An Approximation Algorithm for Broadcast
Scheduling in Heterogeneous Clusters

Pangfeng Liu', Da-Wei Wang?, and Yi-Heng Guo®

! Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan
2 Institute of Information Science, Academia Sinica
3 Department of Computer Science and Information Engineering, National Chung
Cheng University, Chiayi, Taiwan.

Abstract. Network of workstation (NOW) is a cost-effective alternative
to massively parallel supercomputers. As commercially available off-the-
shelf processors become cheaper and faster, it is now possible to build
a PC or workstation cluster that provides high computing power within
a limited budget. However, a cluster may consist of different types of
processors and this heterogeneity within a cluster complicates the design
of efficient collective communication protocols.

This paper shows that a simple heuristic called fastest-node-first (FNF) [2]
is very effective in reducing broadcast time for heterogeneous cluster sys-
tems. Despite the fact that FNF heuristic does not guarantee an optimal
broadcast time for general heterogeneous network of workstation, we
prove that FNF always gives near optimal broadcast time in a special
case of cluster, and this finding helps us show that FNF delivers guar-
anteed performance for general clusters. In a previous paper we showed
a similar bound on the competitive ratio in a send-only communication
model. This paper extends the result to a more realistic sender-receiver
model. We show that FNF gives a total broadcast of 27" 4+ 3, where T is
the optimum time and [is a constant. This improves over the previous
bound on 2aT + B [17], where « is a theoretically unbounded ratio of
the processor performance in the cluster.

1 Introduction

Network of workstation (NOW) is a cost-effective alternative to massively paral-
lel supercomputers [1]. As commercially available off-the-shelf processors become
cheaper and faster, it is now possible to build a PC or workstation cluster that
provides high computing power within a limited budget. High performance par-
allelism is achieved by dividing the computation into manageable subtasks, and
distributing these subtasks to the processors within the cluster. These off-the-
shelf high-performance processors provide a much higher performance-to-cost
ratio so that high performance clusters can be built inexpensively. In addition,
the processors can be conveniently connected by industry standard network com-
ponents. For example, Fast Ethernet technology provides up to 100 Mega bits
per second of bandwidth with inexpensive Fast Ethernet adaptors and hubs.

Parallel to the development of inexpensive and standardized hardware com-
ponents for NOW, system software for programming on NOW is also advancing
rapidly. For example, the Message Passing Interface (MPI) library has evolved
into a standard for writing message-passing parallel codes [9,8,13]. An MPI
programmer uses a standardized high-level programming interface to exchange
information among processes, instead of native machine-specific communication
libraries. An MPI programmer can write highly portable parallel codes and run
them on any parallel machine (including network of workstation) that has MPI
implementation.

Most of the literature on cluster computing emphasizes on homogeneous clus-
ter — a cluster consisting of the same type of processors. However, we argue that
heterogeneity is one of the key issues that must be addressed in improving par-
allel performance of NOW. Firstly, it is always the case that one wishes to
connect as many processors as possible into a cluster to increase parallelism and
reduce execution time. Despite the increased computing power, the scheduling
management of such a heterogeneous network of workstation (HNOW) becomes
complicated since these processors will have different performances in computa-
tion and communication. Secondly, since most of the processors that are used to
build a cluster are commercially off-the-shelf products, they will very likely be
outdated by faster successors before they become unusable. Very often a cluster
consists of “leftovers” from the previous installation, and “new comers” that are
recently purchased. The issue of heterogeneity is both scientific and economic.

Every workstation cluster, be it homogeneous or heterogeneous, requires ef-
ficient collective communication [2]. For example, a barrier synchronization is
often placed between two successive phases of computation to make sure that all
processors finish the first phase before any can go to the next phase. In addition,
a scatter operation distributes input data from the source to all the other pro-
cessors for parallel processing, then a global reduction operation combines the
partial solutions obtained from individual processors into the final answer. The
efficiency of these collective communications will affect the overall performance,
sometimes dramatically.

Heterogeneity of a cluster complicates the design of efficient collective com-
munication protocols. When the processors send and receive messages at different
rates, it is difficult to synchronize them so that the message can arrive at the
right processor at the right time for maximum communication throughput. On
the other hand, in homogeneous NOW every processor requires the same amount
of time to transmit a message. For example, it is straightforward to implement
a broadcast operation as a series of sending and receiving messages, and in each
phase we double the number of processors that have received the broadcast mes-
sage. In a heterogeneous environment it is no longer clear how we should proceed
to complete the same task.

