VGDS: An Object-Oriented Framework for
Distributed Scientific Computing

Jan-Jan Wu
Institute of Information Science
Academia Sinica
Taipei, Taiwan

Marina Chen
Computer Science Department
Boston University

Boston MA, U.S.A

Abstract Two major engineering bottlenecks in
the production pipeline for High Performance Com-
puting software result from a shortage of adequate
design tools and design theory. We propose one
technology that can help eliminate the HPC soft-
ware bottleneck: object-oriented construction of vir-
tual global data structures (VGDS). In this paper,
we give an overview of the VGDS framework. Our
VGDS effort focuses on developing a general pur-
pose, distributed environment that will allow fast
prototyping of a diverse set of simulation prob-
lems in scientific and engineering domains, includ-
ing regular, irregular, and adaptive problems. The
framework defines multiple layers of class libraries,
which work together to provide data-parallel repre-
sentations to application developers while encapsu-
late parallel implementation details into lower lay-
ers of the framework.

Keywords: distributed data structures, object ori-

ented framework, parallel scientific computing

1 Introduction

Two major engineering bottlenecks in the pro-
duction pipeline for High Performance Com-
puting software are the results of the short-
age of adequate design tools. First, the ex-
panding HPC software market requires analyt-
ical tools that can help identify tradeoffs be-

Pangfeng Liu

Department of Computer Science
National Chung Cheng University

Chia-Yi, Taiwan

James Cowie

Cooperating Systems Corporation

Chestnut Hill, MA, U.S.A

tween specificity and portability, and optimize
applications’ development cost and their per-
formance. Secondly, the evolving HPC hard-
ware market demands the ability to rapidly
and flexibly synthesize new tools from old ones,
to track the evolution of high performance tar-
gets. Eliminating design and implementation
bottlenecks requires new technologies that can
resolve both sides of this dichotomy between
analysis and synthesis. We have identified
and nurtured one such enabling technology for
HPC: object-oriented construction of wvirtual
global data structures (VGDS).

Intelligent compilers and hand-coders ex-
ploit parallelism by

1. breaking problems into data-parallel, vec-
torizable inner loops supported by task-
parallel top-level task dispatch and outer-
loop synchronization,

2. laying out the data across the local mem-
ories of processors, while maintaining the
original problem’s global data coherence
(either manually, or assisted by the sys-
tem or hardware)

3. calling for help where necessary, either by
using efficient parallel library routines, or
by taking advantage of automatic program
transformations supplied by the compiler.

Our approach proceeds from the observa-
tion that the identification of these dichotomies
(task vs. data parallelism, processor-local vs.
system-global views of data, and compiler vs.
library-based optimization strategies) and the
ability to exploit them to extract high perfor-
mance, is a central challenge of HPC software.
We have identified distributed data structures,
implemented as object-oriented classes with
explicit associated method interfaces, that
form a key crossing-point for each of these
dichotomies. Because they define their own
data and methods, distributed data structure
classes can have both data-parallel and task-
parallel aspects. With appropriate interface
design, they can be viewed from both global
(where processors are invisible to the user) and
local (within a processor) perspectives. Their
access patterns can be automatically trans-
formed by a compiler, or reduced to optimized
library calls. We call distributed data struc-
tures that provide both global and local views
virtual global data structures.

The benefit of data abstraction in object-
oriented languages on parallel software de-
velopment has been demonstrated by vari-
ous efforts [8, 16]. Research efforts in pro-
viding suitable object-oriented parallel lan-
guages/libraries for certain classes of applica-
tions have also been abundant [3, 5, 2, 14, 20].
Our VGDS effort distinguishes itself from oth-

simulations, while objects lower in the frame-
work capture the abstraction of parallelism and
efficient processor-level computation. This lay-
ered approach provides a natural breakdown
of responsibility in designing a complete HPC
system, and allows design effort and heavy-
duty optimization to be easily expended ex-
actly where it is most needed.

