Abstractions for Parallel N-body Simulations
(Extended Abstract)

Sandeep Bhatt

Marina Chen Cheng-Yee Lin Pangfeng Liu

Department of Computer Science

Yale University
New Haven, CT 06520

Abstract

This paper introduces C++ programming abstrac-
tions for maintaining load-balanced partitions of irreg-
ular and adaptive trees. Such abstractions are useful
across a range of applications and MIMD architec-
tures. They free the user from low-level implementa-
tion details including interprocessor communication,
data partitioning, and load balancing. We illustrate
the use of these abstractions for gravitational N-body
simulation.

Our strategy for parallel N-body simulation is
based on a technique for implicitly representing a
global tree across multiple processors. This substan-
tially reduces the programming complexity and the
overhead for distributed memory architectures. We
further reduce the overhead by maintaining incremen-
tal data structures.

1 Introduction

Computational methods to track the motions of
particles which interact with one another, and possi-
bly subject to an external field as well, have been the
subject of extensive research for many years. So-called
“N-body” methods have been applied to problems in
astrophysics, semiconductor device simulation, molec-
ular dynamics, plasma physics, and fluid mechanics.
In this paper we consider the example of gravitational
N-body simulation.

1.1 A brief overview

The problem is simply stated as follows. Given the
initial positions and velocities of NV particles, update
their positions and velocities every 7 time steps. The
instantaneous acceleration on a single particle can be

directly computed by summing the contributions from
each of the other N —1 particles. While this method is
conceptually simple, its O(N?) arithmetic complexity
rules it out for large-scale simulations.

Beginning with Appel [3] and Barnes and Hut [4],
there has been a flurry of interest in faster algorithms
for large-scale particle simulations. Experimental ev-
idence shows that these heuristic algorithms require
far fewer operations than the naive one for most initial
distributions of interest, and that the resulting error is
not unreasonable. Indeed, while there are pathological
bad inputs for both algorithms, the number of opera-
tions per time step is O(N) for Appel’s method, and
O(N log N) for the Barnes-Hut algorithm provided the
particles are uniformly distributed in physical space.
Greengard [12] presented an O(N) algorithm which
is provably correct to any fixed accuracy. However,
because of the complexity and overheads in the fully
adaptive version of Greengard’s algorithm, the algo-
rithm of Barnes and Hut continues to enjoy applica-
tion in astrophysical simulations.

All the algorithms mentioned above are based on
a divide-and-conquer strategy. The basic idea, as we
shall see in Section 2, is to group particles within an
oct-tree which is used to calculate interactions. As the
particles move, the tree changes. Because the above
algorithms share the tree structure in common, they
are all commonly referred to as “tree codes.” Not
surprisingly, all the tree codes exhibit large amounts
of parallelism.

Parallel implementations of the tree codes have
been developed over the last few years. Zhao and
Johnsson [22] describe a non-adaptive version of
Greengard’s algorithm on the Connection Machine
CM-2. More recently, Salmon implemented the
Barnes-Hut algorithm on message passing architec-
tures including the NCUBE and iPSC [18]. Salmon in-

corporates multipole approximations into the Barnes-
Hut algorithm, and demonstrates impressive speedup
on MIMD architectures. For a reference to the ex-
tensive literature on N-body simulations, we refer the
interested reader to Salmon’s thesis which initially mo-
tivated this work.

In this paper we describe a simpler implementation
on MIMD architectures which reduces the overhead
of building and maintaining trees partitioned among
multiple processors.

1.2 Object-Oriented Abstractions

Our primary objective in this paper is to show how
our implementation can be coded in a manner that
is independent of architectural and communication
mechanisms. Our goal is that the user code manipu-
late only objects in physical space; all details concern-
ing multiple processors, data partitions, communica-
tion, and load-balance must be hidden from the user.
An additional advantage of the abstractions, which
we will report in further work, is that large portions
of our code can be shared by the different tree codes,
and also by other particle-in-cell methods.