This paper shows that a simple heuristic called fastest-node-first (FNF), in-
troduced by Banikazemi et. al. [2], is very effective in designing broadcast proto-
cols for heterogeneous cluster systems. The fastest-node-first technique schedules
the processors to receive the broadcast in the order of their communication speed,

that is, the faster node should be scheduled earlier. Despite the fact that the FNF
heuristic does not guarantee optimal broadcast time for every heterogeneous net-
work of workstations, we show that FNF does give near optimal broadcast time
when the communication time of any slower processor in the cluster is a multiple
of any faster processor. Based on this result, we show that FNF is actually an
approximation algorithm that guarantees a broadcast time within 27 + 3, where
T is the optimal broadcast time and (is the maximum difference between two
processors. This improves over the previous bound 2aT + 8 [17] where « is the
maximum ratio between receiving and sending costs, and can be arbitrarily large
theoretically. In a previous paper [19] we show a similar result for a communi-
cation model where the communication cost is determined by the sender only.
This paper shows that FNF can still achieve guaranteed performance when the
model determines the communication costs based on both the sender and the
receiver.

We also conduct experiments on the performance of the fastest-node-first
technique. The cluster we construct in our simulation consists of three types of
processors, and the number of nodes is 100. We construct the schedules from a
random selection and FNF, and apply them on the heterogeneous cluster model.
Experimental results indicate that FNF gives superior performance over random
selection, for up to 2 times of throughput.

The rest of the paper is organized as follows: Section 2 describes the com-
munication model in our treatment of broadcast problem in HNOW. Section 3
describes the fastest-node-first heuristic for broadcast in HNOW. Section 4 gives
the theoretical results for broadcast. Section 5 describe the experimental results
that we compare the completion time of our heuristics(FNF) with the random-
select algorithms, and Section 6 concludes.

2 Communication Model

There have been two classes of models for collective communication in homo-
geneous cluster environments. The first group of models assumes that all the
processors are fully connected. As a result it takes the same amount of time for
a processor to send a message to any other processor. For example, both the
Postal model [5] and LogP model [15] use a set of parameters to capture the
communication costs. In addition the Postal and LogP model assume that the
sender can engage in other activities after a fixed startup cost, during which
the sender injects the message into the network and is ready for the next mes-
sage. Optimal broadcast scheduling for these homogeneous models can be found
in [5,15]. The second group of models assume that the processors are connected
by an arbitrary network. It has been shown that even when every edge has a
unit communication cost (denoted as the Telephone model), finding an opti-
mal broadcast schedule remains NP-hard [10]. Efficient algorithms and network
topologies for other similar problems related to broadcast, including multiple
broadcast, gossiping and reduction, can be found in [7,11,12, 14,18, 21-23].

Various models for heterogeneous environments have also been proposed in
the literature. Bar-Nod et al. introduced a heterogeneous postal model [4] in
which the communication costs among links are not uniform. In addition, the
sender may engage another communication before the current one is finished,
just like homogeneous postal and LogP model. An approximation algorithm for
multicast is given, with a competitive ratio logk where k is the number of destina-
tion of the multicast [4]. Banikazemi et al. [2] proposed a simple model in which
the heterogeneity among processors is characterized by the speed of sending pro-
cessors, and show that a broadcast technique called fastest-node-first works well
in practice. We will refer to this model as the sender-only model. Based on the
sender-only model, an approximation algorithm for reduction with competitive
ratio 2 is reported in [20], and the fastest- node-first technique is shown to be
also 2-competitive [19]. Despite the fact that the sender-only model is simple
and has a high level abstraction of network topology, the speed of the receiving
processor is not accounted for. In a refined model proposed by Banikazemi et al.
[3], communication overheads consists of both sending and receiving time, which
we will refer to as the sender-receiver model. For the sender-receiver model the
same fastest- node-first is proven (Libeskind-Hadas and Hartline [17]) to have
a total time of no more than 2aT + 3, where « is the maximum ratio between
receiving and sending time, § is the maximum difference between two receiving
time, and T is the optimal time. We adopt the sender- receiver model in this pa-
per and improve this bound to 27"+ 3. Other models for heterogeneous clusters
include [6, 16].

