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Abstract This paper describes the implementa-
tion of a platform-independent parallel unstructured
mesh library. Unstructured mesh is a fundamental
data structure in many irregular scientific compu-
tations. However, it is very difficult to implement
an unstructured mesh efficiently on parallel com-
puters because of the complex programming details
in handling irreqular distribution of mesh points.
To overcome this problem, we developed an object-
oriented framework in which it is easy to implement
and maintain unstructured meshes. We demon-
strated the versatility of this framework by imple-
menting a flur simulation using roe scheme and an
electro-magnetic simulation on both distributed and
shared memory parallel computers, using the same
application programming interface provided by our
framework. The timing results on these different
parallel platforms, including PC/workstation clus-
ters and shared-memory multiprocessors, are also
reported.
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1 Introduction

Unstructured mesh is a fundamental data
structure in many irregular scientific compu-
tations. These applications discretize the com-
putation domain into a set of mesh points that
each has physical quantities of interest. The
arrangement of mesh points is completely de-
termined by the application and in general will
not exhibit any regular pattern. Therefore the

mesh point distribution can be highly irregu-
lar and dynamically adaptive to the evolution
of the ongoing computation. The mesh points
are connected by edges that represent the in-
teraction among them, which is determined by
the governing equation of the physic system.

1.1 The unstructured mesh applica-
tions

Unstructured meshes are widely used in prob-
lems where the data or the computation struc-
ture is non-uniform. For example, an unstruc-
tured mesh can be used to model the reso-
nance of piezoelectric crystals [3], the surface of
aerospace vehicles, the electro-magnetic wave
passing through a material [14], or to simulate
the vortices in the superconductors while they
arrange themselves in a hexagonal lattice pat-
tern in order to minimize the free energy when
the temperature is below a critical point [8].

1.2 Object-oriented support for un-
structured mesh

Although different unstructured mesh compu-
tations perform different calculations accord-
ing to different governing equations, they use
the mesh virtually in the same way. The ap-
plications traverse all the mesh points and pro-
cess the data stored within. A mesh point
updates its stored data, which represent the
physic characteristics at that point, by retriev-
ing the data from its neighbors and performing
calculations on them. The mesh applications



may have different calculation rules and com-
munication patterns, but the principle of ex-
changing data with neighbors to update one’s
own data remains the same.

Our library tries to extract the common
ingredients from different unstructured mesh
computations and reuse them systematically.
We divide an unstructured mesh computation
into two logical levels: the library and the
application, then set up a clear interface be-
tween them so that tedious details of main-
taining an unstructured mesh can be hidden
from the application programmers. The appli-
cation programmers only have to concentrate
on the application-dependent computation ker-
nel, and let the library handle the details.

We implemented this interface between the
unstructured mesh library and the applica-
tion with object-oriented technology. We im-
plemented various object classes within the li-
brary to capture the fundamental properties
of an unstructured mesh. Users of the library
can inherit the generic unstructured mesh,
customize it by adding application-dependent
data, and redefine generic methods inherited
from the library to suit their needs.

One immediate advantage of using objects
is that the library can be easily ported to a
parallel environment. By specifying a fixed in-
terface between the application and the library
objects, the application code is completely in-
dependent from how and where the library will
be implemented. If we want to port a scien-
tific computing application from one platform
to another, we only have to modify the imple-
mentation of the communication object in our
library — the users do not need to change any
part of their programs. In addition, we are free
to choose any implementation to maximize the
efficiency for a particular computer, be it a PC
cluster or a large-scale parallel computer.

1.3 Related Works

The benefit of data abstraction in object-
oriented languages on scientific code develop-
ment has been demonstrated by various ef-
forts. For example, C++ objects are used

to define data structures with built-in data
distribution capabilities. Examples of work
along this line include the Paragon package [4],
which supports a special class PARRAY for
parallel programming, the A++/P++ Array
class library [15], PC++ proposed by Lee and
Gannon [12, 18], which consists of a set of
distributed data structures (arrays, priority
queues, lists, etc.) implemented as library rou-
tines, where data are automatically distributed
based on directives. Interwork IT Toolkit [2] de-
scribed by Bain supports user programs with
a logical name space on machines like iPSC.
The user is responsible for supplying proce-
dures mapping the object name space to pro-
cessors. Unfortunately, all of these efforts use
static arrays and will have difficulties in rep-
resenting dynamic structures efficiently. The
current implementation of our library uses a
dynamic pointer-based structure, which is the
most intuitive and convenient way to handle
the adaptive nature of unstructured mesh.

