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Abstract

This paper presents a simple atomic model of message-passing multicomputers. Within one syn-
chronous time step each processor can receive one atomic message, perform local computation, and
send one message. When several messages are destined to the same processor then one is transmitted
and the rest are blocked. Blocked messages cannot be retrieved by their sending processors; each
processor must wait for its blocked message to clear before sending more messages into the network.
Depending on the traffic pattern, messages can remain blocked for arbitrarily long periods.

The model is conservative when compared with existing message-passing systems. Nonetheless,
we prove linear message throughput when destinations are chosen at random; this rigorously justifies
an instance of folklore. Based on this result we also prove linear speedup for backtrack and branch-
and-bound searches using simple randomized algorithms.

1 Introduction

The message-passing style of programming is widely used on almost all parallel computers. The
primitives to send and receive messages hide low-level architectural details and are ideal for program-
ming many large applications. While message-passing systems have been in use for over a decade,
relatively few results concerning the complexity of message-passing protocols are available. One rea-
son for this discrepancy is the lack of theoretical models that appropriately capture issues related to
communication; as stated in [5], most theoretical models “encourage exploitation of formal loopholes,
rather than rewarding development of techniques that yield performance across a range of current
and future parallel machines.”

We propose an atomic model [18] to study the performance of message-passing programs. The
model is simple and much more restricted in its capabilities in comparison with existing systems.
Nevertheless, we show that it allows simple and efficient solutions (linear speed-up) for message
scattering, backtrack and branch-and-bound searches.

1.1 Message-passing Systems

Message-passing instructions appear in two varieties: blocking and non-blocking. Blocking instructions
require synchronization between the sender and receiver: a send instruction terminates only when
the corresponding receive is executed by a remote process. One advantage of blocking instructions is
that no system buffering is required. However, the delay in waiting for a send instruction to complete
means that computation and communication cannot overlap; this can reduce overall performance

*A preliminary version of this paper appeared in the 5th Annual ACM Symposium on Parallel Architectures and
Algorithms.



significantly. Another disadvantage is that the programmer must carefully arrange send/receive
instruction pairs to avoid deadlock.

Non-blocking instructions allow a process to execute multiple send instructions before any of the
corresponding receive instructions is executed. This allows for the possibility of increased efficiency
since communication and computation can overlap. However, more system resources, buffering and
bandwidth for example, are required for a non-blocking scheme otherwise pending messages (those
sent but not yet received) will be excessively delayed or potentially lost. Moreover, since system
resources are finite, the programmer must ensure that the number of pending messages is bounded
at all times.

Underneath the message-passing abstractions, a message goes through several phases before it is
absorbed at its destination. During each phase it requires some critical system resource to continue
its journey. For example, a memory buffer is required to compose a message. When a message
buffer is sent, it goes through the network interface connecting the processor to the network. Before
the message arrives at the destination, it travels in the network and occupies network buffers. On
reaching its destination the message occupies a buffer at the network interface before it is removed
and processed. Whenever a message cannot get the critical resource it needs, it must wait. When
messages wait a long time, there is the danger that communication delays can cause processor idling,
thereby reducing overall performance greatly.

In many applications it is also common practice to reduce communication costs (due primarily
to system overheads) by aggregating data into fewer but longer, atomic, messages [3]." First the
sender notifies the receiver of the message length. Upon receipt of this notification, the receiver
allocates sufficient buffer space and sends back an acknowledgment. This establishes a link between
the sender and the receiver and the message is transmitted in the third step. Once again, there is
ample opportunity for delay from the time the protocol is initiated to the time the data is actually
transferred.

Given the limited resources of multicomputer systems, it is natural to ask whether the efficiency
gained by using non-blocking instructions is lost if the number of pending messages is limited. Nev-
ertheless, we show that non-blocking communication can still achieve high performance, even with
very limited communication resources.

We investigate this question formally within the atomic model which permits only one pending
message per processor. In brief, each processor is given one send buffer and one receive buffer,
each capable of holding one atomic message. The system alternates between message transmission
and computation cycles. During a computation cycle a processor retrieves a message from its receive
buffer, performs a computation, enqueues newly generated messages into a message queue, and writes
the first message in the queue into the send buffer if the send buffer is empty. During the transmission
cycle, the network attempts to transmit every message in each send buffer to the receive buffer of the
destination. If more than one message is destined for the same processor, exactly one is successfully
transmitted. The rest remain in their send buffers. The one which is transmitted is chosen by a
network arbiter. The worst-case arbiter makes choices to maximize the running time. The FIFO
arbiter gives priority to messages with smaller time-stamp; messages with the same time-stamp can
be delivered in arbitrary order.

The atomic model is motivated by the desire to analyze the performance of message-passing
programs in an architecture-independent manner. For this reason, we have chosen to abstract the
network as an arbiter which takes one unit of time to transfer messages from send buffers to receive
buffers at the destination. We believe this is reasonable in applications that involve the atomic transfer
of large data sets. Unit-delay assumptions are also made in the literature on PRAMs and complete
networks [13, 14]. Unlike these models however, we explicitly account for message contention and do
not allow multiple messages to be received in one step by a processor. The issue of contention at
the receiving module is also addressed in models for optical communication [8] and module parallel
computers [12, 20]. A key feature which distinguishes the atomic model is that once a message has
been sent it cannot be retrieved; the sending processor must wait for the network to clear the send
buffer after the message has been copied into the receive buffer at the destination. Finally, the atomic
model can be viewed as the limiting version of the LogP model [5]; with long messages of equal length
the latency, overhead and gap parameters of the LogP model can be lumped into a single, unit time
delay.

1 Atomic messages travel through a critical resource as a single entity; different messages do not co-exist inside the critical
section.