2.1 Model Definition

The model is defined as follows: A heterogeneous cluster is defined as a collection
of processors pg, p1, ---, Pn—1, €ach capable of point-to-point communication with
any other processor in the cluster. Each processor is characterized by its speed
of sending and receiving messages, and the network is characterized by the speed
to route a message from the source to the destination. Formally, we define the
sending time of a processor p, denoted by s(p), to be the time it needs for p
to send a unit of message into the network. The network is characterized by
its latency L, which is the time for the message to go from its source to its
destination. Finally we define the receiving time of a processor p, denoted by
r(p), to be the time it takes for p to retrieve the message from the network
interface. We further assume that the processor speed is consistent, that is, if
a processor p can send messages faster than another processor ¢, it can also
receive the messages faster. Formally we assume that for two processors p and
q, s(p) < s(q) if and only if r(p) < r(q).

The communication model dictates that the sender and receiver processors
cannot engage in multiple message transmissions simultaneously. That is, a
sender processor must complete its data transmission to the network before
sending the next message, that is, a processor can only inject messages into the
network at an interval specified by its sending time. This restriction is due to
the fact that processor and communication networks have limited bandwidth,

therefore we would like to exclude from our model the unrealistic algorithm that
a processor simply sends the broadcast message to all the other processors simul-
taneously. Similarly, the model prohibits the simultaneous receiving of multiple
messages by any processor.

P2 1(p2)

Fig.1. A broadcast send-receive communication model.

2.2 Broadcast Problem Description

We consider an example with two fast processors pg, and p;, and one slow pro-
cessor pa. The fast processors have sending time 1 and receiving time 2, the slow
processor has sending time 2 and receiving time 3, and the network latency L is
1. We assume that pg is the source and that it sends a message to ps at time 0.
The message enters the network at time 1 since s(pp) is 1, and leaves the network
at time 1 4+ L = 2, and is received by ps2 at time 2 + r(p2) = 5. After sending a
message into the network at time 1, pg can immediately send another message
to p1 and inject it into the network at time 1+ s(pg) = 2. The message is finally
received by p; at time 2 4+ L + r(p1) = 5. See Figure 1 for an illustration.

2.3 Simplified Model Description

We can simplify the model as follows: Since a receiving node p always has to wait
for L 4+ r(p) time steps before it actually receives the message, we can add the
network latency L into the receiving time. The processor po therefore receives
its message at time s(pg) + r(p2) = 1 +4 = 5, and p; receives its message from
po at time 2s(pg) 4+ r(p1) = 5. See Figure 2 for an illustration.

Assume that a processor ¢ sends a message to the other processor p at time
t, then p becomes ready to receive at time t + s(q), since p now can start re-
ceiving the message, and we denote the ready to receive time of p by R(p).
At time ¢ + s(q) + r(p) p becomes ready to send because it can start sending
its own message now, and we use S(p) to denote the ready to send time of p.
That is, a processor p can finish sending messages into the network at time
S(p) + s(p), S(p) + 2s(p), ..., S(p) + i * s(p), where i is a positive integer, until
the broadcast is finished.

0 1 2 3 4 5

o il

pl 1(p2)

. []

Fig. 2. A simplified send-receive communication model.

3 Fastest-node-first Technique

It is difficult to find the optimal broadcast tree that minimizes the total broadcast
time in a heterogeneous cluster, therefore a simple heuristic called fastest-node-
first (FNF) is proposed in [2] to find a reasonably good broadcast schedule for
the original sender-only heterogeneous model [2].

3.1 Fastest-Node-First Scheduling for Broadcast

The FNF heuristic works as follows: In each iteration the algorithm chooses
a sender from the set of processors that have received the broadcast message
(denoted by A), and a receiver from the set that have not (denoted by B). The
algorithm picks the sender s from A because, as the chosen one, it can inject the
message into the network as early as possible. The algorithm then chooses the
fastest processor in B as the destination of s. After the assignment, r is moved
from B to A and the algorithm iterates to find the next sender/receiver pair.
Note that this same technique can be applied to both models — the sender only
and the sender-receiver heterogeneous models — since we assume that the sending
and receiving times are consistent among processors. The intuition behind this
heuristic is that, by sending the message to those fast processors first, it is likely
that the messages will propagate more rapidly.