Our effort has similar goals and approaches
to the POOMA package [1] and the Chaos++
library [16]. POOMA supports a set of dis-
tributed data structures (fields, matrices, par-
ticles) for scientific simulations. To our knowl-
edge, POOMA has not supported adaptive
data structures as our library does. Chaos++
is a general-purpose runtime library that sup-
ports pointer-based dynamic data structures
through an inspector-executor-based runtime
preprocessing technique. On the other hand,
our framework focuses on unstructured mesh
and is able to exploit optimizations that would
be difficult for a general preprocessing tech-
nique to find.

In addition to the above work on object-
oriented parallelism which has influenced ours,
a large body of work in the literature can
be categorized as “object-parallelism,” where
objects are mapped to processes that are
driven by messages. If a message is sent in
between two processes residing on two dif-
ferent processors, this message will be im-
plemented via inter-processor communication.
Examples of parallel C+4 projects using this
paradigm include the Mentat Run-time Sys-



tem [9], Concurrent Aggregates (CA) [5] by
Dally et al., and VDOM by [7]. Our use of
object-orientation is for structuring the un-
structured mesh and their specializations for
optimizations, debugging, profiling, etc., which
is entirely distinct in philosophy from that of
object-parallelism. Applying these ideas on
dynamic tree structures, we reported abstrac-
tions of adaptive load balancing mechanisms
and complex, many-to-many communications
as C++ classes for supporting tree-based sci-
entific computations [13].

2 Data partitioning

2.1 Distributed memory implemen-
tation

In the distributed memory version of our li-
brary the mesh is partitioned into sub-meshes
and distributed among local memories of pro-
cessors. In order to obtain the same computa-
tion results as in the global view, the local com-
putations must be coordinated. We adopt the
owner-computes rule, which distributes com-
putations according to the mapping of data
across processors. However, a local sub-mesh
may require data from other processors to com-
plete the computation assigned to it. When
communications mostly occur between neigh-
boring processors and the same communication
patterns may occur many times during pro-
gram execution, it is more efficient to dupli-
cate boundary data elements on adjacent pro-
Cessors.

We classify the data into two categories,
master copy and duplication. A master copy
is a data region in the original global structure
that is mapped to a processor. A master copy
can make copies of itself, called duplication, on
other processors. As far as each master copy
is concerned, there is no distinction between
global and local structures. = The computa-
tions read and update the master copy only
— the duplications only provide data and are
read-only. Therefore, data coherence is guar-
anteed by allowing only the master copy to be
updated, and only one master copy exists for

one data element. To assure synchronization,
data elements are duplicated before the actual
computation is performed. After data are par-
titioned, system objects in the unstructured
mesh layer duplicate the data to the processors
where they are essential to the computation.

2.2 Shared-memory implementation

We also implemented a shared-memory version
of our library. Since every processor can now
access the global shared-memory, the data du-
plication is no longer needed. However, the
implementation still partitions the mesh into
sub-meshes, and each processor is still respon-
sible for updating the data that it owns.

Since the data is no longer duplicated, the
sequence of updating the mesh data on the pro-
cessor boundary becomes critical. In our im-
plementation we used a critical section to en-
sure that no two processors will access or up-
date a mesh point simultaneously. We noticed
that by doing so the library implementation
becomes much easier since the complicated de-
tails of retrieving and refreshing the duplicated
data are avoided.

3 The unstructured mesh li-
brary

We divide the library into unstructured mesh
layer and application layer. The unstructured
mesh layer contains basic graph operations and
the necessary data structures for implement-
ing a general directed graph, as well as special
functions for manipulating unstructured mesh.
The unstructured mesh layer constitutes the
unstructured mesh API that application layer
can use to develop unstructured mesh applica-
tions.

3.1 Application layer

The library users write application by inherit-
ing classes from the unstructured mesh layer.
In other words, the application layer consists of
customized classes inherited from unstructured



mesh layer, which have additional application-
dependent data and operations. The users
must define their data in a mesh node and pro-
vide functions to operate on the data they de-
fined.