Communication contention is an important issue in modeling parallel computations. Valiant’s
Bulk Synchronous Parallel (BSP) model [24] divides the parallel computation into supersteps in
which processors perform local computation and exchange data. All the outstanding communication
requests will be serviced before the next superstep starts. The memory contention is characterized
by the length of the time interval a processor must wait before sending the next message. To model
the fact that many shared memory machines now have a large number of memory banks in order to
serve relatively much faster processors, Blelloch et al. extended BSP into (d, x)-BSP [4] by adding
two parameters — the memory bank delay (the minimum interval length a memory bank can serve
memory requests), and the ratio of the number of memory banks to processors. The QSM model [9]
also characterizes the contention problem by a bandwidth parameter g so that a processor can issue
memory requests only once every g steps. All these models characterize the contention by limiting
the communication capability on a per processor basis. In contrast the QSM(m) model by Alder et
al. [1] added another parameter to describe the limitation on the communication capability for the
entire system.

Besides characterizing the memory contention by a memory bandwidth parameter, it is also
possible to model the contention by allowing atomic access to shared resource. Dwork et al. [6]
proposed a model for shared memory access in which simultaneous accesses to a single memory
location are serialized and only one will succeed at a time. However, a process may have multiple
pending operations due to trying to access different memory locations. Gibbons et al. [11] proposed
a queue-read, queue-write (QRQW) model that allows concurrent reading and writing to the same
memory location to be queued. Similar to BSP, the computation is divided into supersteps and all
the queued memory requests in one superstep will be served before the next one. The asynchronous
variant of QRQW (AQRQW) [10] relaxes the bulk synchronous requirement of QRQW and BSP, and
more accurately captures the memory contention phenomenon in modern shared-memory parallel
computers [10]. The atomic model we propose differs from all the previous message-passing models
that it only allows one pending outstanding “request” per processor”.

Despite of the restriction on the rate at which the network can deliver messages to a destination,
as well as the adversarial nature of the arbiter, we show that simple randomized algorithms can
attain linear speed-up for branch-and-bound and backtrack tree searching. Furthermore, all-to-some
message passing can finish within a constant factor of the optimal time with high probability if the
destinations are uniformly distributed among the processors.

2 The Atomic Message-passing Model

We model a message-passing multicomputer as a collection of p nodes connected via an interconnection
network [23]. For convenience of analysis we require that the system be synchronous, and operate
in discrete time steps.®> Each time step is divided between one communication step and one node
computation step.

Each node consists of a receive buffer, a processor, local memory, a queue manager, a message
queue, and a send buffer. Each buffer can hold one atomic message. Every node can perform local
computation using its processor and local memory. It can also receive a message using the receive
buffer and enqueue messages into the message queue. The message queue is maintained by a queue
manager which may be under the control of the processor or the system. A message from the message
queue is injected into the network by placing it into the send buffer. For our purposes, it is convenient
to model the actions at a node as repeated executions of the following reactive cycle which occurs
during one synchronous time step. Notice that we consider the communication as a sequence of
time steps, and the timing of an event is expressed as the time step number the event occurs, not a
particular point in the absolute time line. Similarly, a time interval refers to a contiguous set of time
steps, not an interval in terms of wallclock time.

1. The send phase (performed by the processor):
Transfer the message at the head of the queue into the send buffer if it is empty.

2. The transmission phase (performed by the network system):
Take messages from send buffers to receive buffers according to message destinations. If more
than one message is destined for the same receive buffer, the one which succeeds is selected by
the network arbitration policy.

2The SIMD-QRQW model in [11] also allows only one pending request per processor in shared memory.
3This assumption is not required for termination, but simplifies the analysis of throughput.
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Figure 1: The structure of a node.

3. The receive phase (performed by the processor):
Probe the receive buffer to receive an incoming message, if any, into local memory.

4. The local computation phase (performed by the processor):

e COMPUTE: Perform local computation, possibly on the newly received message, and gener-
ate new messages.

® ENQUEUE: Pass the newly generated messages to the queue manager, which will place it
into an appropriate place in the message queue.

Observe that there are two ways a message can be delayed. First, a message may have to wait in
the message queue until it is selected to be placed in the send buffer. Second, once a message is in
the send buffer, it may be delayed in the network. We call the second kind a receive delay.

When more than one message, occupying send buffers of different nodes, are simultaneously
destined for the same node, the network must deliver one message. Since every node executes a
RECEIVE instruction during its reactive cycle, this requirement of the network satisfies the network
contract of the CM-5 [17]: “The data network promises to eventually accept and deliver all messages
injected into the network by the processors as long as the processors promise to eventually eject all
messages from the network when they are delivered to the processors.” With the reactive cycle and
the network contract we are assured that deadlocks cannot occur.

We wish to make as few assumptions as necessary on the message queue. Our results for back-
track search are independent of queue maintenance. QOur result for branch-and-bound depends on
maintaining the message queue as a priority queue.

We also wish to make as few assumptions as necessary about the network arbitration policy when
multiple messages are destined for the same node. We will consider two different network arbitration
policies. The worst-case policy selects the message which maximizes the overall time to complete the
task at hand. The FIFO policy dictates that, for any pair of messages with the same destination,
they will be accepted in the order of earliest occupancy of their respective send buffers. In other
words, if the messages reach their send buffers at different time steps, then the earlier one will be
delivered first. If two messages reach their send buffers at the same time, then the order of delivery



is arbitrary. Optimal speedup for backtrack search can be achieved even with worst-case arbitration;
whereas, we require FIFO arbitration to prove optimal speedup for branch and bound search.

3 Overview of Results

We will study three problems under the atomic message setting: all-to-some message scattering,
backtrack search, and branch-and-bound search. For each of these problems we analyze the case
when all messages are destined for independently chosen random nodes. Our intuition is that when
messages are headed for random destinations, the number of conflicting messages is unlikely to become
too large. However, when the size of the computation is much larger than the number of processors,
this is not always true and one has to prove that the effects of the conflicts do not add up significantly.