Object-oriented abstractions are useful in scientific
code development [2, 10, 17]. The natural match be-
tween object-oriented languages and parallel machines
has prompted several projects on parallel implemen-
tations of these languages, for example PARAGON[9],
and PC++ [15].

PARAGON uses an embedded class PARRAY whose
implementation takes care of message-passing and
data distribution using a standard partition strategy
such as blocking. Paragon contains PARRAY imple-
mentations as library routines for machines such as the
Intel iPSC and FPS T20. PC++ contains a set of dis-
tributed data structures (arrays, priority queues, lists,
etc.) implemented as library routines, where data are
automatically distributed based on directives (whole,
block, cyclic, random). PC++ attempts to support
data abstractions in addition to parallelism. The li-
brary routines are written for the Alliant FX/8 and
FX/2800, and the BBN GP1000.

In Section 3 we introduce the classes PTREE and
PLIST to support parallel tree structures. Unlike
the parallel data structures of Paragon and PC++
which are restricted to static partitions, PTREE and
PLIST structures are partitioned dynamically among
processors according to user-specified dynamic data
distribution strategies, for example the balanced or-
thogonal recursive bisection (ORB) mentioned in Sec-
tion 2).

While our classes PTREE and PLIST are simi-
lar in spirit to the classes supported in Paragon and
PC++, there is an important distinction. We intro-
duce the Traverse-Deliver programming model, neces-
sary because the simple approach of interpreting in-
dex or pointer references at run-time as interproces-
sor communication [19] would be grossly inefficient for
applications of the degree of complexity as N-body
simulations. This comment applies to other work on
object-oriented parallel programming such as Object-
Oriented Interface (OOI)[20], Mentat Run-time Sys-
tem [13], and Concurrent Aggregates (CA)[T7].

Our work is also related to various run-time sys-
tems for parallel programming such as PARTI[11] and
Kali[14]. Again, neither simple run-time pointer inter-
pretation, nor optimization such as hashed caches of
PARTI, is sufficient for tackling the class of applica-
tions at hand. A high-level programming model such
as our Traverse-Deliver model seems crucial for high
performance.

2 The Barnes-Hut algorithm

The tree codes all exploit the idea that the effect
of a cluster of particles at a distant point can be ap-
proximated by a small number of initial terms of an
appropriate power-series. The Barnes-Hut algorithm
uses a single-term, center-of-mass approximation.

To organize a hierarchy of clusters, the Barnes-Hut
algorithm proceeds by first computing an oct-tree par-
tition of the three-dimensional box (region of space)
enclosing the set of particles. The partition is com-
puted recursively by dividing the original box into
eight octants of equal volume until each undivided box
contains exactly one particle.! An example of such a
recursive partition in two dimensions is shown in Fig-
ure 1; the corresponding BH-tree is shown in Figure 2.

Each internal node of the BH-tree represents a clus-
ter. Once the BH-tree has been built, the centers-of-
mass of the internal nodes are filled in. This is done in
one phase up the tree, starting at the leaves. Next, to
compute accelerations, we loop over the set of particles
observing the following rules: (1) each particle starts
at the root of the BH-tree, and (2) for any particle
and internal node, if the particle lies outside the box
and the distance between the particle and the box is
less than RADIUS(box)/@ then the particle visits each
of the children of the box?; otherwise, the acceleration

1In practice it is more efficient to truncate each branch when
the number of particles in its subtree decreases below a certain
fixed bound.

2The distance measured can be either the distance from the

due to the particles within the box is approximated by
a single two-body interaction between the particle and
a point mass located at the center-of-mass of the box.

+

Figure 1: BH tree decomposition

Figure 2: BH tree

Figure 3: ORB

Each particle traverses the tree in a top-down man-
ner; nodes visited in the traversal form a sub-tree of
the entire BH-tree. Of course, different particles will,
in general, traverse different subtrees.