In this paper, we report on the progress
of our VGDS effort. We first describe the
organization and functionality of the VGDS
framework. We then discuss some implemen-
tation details of virtual global data structures
in distributed-memory environments. Finally,
we use the Array library to illustrate the core
functionality of the VGDS framework.

2 The VGDS Framework

The VGDS framework defines three layers of
C++ classes: the global layer, the parallel ab-
straction layer, and the local layer. Layers of
application components can be built atop the
VGDS basis. Figure 1 depicts the structure of
this framework.

Nbody simulation
3D fast multipole method

parallel financial modeling CFD smulations

nonadaptive multigrid
dense linear algebra

I

sparse linear solvers

VGRegular VGlrregular VGAdaptive
i) Graph, Unstructured mesh, R
| (Array, Mesh, Matrix (h " . (BH-tree, Global Layer
! (Array) Sparse matrix) Adaptive mesh)

Adaptive multigrid methods Application Layer

ers in two aspects. First, instead of tackling |
vedDS ___——

one particular data structure, we propose an basis| Domain decomposition, Interprocessor communication il Abstracion Layr

integrated framework incorporating a diverse —
set of data structure classes that are essential
in a broad base of scientific, engineering, and
commercial simulations. These include regular
(in which data reference patterns are uniform),
irregular (in which data reference patterns are
non-uniform), and adaptive (in which data ref-
erence patterns keep changing dynamically and
incrementally) applications.

Secondly, we use layered object-oriented de-
sign and analysis in the construction of the
VGDS base libraries. System objects in the
upper layers of the framework are relevant to
application specific domains such as computa-
tional fluid dynamics simulations and N-body

LocRegular Loclrregular LocAdaptive

‘ Local Layer
\ A
Base Language Data Types MPI or
(Integer, Red!, Double, Communication Primiti -
i mitives
Array, Record, Pointer) mitive Primitive Layer
—
Machines

(Uniprocessor/Workstation Clusters’/M PP)

Figure 1: The VGDS Framework

The global and local layers together de-
fine a variety of virtual global operations on
regular (such as arrays), irregular (such as
graphs, unstructured meshes), and adaptive
(such as adaptive trees, and adaptive meshes)
data structures. The global layer defines global
data types. Objects in the global layer are

bookkeepers that delegate computational tasks
to the local layer. The local layer implements
generic, processor-local computational kernels
for each VGDS component. The interactions
between the global and the local layers are me-
diated by the parallel abstraction layer that
captures the abstraction of parallelism, includ-
ing data decomposition, interprocessor com-
munication, and load balancing. This lay-
ered approach provides a well defined devel-
opment interface; application developers can
use classes in the global layer without worrying
about the implementation details of the layers
below, while library developers can concentrate
on optimizations without worrying about the
applications to be implemented above. How-
ever, the library users can also go directly to
the lower layers to use local computational ker-
nels and communication classes in the frame-
work. Table 1 outlines the classes and func-
tionality of each layer, details of which are de-
scribed in the following sections.

Table 1: VGDS Framework Functionalities

Layers Classes Functionality
Base Derived
VGRegular Array
Matrix data-parallel
Global VGIrregular UMesh operations
VGAdaptive BHTree
AdaptMesh
LocRegular LocArray
LocMatrix processor-local
Local LocIrregular LocUMesh operations
LocAdaptive LocBHTree
LocAdaptMesh
Mapper BlockPartitioner data layout
management
Parallel ORBPartitioner
Abstraction Communicator inter-processor
communication
Message message
abstractions

2.1 Global and Local Layers

The VGDSs within the global layer provide
a global view of the data, in which the data
structure is treated as a monolithic whole, with
operators that manipulate individual elements
and implicitly iterate over substructures. In
the local view (the local layer), each processor
contains only a part of the whole, with oper-
ators acting only on the local data (i.e. The
framework adopts the Single Program Multi-
ple Data model).