The message scattering problem is informally stated as follows: suppose that each node has a
list of m messages to send (in order) to remote nodes. How much time does it take, under the
worst-case (adversarial) arbitration policy, until all messages are received at their destinations? This
problem arises naturally in several applications. In fact, the message scattering problem and the
atomic message model are motivated by the “all-to-some” communication in our parallel N-body
implementation [19].

In the backtrack search problem, each internal vertex of a search tree 7 corresponds to a partial
solution to a problem while each leaf represents a solution with a certain cost. The goal of backtrack
search is to find the minimum cost leaf in the search tree. The search tree is not given in advance,
rather it is spawned on-line as the search proceeds. The search begins with the root of the tree in
a given node; when each internal vertex is expanded two (or any bounded number of) children are
spawned and must each be examined. When a leaf is examined, the cost is calculated and no further
expansion along that branch is possible. If the total number of vertices in the search tree is n, and
the maximum depth of any leaf is h, it is easy to see that the time to examine all leaves is at least
Q(n/p + h), where p denotes the number of processors.

Branch-and-bound search is similar to backtrack search, except that only a subtree of the search
tree must necessarily be explored. Following Karp and Zhang [13, 14], we model a branch-and-bound
tree as a binary search tree, each of whose vertices has an associated cost. The cost of each vertex
is strictly less than the cost of each of its children (for simplicity we assume that all vertex costs are
distinct). The problem is to find the leaf with minimum cost in the tree. Clearly, every tree vertex
whose cost is less than the minimum cost leaf must be expanded because one of its children could
potentially be the minimum cost leaf. These vertices form a critical subtree, call it 7 of the overall
search tree.

As before, the time to complete the search is Q(n/p + h) where n is the number of vertices in the
critical subtree, and h is the height of the critical subtree. Non-critical vertices can, in principle, be
pruned by the search process and need not be explored.

Tight upper bounds for branch-and-bound, and hence for backtrack search, were given by Karp
and Zhang [13] on the complete network which allows multiple messages to be simultaneously received
at each node, and on the concurrent PRAM which essentially allows unsuccessful writes to be detected.
The basic idea was to send each node to a random processor for further exploration. Ranade [21]
gave an elegant alternative proof of the Karp-Zhang result. By extending Ranade’s techniques we
show that the random destination strategy yields linear speedup for backtrack search in the atomic
model.

Theorem 1 Using random destinations, the probability that a binary backtrack search tree of size
n and depth h takes time more than k(n/p + h) in the atomic transmission model with worst-case
arbiter is polynomially small in n, for k sufficiently large.

Achieving linear speedup for branch-and-bound in the atomic model is a little harder. The subtle
distinction is that pending non-critical vertices can delay pending critical vertices. In the Karp-Zhang
model this can never happen. Since we have no control over the number of non-critical vertices, and we
do not know the shape of the critical subtree, it is conceivable that the delays can become arbitrarily
large under the worst-case arbiter which consistently favors non-critical vertices over critical vertices.
However, under a FIFO arbiter we establish the following result.

Theorem 2 Let the critical subtree, T of a branch-and-bound search tree have size n and depth h.
Using randomized destinations, the probability that the time, in the atomic model with FIFO arbiter,
exceeds k(n/p + h) is polynomially small in n when n > p*logp, and k is sufficiently large.



We present the proof of Theorem 1 and 2 in Section 6 and 7.

4 Message Scattering

The off-line version of the message scattering problem in which the lists can be reordered is easily
solved using standard bipartite graph edge-coloring techniques [2, 7]. If r and m are the maximum
numbers of messages received and sent by any node respectively, then max{r, m} steps are necessary
and sufficient.

However, the distributed version of the problem, without reordering, is not as simple. We show
that with each of p nodes sending m messages (m can be arbitrarily larger than p) the worst-case
time is Q(mp). In other words, the average throughput of the system is O(1) messages received per
time step, independent of the size of the system.

On a positive note, we show that when each of the messages is destined for a randomly chosen
node (all destinations independent and uniformly drawn) then, with high probability, the time to
completion is O(m). As a result the average throughput is Q(p) messages received per time step,
asymptotically the maximum possible.

4.1 Lower Bounds

Suppose every processor sends n messages to every processor in ascending processor index order.
We show that a simple FIFO network arbiter increases the communication time to Q(np®) so that
on average only a constant number of messages are received in one time step. The network arbiter
ensures that the messages are received in FIFO order; the message sent first is received first. The
messages sent at the same time are received in increasing processor index order.

Figure 2 shows the history of four processors sending two messages to each destination in ascending
processor index order. A square in the intersection of row ¢ and column j indicates that processor p;
successfully sends a message at time step j. The numbers in the squares are the processor index of
the destination. Notice that two successful sends to the same destination are p time steps apart
because the messages are received in FIFO order. The total number of time steps is therefore

(n=1p+1)p+ (p—1) = Qnp®).

time steps
1 2 3 45 6 7 8 910 11 12 13

| O 0| 1 1

P, 0 0 1
processors

P, 0 0 1

P 0 0| 1 1

Figure 2: The situation when the messages are sent in ascending processor address order.

4.2 Randomized Scattering
Formally, we establish the following theorem.

Theorem 3 Suppose that each node sends m messages, and that for each message all destinations
are equally likely and independent of choices of all other messages. The probability that the time
until all messages have been received exceeds km is bounded by O(e™ ™), for sufficiently large k and
m > logp.

Proof. We adapt Ranade’s proof [21] of the result of Karp and Zhang [13].
Let T be the completion time of the protocol, the last time step at which a message is received.
Let message M, be a message received at time step T', and let S be the node which was the source



of message M,,. Let M; denote the ith message sent by node S, and let T; denote the time step at
which M; was received at its destination Q;.

Definition. Suppose that message M is selected for transmission, i.e., M enters the send buffer
at time step 7, and is destined for node q. Then we say that M became ready for q at time step .