Once the accelerations on all the particles are
known, the new positions and velocities can be com-
puted. The entire process, starting with the construc-
tion of the BH-tree, is now repeated for the desired
number of time steps.

2.1 Overheads in parallel implementation
With a single processor, the overhead in building

the tree, and traversing it while computing centers-
of-mass and accelerations is negligible. With only ten

particle to the center-of-mass, or to the boundary of the box,
and this distance can be in any preferred metric. The radius of
a box is simply the length of a side of the box.

thousand particles, more than 90% of the time is de-
voted to arithmetic operations involved in computing
accelerations. Thus, it is reasonable to build the BH-
tree from scratch at each iteration.

On a massively parallel machine, the entire BH-tree
cannot be stored in any one processor. With the parti-
cles partitioned among the processors of the machine,
the costs of building and traversing the BH-tree can
increase significantly. In contrast, the time for arith-
metic can, in principle, decrease linearly as the num-
ber of processors increases. This tension between the
communication overhead and computational through-
put is of central concern to both programmers and
architects.

A simple way to initially distribute the set of parti-
cles among P processors is by recursively partitioning
the enclosing region into P connected subregions such
that each subregion contains [N/P] particles. Fig-
ure 3 illustrates an example of an orthogonal recursive
bisection, or ORB. The ORB can itself be represented
by a binary tree, with leaves corresponding to pro-
cessors, and internal node representing subregion that
are further subdivided. ORB is common in geometric
decompositions, and is used by Salmon as well.

Instead of building a global copy of the BH-tree,
Salmon [18] instead creates at each processor a copy
of the subtree (of the BH-tree) that is essential to the
acceleration calculations at that processor (the “lo-
cally essential tree,” in Salmon’s terminology). The
motivation for building a copy of the locally essen-
tial tree at every processor is that all data required
to update positions and velocities is available at each
processor locally before the final, computationally in-
tensive, phase begins.

Building the locally essential trees constitutes the
bulk of the overhead in Salmon’s implementation.
This phase is complex to program, and the flow of
data is such that, in general, a processor will have to
read and forward data that is not essential to it. Singh,
Hennessy and Gupta [19] refer to this problem as well,
and conclude that, unlike a shared-memory implemen-
tation, message passing implementations must suffer
considerable overhead and require enormous program-
ming complexity.

We have programmed a different message-passing
implementation of the Barnes-Hut algorithm which
is substantially simpler and requires less overhead.
Our experience has been that the programming ef-
fort can be reasonable provided the right abstractions
are first developed. The implementation, motivated
by Salmon’s work, loops over the phases outlined be-
low. Initially, particles are distributed among proces-

sors according to the ORB scheme.

1. Update BH-tree for local particles.

2. Build an (implicit) representation of one shared
copy the of global BH-tree.

3. Transmit each BH-tree node to all processors for
which it is locally essential.

4. Compute the new positions and velocities.

5. Move particles to new positions, balance load, and
update the ORB-tree.

Our experiments show that the time for Phases 1
and 2 is minuscule (less than 2%) even with over one
million particles and several hundred processors. By
storing a copy of the ORB-tree in each processor, it is
an easy local calculation in Phase 3 to figure out which
processors a BH-tree node is locally essential to, so
that no “junk mail” is ever received by a processor. As
expected, the volume of data transmitted makes this
the second-most time-consuming phase. But, this vol-
ume of data transmission is inherent to the problem,
not the implementation. Phase 4 requires no commu-
nication, and takes more than 75% of the total time.
The overhead in Phase 5 is found to be small as well.
By keeping all data structures incremental, we avoid
the overhead of computing them from scratch at each
iteration. These overhead figures for our initial codes
will further reduce substantially as we begin to investi-
gate alternative data structures and code optimization
tricks. Further details on timings can be found in [5],
and will be reported at the conference.