The fastest-node-first technique is very effective in reducing broadcast time [2,
17,19]. The FNF has been shown in simulation to have a high probability to
find the optimal broadcast time when the transmission time is randomly chosen
from a given table [2]. The FNF technique also delivers good communication
efficiency in actual experiments. In addition, FNF is simple to implement and
easy to compute.

3.2 FNF not Guarantee Optimal Broadcast Time

Despite its efficiency in scheduling broadcast in heterogeneous systems, the FNF
heuristic does not guarantee optimal broadcast time [2, 6] in sender-only model.
Since the sender-only model is a special case of the sender-receiver model, FNF
is not optimal in the sender-receiver model either. For example, in the situation
of Figure 1 FNF will not achieve optimal time, as Figure 3 indicates.

Optimal ENF

Fig. 3. A counterexample that FNF always produces the optimal broadcast time since
the fast processor po sends message to the faster p; first, instead of the slower pa.

4 Theoretical Results

Despite the fact that FNF cannot guarantee optimal broadcast time, we show
that FNF is optimal in some special cases of heterogeneous clusters. Based on
the results of these special cases, we show that the fastest-node-first algorithm
produces a schedule with guaranteed performance.

Theorem 1. [2]

There exists an optimal schedule in which all processors sends messages with-
out delay. That is, for all processor p in T, starting from its ready to send time,
p repeatedly sends a message with a period of its sending time until the broadcast
ends.

With Theorem 1, we can simply discard those schedules that will delay mes-
sages, and still find the optimal one. Since there is no delay, we can characterize
a schedule as a sequence of processors sorted in their ready to receive time. Since
no delay is allowed, any scheduling method must schedule s, the processor in A
that could have completed the sending at the earliest time, to send a message
immediately. Formally we define P = (py, ..., pn—1) to be a sequence of n pro-
cessors sorted in their ready to receive time and the processors appear in P in
non-decreasing sending speed, except for the source sg. The total broadcast
time of P (denoted by T(P)) is by definition max ' S(p;), the latest ready to
send time among all the processors®. A broadcast sequence P is optimal if and
only if for any other permutation of P (denoted by P’), T(P) < T(P’).

Let p be a processor and NSp(p,t) be the number of messages successfully

sent at and before time ¢ by p in the sequence P. Formally, NSp(p,t) = Lt;if)p)J ,

for ¢t > S(p). We can define ready to receive time R(p;) and ready to send time
S(p;) recursively (Eqn. 1). that is, the ready to receive time of the i-th processor
in P is the earliest time when the total number of messages sent by the first i —1
processors reaches i.

4 Note that the processor that has the latest ready to receive time may not have the
latest ready to send time.

R(po) =0 and S(po) =0

i—1
R(pi) = min{t| ZNSP(pj7t) >i}, 1<i<n-—1
=0
S(pi) = R(p;) +r(pi), 1<i<n-—1 (1)

4.1 Power 2 clusters

In this section we consider a special case of heterogeneous clusters in which all
the sending and receiving costs are power of 2, and we refer to such clusters as
power 2 clusters [19]. Similar notation is also used in [17]. We show that FNF
technique does guarantee minimum ready to receive time for the last processor
receiving the broadcast message in a power 2 cluster, and this is the foundation
of our competitive ratio analysis.

Henceforth we will focus on minimizing the ready to receive time of the
last processor in a sequence P = (po, ..., pn—1), which is denoted as TR(P) =
R(pn—1). We will later relate our finding with the latest ready to send time
among all the processors, denoted by T'S(P) = max?z_o1 S(p;), which is the time
the broadcast actually takes. We choose this approach since T'R(P) is much
easier to handle in our mathematical analysis than T'S(P).

We first establish a lemma that it is always possible to switch a processor p
with a slower processor ¢ that became ready to receive right ahead of p (with
the exception that ¢ is the source) so that p and ¢ will contribute more on the
NS function after the switch. We then use an induction to show that this mod-
ification will not increase the ready to receive time of the processors thereafter,
including the last one in the sequence. This leads to the optimality of FNF for
the last ready to receive time in a power 2 cluster.