Lemma 1 There ezists a partition II = II, ..., I, of the interval [1,T] and a set R of T — m
messages (not including those sent by S) each of which satisfies the following property: if the message
became ready during I1; its destination node is Q;.

Proof of Lemma. Message M; is received at Q; at time step 7;. Let 7" < T; be the maximum
time step at which @; does not receive a message. At each time step of the interval A; = [T7*" +1,Tj]
Qi receives a message. Each of these messages became ready during the same interval A;.

Observe that message M;_1 was received at time step T;_1, and message M; became ready at
time step T;—1+1. Therefore, T;*" < T;—1. As aresult there is no gap between any pair of consecutive

intervals A;, Ajy1. Given the intervals Aq,..., A,,;, we construct a partition II as follows:
I, = A
I = Ai—UHj, 1<i<m.
j>i

By construction, it follows that every message received by Q; during II; became ready during II;,
and at least T — m messages received by Q;’s during II;’s were not sent by S. This establishes the
lemma. |

To complete the proof of the theorem, we sum, over all possible partitions, choice of source S,
and choice of T' — m messages, the probability that these T — m messages chose their destinations in
accordance with the partition.

The probability that a message which becomes ready during II; chooses @; as its destination equals
%. The probability that each of T'— m messages makes the right choice is p~T=™) . The number of

choices for S, the partitions and the T' — m messages equals p(T;m) ((’;__17)7:"). The probability that
T > km is at most

» (T ;m) ((],_)F—_].T)nm) p_(T_m)

—Dm\ _(x_
< oT+2m (p ((k=1)m)
= ((k—l)m p
< okt+2)m € (k—=1)m
< ()

€ \k—1y\m
< (2k+2(m)k )

The first two inequalities follow from the assumption that m > logp, and the fact that (:) <
(ze/y)? (the proof can be found in [16, page 165]. For k sufficiently large, this quantity is smaller
than O(e™™). [ |

5 Techniques for Tree Searches

5.1 Algorithmic Issues

This section outlines the algorithmic and proof strategies for backtrack and branch-and-bound search
in the atomic message model. The branch-and-bound strategy is essentially that of Karp and
Zhang [13]; their model allows any number of messages to be received at a node in one time step.
Our technical contribution is to extend their result to the atomic transmission model. The proofs of
both results extend the techniques of the previous section.



While the goal of both search procedures is to find the minimum-cost leaf, there is an essential
difference. Backtrack search examines every vertex of the search tree. In branch-and-bound search
the cost associated with each vertex increases monotonically with the distance from the root, so that
only the critical subtree, consisting of vertices with cost no greater than the minimum-cost leaf, need
be examined. We call such vertices critical vertices. For efficient branch-and-bound search, the time
devoted to examining non-critical vertices must not dominate that for examining the critical subtree.

Within each synchronous reactive cycle, each processor: (1) receives a tree vertex, if any, from
its receive buffer, (2) examines and expands the vertex, and (3) puts the children onto the message
queue, headed for an independently chosen random destination. For backtrack search we place no
requirements on the message queue discipline. However, for branch-and-bound search we require that
the message queue be a priority queue, so that the tree vertex selected for transmission is the one
with minimum cost.

Using priority message queues for branch-and-bound search means that non-critical vertices cannot
be selected for transmission when there is at least one critical vertex inside the message queue.
However, a critical vertex can arrive inside the message queue while a non-critical vertex occupies
the send buffer. In this case, the critical vertex will have to wait for selection, but it is easy to see
that a critical vertex can be delayed by a non-critical vertex in this manner at most once.

Once a message has been selected for transmission, it is still subject to receive delays. Receive
delays depend on the network policy and are beyond the control of the programmer, so we would
like to make as few assumptions as necessary. For backtrack search we are able to carry out the
analysis without making any assumptions on network arbitration. For branch-and-bound however,
our analysis requires that the network observes a FIFO arbitration policy.

In conclusion, our analysis for branch-and-bound search makes stronger assumptions on both
the message queue discipline, and the network arbitration policy. The first assumption is required
to guarantee that progress is made on the critical subtree and is reasonable from an algorithmic
viewpoint. The second assumption, concerning network arbitration, is required for technical reasons:
we bound the running time as a function of the size of the critical subtree, not the entire search tree
which can be arbitrarily larger. Currently we do not know if the FIFO assumption can be weakened,
and it is conceivable that it can.

5.2 Proof Techniques

In this section we describe some of the ideas and terminology common to the analysis for both
backtrack and branch-and-bound search. In both problems our goal is to analyze the time to expand
a critical tree? of size n and depth h on a p-node system. For branch-and-bound search the quantities
n and h can each be much smaller than the size and depth of the complete search tree.

In the analysis of the running time we proceed as follows. At time ¢ = 1 the root is assumed to
be in the send buffer of some node, and is received at its destination within that time step. Suppose
that the running time is 7', i.e., the last time step at which a critical vertex is received. Pick one
of the critical vertices received at time 7" — it must be a leaf in the critical subtree. Call the path
S1,82,...,8p from the root (s1) to this critical leaf (s5) the special path and the vertices along this
path the special vertices. Let @Q; denote the destination queue of special vertex s;.

The first step of the proof is similar to the proof of Lemma 1. For a fixed run of the algorithm we
construct a partition, IT = {II;, ..., I}, of the time interval [1, T]. Next, we construct a signature set
R of non-special, critical vertices each of which became ready for some ); during the corresponding
time interval II;. Roughly speaking, the signature set, R, is constructed such that the receive delay
periods of its children are disjoint, and the sum of these receive delays is large, i.e., close to T'.

There are two cases to consider: the signature set R is either large or small, compared with the
threshold aT', where « is some suitably chosen constant. We first show that it is unlikely that R is
large when T is large. The proof closely follows the proof of Theorem 3.