3.1.1 Fluid dynamic in Roe Scheme

We first wrote a flux simulation program [17]
using Roe’s scheme. First we define the data
type that contains all the necessary data for
computational fluid dynamic in Roe Scheme.
Then we give this user-defined data type
Fluxroe_node to the container class Mesh and
Mesh node of our library, to form the actual
data types for unstructured mesh and mesh
points respectively. Then we put the flux com-
putation kernel into process of the compute
class Fluxroe_compute, which is specific to
traversing a graph consists of Fluxroe node
data. For the flux simulation, the process
function goes through every edge adjacent to
the current node, fetches the data from the
neighbors, use Roe’s scheme to compute the
results, and finally updates the data in the cur-
rent mesh node accordingly.

3.1.2 Electro-magnetic
EM3D

Application:

We also wrote an electro-magnetic application
EM3D [6] using our library. This applica-
tion simulates an electro-magnetic wave pass-
ing through a material. The same as we imple-
mented the flux application, we started with
a data type Em3d_data that contains all the
application-dependent data, then define the
mesh for EM3D computation.

4 Experimental results

To evaluate the efficiency of our library we de-
velop two exemplary programs and measure
their execution time. The test machines in-
clude a Pentinum PC cluster connected with
ethernet, a SUN UltraSparc workstations clus-
ter connected with fast ethernet, and shared-
memory machine like SUN Enterprise 5000.

The major difference among these machines is
the communication speed. The PC cluster has
the slowest communication, and the shared-
memory SUN enterprise has the highest band-
width.

The exemplary programs we implement and
test are a flux simulation program (fluxroe) [17]
and an electro-magnetic simulation program
(EM3D) [6]. The fluxroe is a flux simulation
program used in airfoil design. We isolate the
computation kernel after intensive study of the
original C code, then rewrote it as a module
that can be plugged into our framework. We
generate the input data by using the original
generator in [17]. This generator produces a
random unstructured mesh in which each edge
is chosen with a fixed probability '. The other
exemplary programs is EM3D [6] described in
the previously. The original version of this pro-
gram was written in split-C language [6]. We
translated it into C and parallelize it with our
library. We also wrote an unstructured mesh
generator for the EM3D program to generates
the bipartite graph input for the EM3D.

4.1 Fluxroe

4.1.1 Distributed memory implementa-
tion

We first ran the fluxroe code on a cluster of 8
200MHz Pentium Pro cluster connected by eth-
ernet. Each PC has 128 mega-bytes of physical
memory running Red Hat linux 4.2. Table 1
gives the timing results from this experiment?.

We discover two major overheads due to the
parallelization. First, we introduced complex
data structures and operations for data shar-
ing and message passing, and large overhead
associated with them. Secondly, the commu-
nication on ethernet is expensive. We par-
tially solved the problem by using faster com-
munication like fast ethernet. Table 2 gives
the improved timing results from running the
same code on a 4 UltraSparc workstation clus-

'We used 0.5 throughout the experiments.
2All the timing results in this section does not in-
clude the initialization stage.



Table 1: Execution time of fluxroe per iteration
on a 8 PC cluster.

Execution Time Per Traverse

mesh points | 16384 | 36864 | 65536 | 147456
C version 0.124 | 0.289 0.519 1.260
c++ version | 0.314 | 0.720 1.289 2.922
2 nodes 0.283 | 0.677 | 1.160 2.667
4 nodes 0.144 | 0.335 | 0.623 1.395
8 nodes 0.083 | 0.160 | 0.310 0.710

ter connected with fast ethernet. In addition,
we have used better partitioning tools (like
Metis [10, 11]) to reduce the communication
volume.

Table 2: Execution time of fluxroe on a Sun Ul-
traSparc workstations cluster connected with
fast ethernet.

Execution time per traverse

mesh points | 36864 | 65536 | 147456 | 262144 | 589824
¢ version 1.076 | 1.770 4.168 7.156 16.490
2 nodes 0.922 1.574 3.150 5.428 | 188.937
4 nodes 0.380 | 0.711 1.920 2.949 6.329

4.1.2 Shared memory implementation

We implement the fluxroe on a shared memory
SUN Ultra Enterprise with 8 CPUs and 1004M
bytes of memory. The same code is tested on
a dual CPU Pentium II-300 with 128M byte
memory. The implementation uses Pthread to
synchronize and simplify the communication
among processors. Both codes are compiled
with g++. The timing results are shown in
Table 3.