3 Programming abstractions

In the following, we show that proper abstractions
not only reduce the complexity of the programming
task but also allow the separation of implementation
concerns from the algorithmic content of the appli-
cation. This allows reuse of the algorithmic compo-
nents (e.g. decomposition, communication, traversal
on data structures) in many different contexts.

By building C++ library classes that capture useful
data structures (e.g. lists, trees) as well as decomposi-
tion schemes and communication routines, application
codes (e.g. N-body simulation) can be written entirely
independent of the implementation details.

3.1 Phantom global structures

To ease the programming task, we don’t want an
application programmer to think about processors,
sending messages, or how to distribute the data. In se-
quential programming, a user builds a data structure,
traverses it, applies proper actions to the elements,
and perhaps modifies the structure itself. Our goal is
to allow that same level of convenience for program-
ming massively parallel machines where data struc-
tures are distributed and where each processor has
only a local view into the world. It is well understood
how to provide the illusion of a global data structure
for programs with only dense arrays and using few or
no indirect references [1, 6, 8, 16, 9].

The difficulty with supplying the illusion of a global
list, tree, or graph is twofold: (1) regular, static de-
composition, or even randomization does not work
well enough, and (2) references to the elements of
these structures cannot be resolved at compile-time,
and naive run-time resolution schemes are generally
too inefficient to be useful.

Our solution is to provide a high-level abstraction,
the Traverse-Deliver model, to be elaborated later, for
accessing and modifying a phantom global data struc-
tures while, in reality, implementing it as a set of local
data structures with communication among them. It
turns out that elevating the user’s interaction with the
data structure from the pointer level to the Traverse-
Deliver model is crucial for good performance.

In the following, we will describe how to construct a
user-program using library classes and functions that
support phantom data structures and the Traverse-
Deliver model.

3.2 Customizing phantom structures

Three mechanisms are used to customize these
classes and functions: (1) type parameters of
template for either a class or a function, (2) func-
tion parameters where the definition of the function
is supplied by the user, and (3) virtual methods of a
class, where the body of a method is supplied by the
user by defining a subclass.

The phantom global data structures perceived by
the user are created by defining derivative classes, or
subclasses, of class PLIST and class PTREE provided
in our library. Both classes are templates which are
customized by the structure of the node of the tree or
list defined by the user.

For example, in the N-body simulation program,
the user defines a tree structure called BH_TREE by
declaring:

class BH_TREE:
public BH_NODE,
public PTREE<BH_TREE, BALANCED_ORB, BOX> {
public:
/* public functions for force computation
and updates of particle positions. */ } ;

where BH_NODE 1s the node structure defined as

typedef struct

BHNODE_ID id ; short BHNODE_type ;

int particle_number_in_subtree

CENTER_OF _MASS Col; PARTICLE_LIST* particle
} BH_NODE ;

3.3 Customizing decomposition strategy

In addition to the user-defined node structure, an-
other user-supplied parameter to the PTREE or PLIST
class template is the decomposition strategy, in this
case BALANCED ORB. Since the strategy of ORB may
be used in other application programes, it is supported
as a library class template which is then customized
for each application.

The decomposition strategy BALANCED_ORB contains
a method (do_remapping) for dynamic load-balancing
as well as a method (init) for partitioning the in-
put data structure. The mapping from the user data-
structure to processors is handled by the method
procs_in_range.

The skeleton of the class BALANCED ORB is given be-
low:

template<class INPUT_NODE_TYPE, class STRUCTURE_TYPE,
class RANGE_TYPE, class ACCESS_TYPE>
class BALANCED_ORB {
BISECTION_TREE_NODE* bisection_tree_table
int current_load, num_of_procs, space_dimensionality
BOUNDARY boundary_in_space
ACCESS_TYPE (*access_function) (INPUT_NODE_TYPE)
int (*regional_load) (STRUCTURE_TYPE#*) ;
public:
void init(int, INPUT_NODE_TYPE#, ACCESS_TYPE
(*node_access_function) (INPUT_NODE_TYPE))
PROCESSOR_SET procs_in_range(RANGE_TYPE)

void do_remapping(STRUCTURE_TYPE#,
int (#regional_load_estimate)
(STRUCTURE_TYPE*))
{ /* incremental remapping scheme */ }