Lemma 2 For suitable constants k, , the probability that T > k(7 +h) and |R| > oT is polynomially
small in n.

Proof.
We estimate Pr(|R| > o) by summing the probability of the event |R| > oT under all possible
combinations of partition II and queue sequence Q. Given II and @ each critical vertex appears in

4Every vertex in backtrack search is critical.



R with probability 1/p, independent of other vertices. The probability that |R| > o7 and all the
special nodes go to destinated @; is therefore bounded by (Q"T) p~(htaT),

The number of choices for II, Q and the special path S is no more than (T:h)phn. Thus, the
probability that |R| > oT is bounded by

(e} (°3")r

< TR
< (a_ek)ak(%_i_h)((k(pﬂh +1)+ 1)e)hn, when T > k(% + h)

- [(i)ak(;—h+1)((k(pﬁh +1) +e)]"n

<Gk + De)™n

which, for appropriately chosen k, is polynomially small in n, the size of the critical subtree since the
height of the tree h is at least logn. |

The second part of the proof argues that it is unlikely that R is small when T is large. The
intuition is that the expected receive-delay of any vertex is a small constant; therefore, it would
seem unlikely for the children of a small number of signature vertices to suffer a large total receive-
delay. Unfortunately, the delays of the children of the signature vertices are not independent random
variables, so that Chernoff bounds cannot be immediately invoked.

Briefly, in analyzing backtrack search we track the destinations of the children of the signature
vertices to construct a new set of queues, a new partition of time, and a new signature set. The
new signature set is guaranteed to be large; consequently, the remainder of the proof follows the
proof of Lemma 2. The analysis of branch-and-bound is based on the observation that, under FIFO
arbitration, the delays of the children of the signature set can essentially be treated as a martingale,
thereby allowing us to use Chernoff bounds.

6 Analysis of Backtrack Search

In this section we demonstrate that when each vertex chooses its destination randomly and inde-
pendently, then with high probability the completion time of backtrack search is optimal within a
constant factor.

Following the outline of the previous section, we proceed in two stages. In the first stage we
identify the required signature set R; the second stage establishes the unlikelihood of the event that
T is large while R is small.

6.1 Signature Set

We begin with some terminology and definitions. As before, let S = {s1,..., s»} denote the special
vertices along the special root-to-leaf path and @; be the destination queue which receives special
vertex s; at time T5.

Definition. A node Q is empty at time t if neither the send buffer nor the message queue of Q
contains a vertex right after the send phase of time step t. By definition a node cannot be empty at
time ¢ if it receives an internal vertex at time t — 1. However, it is possible that a node which is empty
at t receives a leaf at time ¢ — 1. Note that any node which is non-empty throughout an interval I
attempts to inject a vertex into the network at every time step of I.

Definition. Suppose that node @ receives a vertex at each time-step during time interval W.
We call the interval W an arrival window for node Q. Recall that a receive delay is the time interval
during which a message waits in the send buffer due to destination congestion. Note that if time
interval W is the receive delay of vertex v, then W is an arrival window for the destination queue of
.



Definition. For 1 <i < h, let Tf denote the maximum time t < T;4; such that Q; is empty at
t, and T;"" denote the maximum time ¢ < T} at which @; does not receive a message. Finally, let N;
denote the interval [T} + 1, Tiy1], As = [T7"" + 1,T5], and A; = A; U N;.

The following lemma summarizes three properties which are a straightforward consequence of the
definitions above.

Lemma 3
1. Q; receives an internal vertex at time Ty,
2. Q; is non-empty throughout N; and Q; attempts to inject a vertex at every step of N;, and
8. A; is an arrival window for Q;.

Let ¢; denote the set of vertices that are injected into the network from @Q; during N;. We obtain
the following lemma.

Lemma 4
1. The parent of every vertex in ¢; becomes ready for Q; during A;,
2. A; can be partitioned into a set of arrival windows (not necessarily for all Q;), and

3. the interval A; contains [T;,Ti4+1], and U?z_ll Ay =1[1,T).
Proof.

Let w be the parent of a vertex v € ¢;. In contradiction to (1), suppose w is ready at or before
T;7". Two cases follow: either w is received before T;'" or after T;*".

In the first case, if w is received before 7;*", then v will stay in the message queue of @); until
it becomes ready. However, from the definition, v cannot become ready until 75 + 1 or later. This
contradicts the fact that Q; is empty at T7.

In the second case, if w is received after 7", then the receive delay of w is an arrival window for
Q;. This contradicts the fact that Q; does not receive a vertex at T;"". As a result w must be ready
after T;"".

From part 2 of Lemma 3 N; can be partitioned into arrival windows for the destinations of c;.
Therefore, A; can be partitioned into arrival window A; for @); and a set of arrival windows in N; for
the destinations of ¢;.

Finally, for part 3 we observe that s;+1 € ¢;, so s; must be ready after T;"" (from part 1 of this
lemma) and is received at T; > T;*". Therefore A; contains [T, Ti+1] and part 3 follows. [ |

From part 3 of Lemma 4 the union of all A; covers the time interval [1,T], consequently we can
define a partition IT = {II;,...,II5_1} of the interval [1,T] as follows.

M1 = Ap
M = A-(JI,, 1<i<h-1.

j>i

Definition. Let R; be the set of critical vertices which are not special (v € S) but are ready for
Qi during the interval IT;. Also, let R = U;<p R;. We call the set R the signature set.

Having identified the signature set, it remains to estimate the probability that the signature set
is small when T is large.> This estimation is completed in the following section.

6.2 A Refined Partition

As mentioned in Section 5, our strategy will be to find a new partition of the interval [1,7] and a
corresponding signature set which is guaranteed to be large.

In this section we identify O(|R| + h) arrival windows which cover the interval [1,T]. We will find
arrival windows to cover each II; (1 < ¢ < h) and argue that the sum of number of windows in each
II; is O(|R| + h). The next section will identify the new partition and signature set.

