the latter case. The procedure stops when we have grown N nodes.
Figure 3 illustrates one possible choice for a 32-node tree. Note that every
level (except possibly the last) contains 2% nodes, where a > 0.

N

/
O/O}DO

O

O

Figure 3: A 32-node example

For the purposes of our discussion, it is useful to consider T4 as a col-
lection of complete binary subtrees {7;}. In particular, we define T; to be
the ith maximal complete binary subtree formed during the construction
of T4. We denote the last subtree formed as Tj,. The last level of T,
may be partially empty. We also define n; to be the number of nodes in
T;, less the rightmost leaf for ¢ < m since this node forms the root of the
next tree.

Let C be the random variable denoting the number of cut edges created
by A on T4. In what follows we show that E(C) > (1 — a/2)>?N/18log N
when N = 2". The proof is divided into two cases, depending on the
value of 37" n;.

Case 1. E:':lln, > rN where r = (1 — a/2).

Let z; be the random variable denoting the number of cut edges in
the last level of T3, 1 <4 < m — 1. The last level of T; has %nl edges and
expected fraction of cut edges greater than r/log N, therefore E(z;) >

inir/log N. Hence,
-1
BE(C) > Y B()

i=1
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= %rN(r/log N)
= (1-a/2)’N/18log N.

Case 2. Y 7" 'm <rN.

Since E?;lnl < (1 — a/2)N/3, we know that n, > N — (1 —
a/2)N/3 = (4 + a)N/6, and the number of levels in T3, is log N — 1.
Let o; be the random variable denoting the fraction of cut edges at level
jof T, for 1 < j <log N —2. By assumption, E(o;) < r/logN. Also, let
s;j be the random variable denoting the number of nodes on level j that
remain connected to the root of T), if all the cut edges are cut. Then,
so =1and s; > 2sj_1—0;2 for 1 < j < log N —2. Solving the recurrence
for s;, we find that s; > 2/(1—Y7_ 0i) for 1 <j <logN —2.

Since r < 1/6, T, is a complete binary tree with at most 1/6N nodes
not in the last level. Therefore sjog n—1 > 2S10gv—2 —Y —rN, where Y is
the random variable denoting the number of cut edges on the last level of
Tm. Let R be the random variable denoting the number of nodes in T;,
that are still connected to the root of T, when all the cut edges are cut.

log N—1
R > Z 8
j=0
log N—2 log N—2
> Z 2/(1— Z 0i)) + Slog N-1
j=0 i=1
log N—2 log N—2
> (Z 2(1— Z 0i)) + 2510652 — Y — TN
j=0 i=1
log N—1 log N—2
> () Y0- > o))-Y-rN
j=0 i=1

log N—2

= (N-1)A- ) o)-Y-rN

i=1

Since the largest component of 74 can have size at most «/N/2 once
the cut edges have been removed, we know that R < a/N/2. Thus we have
that

log N—2
Y>(N-1)(1- Y 0;)—rN-aN/2
j=1
By definition, C' > Y, and, therefore

E(C) = EY)

20



(N-1)1—(logN —2)r/log N) —rN — aN/2
(1—-r+2r/logN)(N—-1)—rN —aN/2
1l-r—r—a/2)N-1

= 1/3(1—a/2)N —1.

v

2
This concludes the proof that A is expected to create at least %

cut edges when embedding 74 on-line among two processors.

The preceding result can be generalized to show that for any on-line
randomized algorithm for partitioning an N-node binary tree into com-
ponents of size at most O(N/P) the expected number of cuts is at least
Q(N/log &) in the worst—case.

Theorem 8 For every algorithm A, and o > 1, there exists a growth
sequence p of length N such that if the on-line embedding of p is terminally
a-balanced among P processors then the expected number of cut edges is
Q(N/log ).

Proof.

The proof is nearly identical to that above, except that we use a thresh-
old of ©(1/log X¥) instead of ©(1/log N) when deciding whether or not
to start a new complete binary tree at each level of 74. From Theorem 4
this bound is tight, up to constant factors, for all P, 2 < P < 2N. |

7 Conclusion

The execution of divide-and-conquer type algorithms on multicomputers
requires a simple strategy for distributing the subprocesses as they are
created. Ideally the distribution would give a balanced load and not re-
quire large communication overhead. We have shown that on grid and
butterfly networks the worst-case dilation of any deterministic balanced
algorithm is as large as the diameter of these networks.

Allowing randomization yields some improvement. Both the dilation
and the congestion can be improved by a factor of log N. As shown in
[4] this reduces the dilation for the butterfly to a constant. We have also
shown that the dilation and expected worst-case congestion for meshes
cannot be improved by more than a logarithmic factor.

These large overheads for grids leads to the question of whether there
are algorithms with better performance for the kinds of trees that arise in
practice.
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