Lemma 1. Let p be a first faster processor that became ready to receive right
after a slower processor q in a sequence P, that is, R(p) = t1 > R(q) = to, and
s(p) < s(q). By switching p with q in P we obtain a new sequence P’. Then, in
this new sequence P', R(p) is moved forward from t1 to to, and R(q) is delayed
from to to no later than t1, and NSp/(p,t)+NSp:(q,t) > NSp(p,t)+NSp(q,t),
fort > ty.

Proof. Let’s consider the time interval from ¢y to ¢;. Since p is the first faster
processor that becomes ready to receive right after a slower processor ¢, no
processor becomes ready to receive between tg and #;. Since, in P’, p is moved
to ¢’s position in P, p has R(p) = to. As p is faster in sending and receiving, ¢
becomes ready at or before ¢; from Equation 1. For our purpose we will assume
that g becomes ready to receive at time ¢; since if the time is earlier, it is more
likely that NSp:(p,t) + NSp/(q,t) > NSp(p,t) + NSp(g,t), for t > to.

Let d = t1 — to. Since all the ready to receive time is integer, d is at least
1. Tt is easy to see that when d is larger, NSp/(p,t) + NSp/(q,t) is more likely

[w ‘ w 4 s § b
‘ © EEEIEEEEEIEE.

‘ 1(p) ‘ s(p) + sp) + s(p) + s(p) + (P + s(p) +

‘ (@) ‘ s(@ + s + s(a) +

Fig. 4. An illustration that the NS function in P and P’.The black squares indicate
where the NS function increases by 1. Note that the NS function in P’ is no less than
in P for all time later than ¢o. In this example r(p) = r(q) = 4, s(p) = 2, s(¢) = 4, and
d=1.

to be larger than NSs(p,t) + NSs(q,t), when t > ty. In fact, from p’s point of
view, when the sequence changes from P to P’, the NS(p) increases between
L#J and [S;‘;)], but the decrease in NS(g) is only between L#‘;)J and [%1)1'
The increase in N.S(p) is larger than the decrease in N S(q) when d is sufficiently
large, since s(q) is at least twice as large as s(p). In addition, r(p) is no larger
than 7(g), and that means NS (p) increases earlier than the decrease of N.S(q).
Therefore, by moving p further ahead in time, it becomes easier for the increase
of the NS function from p to compensate the decrease of the N.S function from
q, when the sequence changes from P to P’. Therefore it suffices to consider the
worst case when d = 1.

Let us consider the change of N.S function from ¢’s point of view. ¢ is delayed
by only one time step, so NSg(g) is at most greater than NSg/(¢q) by 1, which
only happens at time interval [to +7(q) + ks(q),to +7(q) + ks(¢) + 1), where k is
a positive integer, r(g) is the receiving time of ¢, and s(g) is the sending time of
q. See Figure 4 for an illustration. However, during this interval N.Sp:(p) will be
larger than N.Sp(p) by one since s(g) is a multiple of s(p), and r(g) is a multiple
of r(p) due to speed consistency. This increase compensates the decrease due to
q and the Lemma follows.

After establishing the effects of exchanging the two processors on the N.S
function, we argue that the ready to receive time of the processors after p and ¢
will not be delayed from P to P’. We prove this statement by an induction and
the following lemma serves as the induction base:

Lemma 2. Let p and q be the (j — 1)1 and j*" processor in P, then the ready
to recetve time of pj41 in P’ is no later than in P.

Proof. The lemma follows from Lemma 1 and the fact that the ready to receive
time of the first j 4 1 processors in the sequence is not changed, except for p and
q. Here we use the subscript to indicate whether the NS function is defined on
P or P’, and for ease of notation we remove the same second parameter ¢ from
all occurrences of NS functions.

J
Rp:(pj+1) = min{t| ZNSP’ (p) > j+1}

1=0
j—2

= min{t|(> NSp/(p)) + NSp:(p) + NSpi(q) > j + 1}
1=0
j—2

= min{t|(z NSp(p1)) + NSp/(p)+ NSp:(q) > j+1}
1=0
j—2

< min{t|Y_ NSp(p)) + NSp(p) + NSp(g) > j +1}
1=0

= Rp(pjt1)

Lemma 3. The ready to receive time of p; in P’ is no later than in P, for

j+1<l<n-—1.