5The case when R and T are both large is covered by Lemma 2.

10



Definitions. Let C; denote those k; children of R; U s; that are ready within N; N II;. We sort C;
into a list v;,1, ..., v;,k; according to the time they become ready. Also let Q;,; denote the destination
of vertex v; ; and W; ; denote the receive delay of v; ;.

Each II; is the union of two disjoint intervals N; N II; and A; NII;. The interval N; N1II; is an
initial segment of INV; which, from part 2 of Lemma 4, can be partitioned into arrival windows. Each
such arrival window W is the receive delay of a vertex v which is enqueued after 77 and becomes
ready in (); at the beginning of W. From part 1 of Lemma 4 the parent of v must be ready for Q;
after T;*". In other words, the parent of v must be ready during II; and consequently v € C;. As a
result the interval N; N II; can be partitioned into the receive delays of the k; vertices in C;®. Each
such receive delay is an arrival window W ; for Qi ; (1 < j < k).

From part 3 of Lemma 3 A; NII; is an arrival window for Q;. Let W; 0 = A; NII; and Q;,0 = @4,
so that the interval II; can be partitioned into arrival windows W; ; for Q;,; (0 < j < k;). Finally we
consider II; for. all ¢ and it follows that Usicicn Uogjcr, Wi = [1,’1.7].

From the discussion above the receive delays, W; ;, of the k; vertices v; ; € C;, and W; o cover II;.
Moreover the parent of every vertex in C' = |J, <i<p, Ci 1s in either R or S; consequently, the number
of arrival windows is at most h + |C| < h + 2(|S| + |R|) = 3h + 2|R| since we assume a binary search
tree.

We need one more definition to derive the refined partition IT* and queue sequence Q* where we
can find T vertices that become ready for Q" according to IT*.

Definition. For the arrival window W;; = [t1,t2] for Q;,;, let t < t; be the maximum time step
at which @;,; does not receive a message. Define W;'; = [t + 1,t2] so that (W} ;, Qi ;) is the mazimal
backward extension of the arrival window.

Let Q* be the sequence of all the queues @Q;,j, 1 <4 < h, 1 < j < k;. Notice that every message
received by @;,; during the interval W;'; = [t + 1,t2] necessarily becomes ready for (;,; during the
same interval. Otherwise @; ; would have received a message at time ¢, a contradiction.

From the extended windows W;';, 1 < ¢ < h, 0 < j < k;, we next obtain the partition IT* as
follows:

* *
Hhfl,kh—1 - thl,kh—1

Ii; = Wi;— U I m

I1>iv(I=iAm>j)

Now we can find T vertices that become ready for Q™ according to II* since every vertex received
by Q™ must be ready in the corresponding II* interval, and the union of II"* is [1,T]. Let X; ; denote
the set of vertices v such that v ¢ C U RU S, and v is received by Q;; during II7 ;. From the
discussion above every vertex in X; ; must become ready for Q;,; during II; ;. Finally, let X = UX, ;
and V =CURUS. Since the arrival windows cover the interval [1, T, it follows that | X| > T — |V|.

6.3 Execution Templates

Our goal in this section is to estimate the probability of the event that T is large and R is small. We
proceed in two stages; first we characterize the completion time in terms of an ezecution template.
Then we show that execution templates corresponding to large completion times are unlikely. This
follows the delay-sequence arguments used in the literature [21, 22].

Definition. An execution template £ is an octuple (S, R,C,II,IT*, X, Q, Q") whose elements are
defined as follows.

e S ={s1,...,sn} denotes the set of vertices along a path from the root to a leaf,

e R;, 1 <4< h, are disjoint sets of non-special critical vertices that become ready for Q; during
II;, and R = U?;ll R; is the signature set,

e C;, 1 <1< h, are disjoint sets of tree vertices that are children of s; U R; and become ready
within N; N IL;; |Cs| = ki, and C = UC;,
o II = {IIy,...,II4_1 } is a partition of [1,T],

6The receive delay of the last vertex v; k; may not fall entirely within N; N1TI; in which case we truncate it accordingly.
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o 1" = {Ti,1,..., My gy~ Mp1,1,---, a1 &,_, } is & partition of [1,T],

Xij, 1 <i< h,0<j <k are sets of tree vertices that are disjoint from V = C U RU S and
ready for Q7 ; during IT} ;, X = UX;; and |[X| > T — |V,

1,5

Q ={Q1,...,Qnr} is a set of queues, such that for every 1 <i < h, Q; is the destination queue
of s; and also of every vertex in R; and X; 0, and @, is the destination of ss,

Q" ={Q%1, Qx> Qh-1,15-->Qh_14,_,} i & set of queues, such that for every 1 <
i < h,1<j<ki, Qi is the destination for the jth element in C; and every vertex in X;,;.

From the earlier discussion, when the backtrack search takes T time steps to complete, there
exists an execution template where the destination of vertices in S, R, C, and X satisfy the following
conditions (let D(v) be the random destination of vertex v):

D(si)=Qi, 1 <i<h.

Vv € R;, D(v) =Q;, 1 < i< h.

Let v;,; be the jth element in C;, D(v;,;) = Q7 ;, 1 <i<h,1<j < k.
Yo € Xij, Dv) =Qi;, 1<i<h1<j<ki

Vv € X;0, D(v) =Qi, 1 <1 < h.