4.2 EM3D

4.2.1 Distributed memory implementa-
tion

We then implement a EM3D [6] code with our
library. First we ran the code on the same
Pentium Pro cluster where we ran the fluxroe

Table 3: Execution time of fluxroe

on a Sun Ultra Enterprise

mesh size 400 | 10000 | 40000
1 processor | 3.36 | 103.70 | 452.23
2 processor | 2.07 59.40 | 246.76
4 processor | 1.21 33.04 | 137.61

8 processor | 0.67 18.02 74.37
on a dual CPU Pentium PC

mesh size 400 | 10000 | 40000
1 processor | 2.65 92.96 | 402.59
2 processor | 1.61 46.87 | 210.69

and Table 4 shows the timing results. We ob-
serve that the performance is not satisfactory.
When the number of processors increases to
eight, the performance degrades unacceptably.
We conjecture that for EM3D the communi-
cation overheads is much larger than the par-
allelization benefit that we can obtain on a
slow network. To verify this conjecture we run
the EM3D on the Sun UltraSparc cluster men-
tioned earlier.

Table 4: Execution time of EM3D

on a Pentium Pro PC cluster
mesh points 9612 | 16384 | 36864 65536 | 147456
c version 0.100 0.189 0.489 0.833 1.966
2 nodes 0.211 0.467 | 1.011 1.555 3.967
4 nodes 0.201 0.344 | 0.544 0.833 2.133
8 nodes 0.344 | 0.633 | 0.711 1.755 3.288
on a Sun UltraSparc workstation cluster
mesh points | 16384 | 36864 | 65536 | 147456 | 262144
¢ version 0.096 | 0.211 0.372 0.866 1.472
2 nodes 0.081 0.189 | 0.346 0.809 1.226
4 nodes 0.064 | 0.103 | 0.170 0.350 0.709

Table 4 also gives the timing results of run-
ning the EM3D on a UltraSparc cluster. By
comparing Table 4 with Table 2 we observe
that the EM3D application took much less
time per iteration than fluxroe did, due to the
smaller number of floating point operations re-
quired for each mesh point computation. As
a result EM3D has a much higher communi-
cation to computation ratio. That is, EM3D
needs more time in communication relatively
than fluxroe and does not have a good speedup



number, even in fast ethernet connection.

4.2.2 Shared memory implementation

The timing results from EM3d on shared mem-
ory implementation are shown in Table 5. Due
to the small amount of computation per mesh
node, the overall performance gain is not as
good as in the fluxroe.

Table 5: Execution time of Em3d.

on a Sun Ultra Enterprise
mesh size 400 | 10000 | 40000
1 processor | 0.57 | 27.56 | 150.33
2 processor | 0.74 | 22.24 | 107.34
4 processor | 0.86 | 15.19 67.96
8 processor | 1.46 | 11.90 48.28
on a dual CPU Pentium PC
mesh size 400 | 10000 | 40000
1 processor | 0.78 | 32.41 | 149.69
2 processor | 0.58 | 18.15 88.57

5 Conclusion and future

works

The object-orient framework makes it easy to
develop unstructured mesh applications. The
users only have to take care of the computa-
tion aspects and do not need to consider par-
allelization or mesh structure implementations.
Once the unstructured mesh library is built,
we can easily construct unstructured mesh ap-
plications by class inheritance and redefining
those application-dependent virtual functions.
By using the library, the time saved in applica-
tion development can now be shifted into de-
signing new computation models and analyzing
the experimental results.

The object-orient approach also makes the
user codes robust and easy to maintain. The
user program will not change even when we
modify the implementation of the library. For
example, if we want to change the communi-
cation protocol in the library, we just rewrite
those communication-related classes and do

not need to modify any user codes. In addi-
tion, since user codes reuse thoroughly tested
library routines, they are robust and easy to
debug.

One insightful experience we learned from
the implementation is that it is vital to design
the objects and their interfaces very very care-
fully. A well-designed object not only increases
the readability of the code but also makes the
software components more reusable. The ob-
jects must clearly represent entities in the com-
putation model and the user interface must be
clear, simple, and intuitive. An object-oriented
library can deliver all the software management
advantages only when people use it.

Another observation is that before an appli-
cation is to be parallelized, careful evaluation
must be made to determine the possible per-
formance gain by using parallel computers. For
example, in the EM3D application, the compu-
tation does not require significant time. As a
result the ratio of computation to communi-
cation prohibits any significant speedup in a
loosely coupled parallel environment.
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