Proof. We complete the proof by the induction step. Assume that the ready to
receive time of p; ., in P’ is no later than in P, for 1 <m < n—j—1. Again for
ease of notation, we remove the same second parameter ¢ from all occurrences
of NS functions.

Rp/(Djtm+1)

:nmﬂﬂgiNSp@ﬂZj+nr+H
=mmﬁM§§NSp@0%+NSP@%+NSPMW+ﬁgiN&%w»Zj+ﬂ%+H
= St
<nmﬂﬂ«iiNSp@0%+NSp@%+NSp@%+ﬁ§ZNSP@O)>j+nr+u
- s
SHmﬂﬂKSENSp@0%+NSp@%+NSp@%+SglNSp@ﬂ)Zj+"%+H
= Rp(pm:i) o

The second-to-the-last inequality follows from Lemma 1, and the last in-
equality follows from the induction hypothesis that all the processors from p;41
to p;j+m have earlier ready to receive time (hence earlier ready to send time) in
P’ than in P, so they will have larger NS function, and a smaller ¢ to satisfy
Equation 1. One immediate result from Lemma 2 and 3 is that for any processor
sequence of a power 2 cluster, including the optimal ones, the final ready to
receive time will never be increased by making the faster processors ready to
receive earlier than slower ones. Now we have the following theorem:

Theorem 2. The fastest-node-first algorithm gives optimal final ready to receive
time for a power 2 cluster.

4.2 An approximation algorithm

We can use Theorem 2 to show that FNF is actually an approximation algorithm
of competitive ratio 2 for the final ready to receive time. By increasing the
transmission time of processors, we can transform any heterogeneous cluster into
a power 2 cluster. We increase the sending and receiving time of each processor
p to be 2M0g (@)1 and 2Mes @)1 regpectively. We will show that FNF, optimal for
the transformed cluster, also gives a schedule at most twice that of the optimal
final ready to receive time for the original cluster.

Theorem 3. The fastest-node-first scheduling has a final ready to receive time
no greater than twice that of the optimal final ready to receive time.

Proof. Let P be a sequence that gives optimal final ready to receive time for
a heterogeneous cluster C, and C’ be the power 2 cluster transformed from C.
We apply the same sequence P on C and C’ and let T and T’ be the final
ready to receive time TR respectively, that is, before and after the power 2
cluster transformation. We argue that this increase in transmission time will at
most double the TR, that is, T < 2T. This is achieved by an induction on the
processor index i. We argue that p;, which is ready to receive at time R(p;) for
C, becomes ready to receive no later then 2R(p;) for C’. The induction step
follows from the fact that all the previous p; for j < 7, become ready no later
than 2R(p;) for C’, and that both the sending time of the previous p;, j < 1,
and the receiving time of p; are, at most doubled from C to C’.

Now we apply FNF scheduling on C’ and let T” be the resulting final ready
to receive time. Since C” is a power 2 cluster, it follows from Theorem 2 that T
is no more than 7”. Finally, we apply the same FNF scheduling on C' and let T*
be the resulting final ready to receive time. T* should be no more than T" since
the sending and receiving times of each corresponding processor are higher in
C’ than in C. As a result T* is no greater than T”, which in turn is no greater
than 7", which in turn is no more than 27"

Theorem 4. The total broadcast time from fast-node-first technique is at most
2T + 3, where T is the optimal total broadcast time, and [is max{r(p;)} —

2min{r(p;)}.

Proof. Let P be an optimal schedule in total broadcast time. Let p be the last
processor that became ready to receive in P. As a result the optimal total broad-
cast time T is at least Rp(p)+r(p). Let p’ be the last processor that became ready
to receive according to FNF. From Theorem 3 we have Rp/(p’) < 2Rp(p). Note
that this inequality holds when P is any schedule, and not necessarily the optimal
schedule for the final ready to receive time. The total broadcast time using FNF is
Rp:(p")+7r(p’), which is at most 2Rp(p)+7(p’) = 2Rp(p)+2r(p)+r(p")—2r(p) <
2T + .

5 Experimental Results

This section describes the experimental results and compare the completion
times of our heuristics (FNF) with those of a random-selection algorithm and
a trivial lower bound. The experimental results indicate that FNF outperforms
the random-selection algorithm by a factor of 2 in average, and is not very far
away from the lower bound.