AN N

6.4 Estimating the Probability of Execution Templates

Let £ be the event T' > k(7 + h) and |R| < oT. We bound the probability of event £ by summing
the probabilities of event £ under all possible execution templates. For a fixed execution template
the probability that all vertices in S, R, C, and X choose the right queue according to £ is at most

p~|SURUCI,—(T=|SURUCI) _ p=h) [ R| = |C=(SUR)| = (T=| SURLC])

p P

Next, we count the number of different execution templates. The number of possible S is n since
there are at most n leaves in the tree. After S and R are specified, there are at most (2(|S||C+||R‘)) (T_“‘V‘)
ways to choose C and X. The destinations of vertices from S and R are specified by @, so the
number of unspecified queues in Q* is |C — (S U R)| and the number of ways to choose @ and Q*
is phplC— (YR, Finally there are (T+‘C|+h) (T+h) ways to choose IT* and II, so the total number of

, : 1cl+r I\ n
execution templates is at most

nl ™ 2(|S| + |R|) n hplC—(SUR) T+|Cl+h\(T+h
IR| lef v )PP IC| +h h

Lemma 5 For suitable constants k > 1,0 < a < 1/3 the probability that T > k(3 +h) and |R| < oT
is polynomially small in n.

Proof.

The probability of £ is no more than the product of the number of different execution templates
and the probability that every vertex in S, R, C, and X will actually choose the destination according
to £ when T > k(3 + h) and |R| < oT.

n( ) (CUSEHRD)p IR (L n Yp~(T=IVD (THICHER) (TH)

el -V ICl+h h
< 210gn22(|5|+\R|)(rLH_l)p rp+11(( 7‘ )(T IVD)9T+|C|+hoT+h
< 2(2a+2)T+5h+|C|(m)r%1((T Wl)p)T v
< 2(2a+2)T+5h+2h+2aT(g )%((T 3anTe Sh)p)Tf?)anSh since |V| < 3(aT + h)
< 27h+(4a+2)k(;+h)(26);(((l—Sa)kf%)(%+h)p)((1_sa)k_3)(%+h)
< 2((4a+2)k+7)(%+h)(26)%(((l_sz)k_S))((173a)k—3)(%+h)
< [T (2e) (rgiyrmy) TN
< 2= GH) | for suitably chosen constants k, a.
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The first inequality follows from the observation that (:) p~ % is maximized when z = [%]. The
second inequality follows from the fact that logn < h, |S| = h, and the assumption that R < aoT.
The probability in the fourth inequality is roughly 2k1Tk;”/pk'§4T < (2F1k2kE4)T. As long as we keep
(2F1kok%%) < 1 (by choosing sufficiently large k) the probability will diminish when n (and T) is
sufficiently large. Therefore when n is sufficiently large, we replace T with k(n/p + h). Finally, since
h > logn, the bound in the last step is polynomially small in n. |

From Lemmas 2, 5 we have the following theorem.

Theorem 4 Let T be any binary backtrack search tree of size n and depth h. Let T be the total
time for the random destination backtrack search algorithm to expand T in a p-node network. The
probability that T exceeds k(% + h), where k is suitably chosen, is polynomially small in n.

7 Analysis of Branch-and-bound Search

The proof for backtrack search does not apply in the branch-and-bound search case because an
adversarial network arbiter can delay a critical node by favoring non-critical nodes. In the backtrack
case, every tree node has to be expanded. Therefore, no matter which tree node the arbiter chooses
to be received, some progress is made. In the branch-and-bound case, although a critical node cannot
be delayed by a non-critical node in the competition for the send buffer, it can be delayed by non-
critical nodes in the competition for the same destination. An adversarial arbiter can work against
the critical nodes so that they suffer long receive delays.

Our analysis of branch-and-bound search is based on the assumption that the network obeys the
first-in-first-out (FIFO) scheduling policy. Under FIFO scheduling incoming vertices are received in
time-stamp order; a vertex that is ready cannot be delayed by a vertex that becomes ready at a later
time-step; vertices that become ready at the same time can be received in arbitrary order.

We prove linear speedup in two steps. First, we prove that the aggregate delay of m non-
overlapping receive delays is bounded by O(m) with high probability under FIFO scheduling. Next,
we show that for every execution there exists a signature set R and a set of O(|R|+ h) non-overlapping
receive delays with aggregate delay Q(T'). As a result, it is very unlikely for T to be large and |R| to
be small. The other case, that of large T and large |R| is already covered by Lemma 2.

7.1 Martingales

Lemma 6 Let Xi,..., X, be m random variables each in the range [0..p—1], and let X = ZZ’;I X;.
Suppose that the conditional ezpectation E(X; | X1 = z1,..., Xic1 =zi—1) <1, for all1 <i < m,
and 0 < z1,...,2i-1,<p—1. Then, Pr(X >am) < (%)O‘mel when a > 2e.

Proof. The analysis is similar to the generalized Chernoff bound given by Leighton et al. in [15].
We first estimate the expectation of e**X.

E(etX) — E(etXl eth L etXm)
p—1
e E(e*? - e Xy = 2)Pr(X: =)
0

&8
Il

We then choose a value z} for X so that E(e!*2...e!*m|X;) is maximized.

p—1
E(E™) < ZemE(etX2 e Xy = 2])Pr(X: =)
=0
p—1
< Qe Pr(Xy = 2)E(e? - e | Xy = 1)
=0
< B(EY)E(@E*2 ... Xy = 1))

p—1
= E(eMY) Z e"E(e™ ... e*m | Xy = 2}, Xo = ) Pr(X,> = z| X1 = =})
=0
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= BPNBE™ X0 = o)) B e X, = af, Xo = a3)

E(™)E@E™ X1 =2}) - B X1 =], ..., Xm-1 = Z_1)

IN

Each of these expectations is maximized when the probability is non-zero only at 0 and p — 1, the
endpoints of the range of X;. From Markov’s inequality we can bound E(e!*:| X1 = x},..., Xi—1 =
}_)) by Pr(X; =0|X1 =zf,..., Xic1 =2¢_ 1)+ Pr(X; =p—1|X1 = 2},..., Xi—1 = 2]_;)et®™ 1) <
(1—25)+ -Let® Y since E(X;| X1 = x},...,X;—1 = 2]_;) is bounded by 1 from the assumptions.

p—1 p—
As a result we choose ¢ so that ¢!V is larger than 1 and E(e™|X; = «},...,Xio1 = z}_,) is
maximized when Pr(X; =p—1|X1 ==z1,...,X;-1 = z;_;) is maximized.
BEeX|Xy =2l Xici =ai1) < ((1— ——) 4 —1_¢tle-Dym
Ty - p—1" p-—1
t(p—1)
e -1
R —
-1
et(p—1)
< el o (1+y<e’)

Then we use Markov’s inequality again to bound the probability that X is greater than am.