BOOLEAN load_balancing_criterion() {

/* do reduction over the current_load of all
partitions. return true if maximal load
> average_load*load_balancing_ratio. */ } 1} ;

To customize BALANCED_ORB, the type parameters to
the template are supplied. For our example, the fol-
lowing declarations appear in the user program:

BALANCED_ORB<INPUT_PARTICLE_LIST,
PARTICLE_LIST, BOX, COORDINATE*>

where INPUT PARTICLE LIST is a class for the user’s
data structure to be decomposed, PARTICLE LIST is a
subclass of PLIST, BOX is a user struct type used to
specify a range of nodes in the phantom data struc-
ture, and COORDINATE specifies the fields of the user’s
data structure that the ORB class needs to access.

3.4 The Traverse-Deliver model

The idea behind the Traverse-Deliver model is that
computation on the phantom data structure alternates
between (1) traversing it while applying actions on
each node of the structure, and (2) extracting infor-
mation from each node and exchanging information
between nodes. This Traverse-Deliver model can be
classified as a bulk-synchronous model [21] suggested
by Valiant.

In the following, we present the Traverse-Deliver
model for linear lists and trees. It generalizes to other
structures easily.

Traverse Traversal on a tree structure, using depth-
first order in this case, is defined to be a C++ function
as shown below that returns nothing (void) and takes
three function parameters pre_action, in_action,
and post_action. The user supplies these func-
tions as well as the structure at each node of the
tree (NODE_TYPE). The function pre_action is applied
when a node is first visited in the depth-first traver-
sal order; in_action is applied when each of its child
nodes is visited; post_action is applied when all chil-
dren have been visited. Similar traversal functions
using other orderings can be provided.

void depth_first_traverse
(BOOLEAN (*pre_action) (NODE_TYPE*),
BOOLEAN (#in_action) (NODE_TYPE*, NODE_TYPE#*),
void (*post_action)(NODE_TYPE*))

Deliver Deliever on a tree structure is defined to
be a C4++4 function template shown below which al-
lows the types of its parameters to be variant and be
bound to the types of the actual parameters. The user
provides the data structure over which the delivery is
to be done, the type of “mail” to be delivered, and a
delivery rule. The type of mail contains information
about how to extract data for delivery and how to
interpret data received from other nodes. The deliv-
ery rule specifies such information as the destination
nodes and actions to be taken at each node during
delivery.

template<class TREE_TYPE, class MAIL_TYPE,
class DELIVERY_RULE, class RANGE_TYPE>

void tree_deliver(TREE_TYPE*,
MAIL_TYPE&, DELIVERY_RULE&)

3.5 Customized maliltypes

The types of mail and delivery rules need to be sup-
plied for Deliver. These types are in turn supported by
library class templates and the user customizes them
by supplying appropriate type parameters to the tem-
plates. We first discuss the class template MAILBOX
defined as follows:

template<class OUTGOING_TYPE, class STRUCTURE_TYPE>
class MAILBOX {

/* buffers needed for communication. */
public:

virtual OUTGOING_TYPE

make_package (STRUCTURE_TYPE*) {}

virtual void

process_incoming_package (OUTGOING_TYPE*) {}

virtual void process_upon_acknowledge() {}

/* other functions for buffer access. */ } ;

One example of using a mailbox is in the force com-
putation of the N-body simulation where the center
of mass associated with each node of a BH-tree is de-
livered to those nodes that need it for the force com-
putation. We declare Mail USE_CoM to be a subclass
of MAILBOX as follows:

typedef class MAILBOX<MSG_TRUE_CoM, BH_TREE> MAIL_USE_CoM

where MAIL_USE_CoM is the structure defined to be

typedef struct { BHNODE_ID id ; int BHNODE_type
CENTER_OF_MASS CoM ; } MSG_TRUE_ColM