5.1 Experimental Environment

The input cluster configurations for our experiments are generated as follow: We
assume that the number of classes in a cluster is 3. We vary the cluster size
from 6 to 100, and set one third of the nodes to be fast processors, one third to
be normal processors, and the others to be slow processors. For each processor
in the same class, we assign the same sending time and receiving cost to it, that
is, each node in the fast processor group has sending time 1 and receiving time
2, the sending and receiving time for normal processors are 5 and 6 respectively,
finally the time for slow processors are 10 and 11.

We compare the results from FNF and random selection. We repeat the ex-
periments for random-selection algorithm for 200 times and compute the average
broadcast time. On the other hand since FNF is a deterministic algorithm, for
each cluster size we test the FNF algorithm for only once.

5.2 FNF Heuristics and Random-Select Algorithm

We describe our implementation of FNF as follows: The program uses an array
to represent the set of processors that have not yet received broadcast message
(denoted by R-set), and a priority queue for the set of processors that have
received the broadcast message (denoted by S-set). The elements in the R-set
array are sorted according to their communication speed, and the elements in
the S-set are ordered so that the processor that could send out the next message
fastest has the highest priority. In other words, the processors in the S-set are
sorted according to their availability in time. Initially the S-set has the broadcast
source and the R-set is empty, and the simulation time is set to zero. The priority
queue design simplifies and speeds up the simulation, since the simulator can be
driven by events, not by time.

In each iteration we check if all nodes have received the broadcast message.
If this is not the case then we will schedule the next message. We pick the next
sender (with the highest priority) from the S-set priority queue, and the receiver
that has the minimum receiving time from the R-set. After choosing the sender
and the receiver, we calculate the updated available time for the sender and new
available time for the receiver, and place them into the S-Set (the chosen receiver
is therefore removed from the R-set). At the end the R-set will be empty and
the ready-to-send time of the last receiver is the total broadcast time. Figure 5
gives an example of a broadcast scheduling among 6 node.

0 5 10 15

p4=10

r(pd)=11 ‘

p5=10

1(pS)=11 ‘

Fig. 5. The example of FNF algorithm under 6 node case.

We now describe the random-selection algorithm. Due to the random nature
of this algorithm, we will not need to maintain any priority queue or sorted array.
We randomly choose a sender from the S-set and a receiver from the R-set for
the next message. We repeatedly schedule the transmission until all processors
receive the message. The average time for the last receiver to receive its messages
is the time that we are interested in.

5.3 Timing Comparison

Figure 6 shows the experimental results. The completion time of FNF is about
half of the average time of random-selection algorithm.

10)4/
5

o 20 0 60 80 100
Total number of processors

Fig. 6. The comparison of two scheduling algorithms.

We also give a lower bound on the optimal communication time for our
experimental cluster. No matter how the processors are scheduled, the broadcast
source must spend at least one unit of time to send the message, and a slow
destination processor must at least spend eleven units of time to receive the
message. As a result, the lower bound is at least 12 Figure 6 shows that the total
time of FNF is no more than twice that of the lower bound in our experiments.

From our experiments, we observed that it is almost impossible to find a single
case from 200 times of random-selection that gives a better broadcast time than

the FNF algorithm. In addition, the broadcast time of the FNF algorithm might
be very close to optimal since our lower bound estimate is very rough. These
timing results also indicate that the completion time grows very slowly when the
size of the cluster increases, even when the cluster has up to 100 processors. Our
experimental results are consistent with those obtained by previous theoretical
sections. In addition, the FNF schedule is very easy to compute and efficient to
use.

6 Conclusion

FNF is a very useful technique in reducing broadcast time. In a previous paper
we show that FNF gives a broadcast schedule at most twice that of the optimal
time for the sender-only communication model[19]. For a more realistic sender-
receiver model adapted by this paper, we show that FNF gives a broadcast
schedule at most twice that of the optimal time plus a constant. This improves
over the previous bound by a performance ratio factor. In practice this factor is
bounded by 1.85 [17], but could be unbounded theoretically.

We also describe the experimental results in which we compare the com-
pletion time of our heuristics (FNF) with a random-selection algorithm. The
experimental results indicate that FNF outperforms the random-selection algo-
rithm by a factor of 2 in average. In addition, we also compare the timing results
of FNF with a very roughly estimated lower bound, and FNF always gives a total
broadcast time within twice of the lower bound.