Pr(X >am) = Pr(e* >e>™)
et(Pp—1) _

6(%)m
< = -
- etam

_(alna—a+l)m 1
= e P-1 (when t = -2%)
< 271 (when a > 2¢)

Lemma 7 Let V = {v1,...,um} be m wvertices with non-overlapping delays. The probability that
B-1)m
their aggregate delay exceeds Bm is smaller than (%) p=1  qwhen B > 2e + 1.

Proof. Let Q; be the destination of v; and X; be the number of vertices that will be received by
Qi before v; when v; becomes ready. The receive delay of v; is X; +1 and the aggregate receive delay
of Vism+ Y " Xi.

Every vertex chooses its destination independently and uniformly; therefore, given Xi,..., X;_1,
v; is equally likely to pick any destination. We will argue that, given Xi,...,X;_1, the expected
value of X; is no more than 1. When v; makes its random choice there are at most p — 1 other
ready vertices in the system whose choices are independent of v;’s choice. Therefore, the conditional
expectation of X; is less than one.

For the aggregate delay to exceed Bm, the sum of all X; must exceed (8 — 1)m. The bound on
the probability of this event follows from Lemma 6. |

7.2 The Signature Set

As before we consider the special vertices S = {s1,...,sn}. Let s; be received by Q; at time T; for
1 <4< h. For every 1 < i < h we seek a set of receive delays which together cover the interval
[T, T 41]-

Let T;** be the largest time step smaller than T;41 at which the send buffer of Q; is not occupied
by a critical vertex, (1 < ¢ < h). Note that at each time step during the interval I'; = [T;7** + 1, Ti41]
the send buffer of @; is occupied by a critical vertex. Let ¢; be the critical vertices that are injected
into the network from @Q; during I';. As a result, I'; can be partitioned into receive delays of vertices
in ¢;.

14



Among all the parents of vertices in ¢; let f; be the one that becomes ready at the earliest time
step, say, Ti)c . Since s;4+1 € ¢; it follows that s; is received no earlier than Tif .

It is possible for a gap to exist between the receive delays of f; and vertices in ¢;. In this case,
the send buffer of ; must be occupied by a non-critical vertex, call it g;, which is received at
its destination at time 77*°. Observe that g; cannot be received at its destination any earlier, for
otherwise the send buffer of Q; would have to be occupied by a critical vertex (the message queue
contains at least one critical vertex, the child of f;, and a critical vertex gets priority over non-critical
vertices to enter the send buffer). But this contradicts the definition of 77*°.

Let T? be the time step at which the parent of g; becomes ready, and let A; = [min (T}, T¢), Ti11].
The following lemma summarizes our observations.

Lemma 8
1. The parent of each vertex in ¢; becomes ready for Q; during A;,
2. A; is the union of receive delays of vertices fi, ci, and g; (if it exists), and

3. Uk Av=[1,T).

Proof. The parent of each vertex v in ¢; must become ready before v; furthermore, it cannot
become ready before f;. For (2), if there is a gap between the receive delay of f; and ¢;, then this
gap will be covered by the receive delay of g; from the discussion above. Finally s; must be ready at
or after Tif from the definition of f; so it cannot be received before Tif ; thus the interval A; contains
[T, T5+1], and (3) follows. [ |

From (3) of Lemma 8 the union of all A; cover the interval [1,7]. We can therefore define a
partition II of [1,T] as follows,

s = Apaa
I, = Ai—Unj, 1<i<h-—1.

j>i

Definition. As before, a critical vertex v is in the signature set R if v is not a special vertex (v ¢ S)
and v becomes ready for Q; during II;.

There are three kinds of receive delays in II;: the earliest ready parent f;, the non-critical vertex
gi, and those vertices in ¢; that become ready during I'; N II;. We use F'; G, and C to denote the sets
of these three kinds of vertices from all IT;. From (1) of Lemma 8 and the definition of R, the parent
of every vertex in C' is either in R or S. As a result the number of receive delays in F UG U C is at
most 2h + 2(|S| + |R|) = 4h + 2|R|.

The receive delays identified thus far cover the interval [1, T'] and there are no more than 4h+2|R)|
in number. They are not necessarily non-overlapping, however. Using a straightforward greedy
procedure it is possible to produce a subset of no more than 2k + |R| intervals which are disjoint and
whose union includes at least 7'/2 time steps. With this observation, we have the following theorem.

Theorem 5 Let T be the critical branch-and-bound subtree of size n and depth h. Let T be the total
time for the random destination algorithm to expand T in a p-node network under FIFO scheduling
strategy. The probability that T exceeds k'(% + h) is polynomially small, for suitably chosen k, when

n > p?logp.
Proof.

The probability that the signature set R exceeds aT in size is polynomially small by Lemma 2.
From the above discussion we can identify a set of 2h + T non-overlapping receive delays whose

aggregate delay is at least T'/2. From the result of Lemma 7 this probability is bounded by (%)% for
a suitable constant c¢. This quantity is polynomially small in n for n > p®log p and a suitably chosen
k. ]
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8 Conclusions

In this paper we have developed a simple model which captures some aspects of message passing
systems. The model can be extended in several ways to include, for example, non-uniformity of
routing times and more system buffering capacity.

We believe that the model is simple enough to carry out further algorithmic analysis which we
expect will shed light on the limitations of bounded resources in parallel systems.
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