Finally, the body of each of the three class methods
need to be supplied by the user. For example, the
make package method is defined as follows:

MSG_TRUE_CoM
MAIL_USE_CoM: :make_package (BH_TREE* bh_node) {
/* extract information from a bh_node
and make a package of type MSG_TRUE_CoM */ }
void MAIL_USE_CoM: :process_incoming_package
(MSG_TRUE_CoM* CoM)
{ /* place true CoM into BH_tree. */ }
void MAIL_USE_CoM: :process_upon_acknowledge (){}

3.6 Customized Delivery Rules

We now turn to the delivery rules, defined as a class
template as follows:

template<class NODE_TYPE, class RANGE_TYPE>
class DELIVERY_RULE {
public:

virtual BOOLEAN is_dead_end(NODE_TYPE#*)

{ return(FALSE) ; }
virtual RANGE_TYPE deliver_area(NODE_TYPE*) {}
virtual void action_on_site(NODE_TYPE*) {} 1} ;

Delivery stops traversal further along a delivery path
whenever it encounters a dead end. Otherwise, it de-
termines its delivery area and sends out the mail. If
delivery area covers includes the current site, it per-
forms the action on site.

An example of use in the force calculation is to
declare a subclass of class DELIVERY RULE.

class USE_CoM_DELIVERY_RULE:
public DELIVERY_RULE<BH_TREE, BOX> {} ;

And in application, supply the body of the class meth-
ods declared as virtual in its superclass.

BOOLEAN USE_CoM_DELIVERY_RULE::is_dead_end
(BH_TREE* bh_node)
{ return(check_true_CoM(bh_node)) ; }
BOX USE_CoM_DELIVERY_RULE: :deliver_area
(BH_TREE* bh_node)
{ return (influence_area(bh_node)) ; }
void USE_CoM_DELIVERY_RULE::action_on_site
(BH_TREE* bh_node)
{ /* mark bh_node as used_on_site */ }

Summary The library provides classes PTREE
and PLIST in which methods for the Traverse-Deliver
Model are supported. Deliver in turn needs specifi-
cation of mailtypes and delivery rules, and these are
supported by classes MAILBOX and DELIVERY RULE. In
addition, decomposition using ORB is supported by
the BALANCED ORB class.

4 Reality and implementation

In reality, the user program, together with the il-
lusion of a global data structure and library classes
and functions, is itself an SPMD program that runs
on multiple processors and multiple memories. Each
processor as well as the host runs the same program.

All computation is done by calling Traverse and
all communication is done by Deliver, namely Tra-
verse with specific delivery task. Looking at the im-
plementation of Deliver will help to see how the phan-
tom structure appears from a collection of SPMD pro-
grams. We will use class PTREE as the example. For
ease of exposition, we use a naive pointer-based im-
plementation of the tree structure. A more efficient
implementation is used in the library.

template<class NODE_TYPE,
class DECOMPOSITION_TYPE, class RANGE_TYPE>

class PTREE {
DECOMPOSITION_TYPE* decomposition

public:
NODE_TYPE* parent ;
NODE_TYPE* child[Nchildren]
NODE_TYPE* init (NODE_TYPE*,
DECOMPOSITION_TYPE%)
NODE_TYPE* read (NODE_TYPE*)
HODE_TYPE# write (WODE_TYPE*)
void depth_first_traverse
(BOOLEAN (*pre_action) (NODE_TYPE%*),
BOOLEAN (*in_action) (NODE_TYPE#*,
NODE_TYPE%*) ,
void (#post_action) (NODE_TYPE*))
{ /#* traverse in depth first order */ } } ;

template<class TREE_TYPE, class MAIL_TYPE,
class DELIVERY_RULE, class RANGE_TYPE> {