There are many research issues open for investigation. For example, it will
be interesting to extend this technique to other communication protocols, in-
cluding reduction and all-to-all communication. For example, we showed that
for reduction there is a technique called “slowest-node-first” [20] that also guar-
antees 2-competitiveness in sender-only model. It would be interesting to extend
the result to the sender-receiver model, as we did for broadcasting in this paper.
In addition, it will be worthwhile to investigate the possibility to extend the
analysis to similar protocols like parallel prefix, all-to-all reduction, or all-to-all
broadcasting. These questions are very fundamental in designing collective com-
munication protocols in heterogeneous clusters, and will certainly be the focus
of further investigations in this area.

References

1. T. Anderson, D. Culler, and D. Patterson. A case for networks of workstations
(now). In IEEE Micro, Feb 1995.

2. M. Banikazemi, V. Moorthy, and D.K. Panda. Efficient collective communication
on heterogeneous networks of workstations. In Proceedings of International Parallel
Processing Conference, 1998.

3. M. Banikazemi, J. Sampathkumar, S. Prabhu, D. Panda, and P. Sadayappan. Com-
munication modeling of heterogenous networks of workstations for performance
characterization of collective operations. In Proceedings of International Work-
shop on Heterogeneous Computing, 1999.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23

A. Bar-Noy, S. Guha, J. Naor, and Schieber B. Multicast in heterogeneous net-
works. In Proceedings of the 18th Annual ACM Symposium on theory of computing,
1998.

A. Bar-Noy and S. Kipnis. Designing broadcast algorithms in the postal model for
message-passing systems. Mathematical Systems Theory, 27(5), 1994.

. P.B. Bhat, C.S. Raghavendra, and V.K. Prasanna. Efficient collective communi-

cation in distributed heterogeneous systems. In Proceedings of the International
Conference on Distributed Computing Systems, 1999.

M. Dinneen, M. Fellows, and V. Faber. Algebraic construction of efficient networks.
Applied Algebra, Algebraic Algorithms, and Error Correcting codes, 9(LNCS 539),
1991.

J. Bruck et al. Efficient message passing interface(mpi) for parallel computing on
clusters of workstations. Journal of Parallel and Distributed Computing, Jan 1997.
Message Passing Interface Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, 1994.

M. R. Garey and D. S. Johnson. Computer and Intractability: A guide to the theory
of NP-Completeness. W. H. Freeman, 1979.

L. Gargang and U. Vaccaro. On the construction of minimal broadcast networks.
Network, 19, 1989.

M. Grigni and D. Peleg. Tight bounds on minimum broadcast networks. SIAM J.
Discrete Math., 4, 1991.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-performance, portable imple-
mentation of the MPI Message Passing Interface Standard. Parallel Computing,
22(6):789-828, 1996.

S. M. Hedetniemi, S. T. Hedetniem, and A. L. Liestman. A survey of gossiping
and broadcasting in communication networks. Networks., 18, 1991.

R. Karp, A. Sahay, E. Santos, and K. E. Schauser. Optimal broadcast and sum-
mation in the logp model. In Proceedings of 5th Ann. Symposium on Parallel
Algorithms and Architectures, 1993.

R. Kesavan, K. Bondalapati, and D. Panda. Multicast on irregular switch-based
networks with wormhole routing. In Proceedings of International Symposium on
high performance computer architecture, 1997.

R. Libeskind-Hadas and J. Hartline. Efficient multicast in heterogeneous networks
of wrokstations. In Proceedings of 2000 International Workshop on Parallel Pro-
cessing, 2000.

A. L. Liestman and J. G. Peters. Broadcast networks of bounded degree. SIAM
J. Discrete Math., 1, 1988.

P. Liu. Broadcast scheduling optimization for heterogeneous cluster systems. Jour-
nal of Algorithms, 42, 2002.

P. Liu and D. Wang. Reduction optimization in heterogeneous cluster environ-
ments. In Proceedings of the International Parallel and Distributed Processing
Symposium, 2000.

D. Richards and A. L. Liestman. Generalization of broadcast and gossiping. Net-
works, 18, 1988.

J.A. Ventura and X. Weng. A new method for constructing minimal broadcast
networks. Networks, 23, 1993.

D. B. West. A class of solutions to the gossip problem. Discrete Math., 39, 1992.