void tree_deliver

(TREE_TYPE* tree_ptr, MAIL_TYPE% mail,

DELIVERY_RULEZ rule) {

mail.init() ;

tree_deliver_rec(tree_ptr, mail, rule) ;

mail.clear_all_bufs() ;

mail.sync(0, maxlevel)

mail .free_bufs() ; }

template<class TREE_TYPE, class MAIL_TYPE,
class DELIVERY_RULE, class RANGE_TYPE> {
void tree_deliver_rec (TREE_TYPE* tree_ptr,
MAIL_TYPEZ mail, DELIVERY_RULEZ rule) {
PROCESSOR_SET processor_set
RANGE_TYPE range ; int p, c ;
if (tree_ptr == NULL) return ;
if (rule.is_dead_end (tree_ptr)) return ;
range = rule.deliver_area (tree_ptr)
processor_set = decomp.procs_in_range(range)
if (is_non_empty_processor_set (processor_set)) {
for (p = 0; p < P; p++)
if (is_a_member (p, processor_set))
if (p == my_node)
rule.action_on_site (tree_ptr)
else mail.pack_into_buf (tree_ptr, p) ; }
for (c = 0; ¢ < Nchildren ; c++)
tree_deliver_rec(tree_ptr->child[c],
mail, rule) ; }

Note that write and read allow data to be delivered
to and from the host to the processor in a massively
parallel machine.

Implementation of MAILBOX class shows how com-
munication between processors are actually done.
Here we list the function header of its methods and
sketch one particular method pack_into buf.

template<class OUTGOING_TYPE, class STRUCTURE_TYPE>
class MAILBOX {
OUTGOING_TYPE* *outbuf ;

OUTGOING_TYPE item ;
int *count ;
int numbuf, bufsize, ack_received, buffer_sent

public:

virtual OUTGOING_TYPE make_package(STRUCTURE_TYPE*) {}
virtual void process_incoming_package (OUTGOING_TYPE*) {}
virtual void process_upon_acknowledge() {}

void init() ;

void free_bufs()

void remove_from_buf ()

void clear_all_bufs() ;

void sync(long, int) ;

void pack_into_buf(STRUCTURE_TYPE* ptr, long p) {
OUTGOING_TYPE* item ;
item = make_package (ptr)
/* place item into buffer, send out filled buffers,
and remove data from incoming buffers */ }

5 The application program

The skeleton of the top-level user program appears
below.

INPUT_PARTICLE_LIST* input_particle_list

PARTICLE_LIST* particle_list

BH_TREE* bh_tree

BALANCED_ORB<INPUT_PARTICLE_LIST, PARTICLE_LIST,
BOX, COORDINATE*> orb_map ;

/* Main program */
main() {

int iteration

read_particle_list(input_particle_list)

orb_map.init(Dimension, input_particle_list,
get_position)
particle_list->init(input_particle_list,
orb_map) ;
bh_tree->init(particle_list) ;
for (iteration = O ;
iteration < Max_iteration
iteration++)

{ bh_tree->update()
bh_tree->compute_CoM()
bh_tree->compute_forces()
bh_tree->new_position() ; } }

The skeleton of the definition of class BH_TREE is
given below.

class BH_TREE ;
class BH_TREE:
public BH_NODE,
public PTREE<BH_TREE, BALANCED_ORB, BOX> {
public:
void init (PARTICLE_LIST*)
void update() ;
void compute_CoM()
void compute_forces() ;
void new_position() ; } ;

The last four functions are used within the inner
loop for each iteration. We show below the code frag-
ment for the user-defined function compute _forces.
The example is meant to illustrate the linguistic power
afforded by the abstractions provided by the library.

void BH_TREE: :compute_forces() {
/* deliver CoM for use wherever essential*/
tree_deliver(bh_tree, mail_use_CoM,
use_ColM_delivery_rule)
/* compute velocity */
particle_list->traverse
(no_pre_action, update_velocity,
no_post_action) ; }

The interested reader is referred to [5] for further
details.

Acknowledgments We thank Lennart Johnsson,
Abhiram Ranade, John Salmon and Geoffrey Fox for
helpful discussions. This research was supported in
part by a grant from DARPA, monitored by Army
DOC under contract DABT 63-91-C-0031, Air Force
grant AFOSR-89-0382, NSF grant CCR-88-07426, and
NSF/DARPA grant CCR-89-08285.

References

[1] CM-Fortran Programmer’s Manual, 1990.

[2] I. G. Angus and W. T. Thompkins. Data storage
concurrency, and portability: An object oriented
approach to fluid mechanics. Technical report,
Northrop Research and Technology Center, CA.

[3] A.W. Appel. An efficient program for many-body
simulation. SIAM J. Sci. Stat. Comput., 6, 1985.

[4] J. Barnes and P. Hut. A hierarchical O(N log N)
force-calculation algorithm. Nature, 324:446-449,
1986.

[5] S. Bhatt, M. Chen, C-Y Lin, and P. Liu. Abstrac-
tions for parallel N-body simulations. Technical

Report DCS/TR-895, Yale University, 1992.

[6] M. Chen and J. Cowie. Prototyping Fortran-90
Compilers for Massively Parallel Machines. In
ACM SIGPLAN’92 PLDI Conference, 1992.

[7] A. Chien and W. Dally. Experience with concur-
rent aggregates (CA): Implementation and pro-
gramming. In 5th DMCC| 1990.

[8] B. Chapman et. al. Vienna FORTRAN - A For-
tran Language Extension for Distributed Mem-
ory Multiprocessors. In High Performance FOR-
TRAN Forum, 1992.

[9] C. Chase et. al. Paragon: A parallel program-
ming environment for scientific applications using
communication structures. In IEEE ICPP, pages
211-218, 1991.

[10] D. Forslund et. al. Experiences in writing a dis-
tributed particle simulation code in C++. In
USENIX C++ Conference, pages 1-19, 1990.

[11] S. Hiranandani et. al. Performance of hashed
cache data migration schemes on multicomput-

ers. JPDC, 12:415-422, 1991.

[12] L. Greengard. The rapid evaluation of potential
fields in particle systems. MIT Press, 1988.

[13] A. Grimshaw. The mentat run-time system: Sup-
port for medium grain parallel computation. In

5th DMCC, pages 1064-1073, 1990.

[14] C. Koelbel, P. Mehrotra, and J. V. Rosendale.
Supporting Shared Data Structures On Dis-
tributed Memory Architectures. Technical report,
ICASE, NASA Langley Research Center, 1990.

[15] J. K. Lee and D. Gannon. Object oriented par-
allel programming experiments and results. In
Supercomputing '91, pages 273-282, 1991.

[16] J. Li and M. Chen. Compiling Communication-
Efficient Programs for Masssively Parallel Ma-
chines. IEEE Trans. Par. and Dist. Sys., (3),
July 1991.

[17] J.S. Peery, K. G. Budge, and A. C. Robinson. Us-
ing C ++4 as a scientific programming language.

In CUG11, 1991.

[18] J. Salmon. Parallel hierarchical N-body methods.
PhD thesis, Caltech, 1990.

[19] J. Singh, J. Hennessy, and A. Gupta. Implications
of hierarchical N-body methods for multiproces-
sor architectures. manuscript, 1992.

[20] T. Ungerer and L. Bic. An object-oriented inter-
face for parallel programming of loosely-coupled
multiprocessor systems. In Proceedings of 2nd
EDMCC, Springer-Verlag Lect. Notes in Comp.
Sci., volume 487, pages 163-172, 1991.

[21] L.G. Valiant. A bridging model for parallel com-
putation. CACM, 33, 1990.

[22] F. Zhao and S.L. Johnsson. The parallel multi-
pole method on the connection machine. Techni-

cal Report DCS/TR-749, Yale University, 1989.