When a global data structure is instantiated,

it creates a constituent local data substructure
on each processor. Whenever a kernel operator
associated with the data structure is invoked,
the operation is carried out by first retrieving
the handles to the local data, then delegating
complete local computation to each local data
substructure. If communication is required, it
is performed through system objects in the par-
allel abstraction layer.

The framework defines three base class li-
braries: VGRegular (LocRegular), VGlIrregu-
lar (Loclrregular), and VG Adaptive (LocAdap-
tive), that capture common functionalities of
data structures in regular, irregular, and adap-
tive applications, respectively. For instance,
regular data structures can be characterized
by their regular shapes (multi-dimensional in-
dex space), standard data mapping (block,
cyclic distribution), uniform operations, and
neighborhood communications. Concrete data
structures can be derived from these base
Section
ing the Array class as an example.

classes. 4 will elaborate on this us-

2.2 Parallel Abstraction Layer

The parallel abstraction layer includes classes
to enable data layout, interprocessor commu-
nication, and load balancing for virtual global
data structures consisting of local data objects.
The key features of this layer are encapsulated
into two groups of classes — data decompo-
sition classes that are responsible for proces-
sor geometry, data partitioning and mapping,
and load balancing, and communication classes
that take care of data movement among pro-
Cessors.

Data Decomposition Classes

The global data structure are partitioned into
local substructures on each processor accord-
ing to the Mapper class. Mapper is an ab-
stract class that provides services for finding
the geometry of a VGDS, identifying global
neighbor relations between their constituent lo-
cal substructures, and deriving logical send-
and receive-sets for a given global subscript re-

solved into the local substructure. Concrete
mapping classes that are derived from Map-
per provide domain specific information and
functionality that can be tuned to the need
of the specific data structure. For example,
the framework supports a BlockPartitioner for
regular data structures and a ORBPartitioner
(Orthogonal Recursive Bisection) for irregular
and adaptive data structures. By instantiating
the Mapper class, the user can also construct
customized data decomposition strategies.

Communication Classes

Two groups of classes are implemented to
support portable, transparent message-passing
communication on distributed-memory ma-
chines — Message and Communicator. The
Message class is used to encapsulate data in
a common format for easy data delivery and
retrieval of different data structures. To send
data to another processor, first a Message ob-
ject is created and the data to be sent are
flattened and packed into the message object.
Then the message object is sent to a Commu-
nicator object for delivery. When received by
the destination, the message is unpacked into
a data object of the matched type.

The Communicator class provides a generic
interface to the message-passing primitives (or
MPI implementation) supported by the un-
derlying architecture. It provides routines for
sending message objects to destination proces-
sor, and for receiving message objects from a
sending processor. By encapsulating architec-
ture dependent communication primitives into
the Communicator class, the VGDS framework
is portable across different architectures.

Figure 2 depicts the interactions between
these classes.

3 Data Coherence and
Synchronization

Since a virtual global data structure is dis-
tributed over local memories of processors, in
order to effect the same computation as in the

communication

VG data object
schedule
load balancing

remapping

data movement

Communicator,
Message

Figure 2: Interaction of Classes in the VGDS
Framework

global view, the local computations must be
coordinated. We adopt the owner-computes
rule, which distributes computations accord-
ing to the mapping of data across processors.
However, a local substructure may require in-
formation from other processors to complete
the computation of data assigned to it. When
communications mostly occur between neigh-
boring processors and the same communication
patterns may occur many times during pro-
gram execution, it is more eflicient to dupli-
cate boundary data elements on adjacent pro-
cessors. For example, in an unstructured mesh
computation where the new data value of a
mesh node is a function of its neighbors, by
duplicating boundary mesh nodes to the other
side of partitioning lines, computations on the
local submeshes on individual processors can
all be performed locally without communica-
tion. In reality, data elements may be read
or updated, which raises the issues of data co-
herence and synchronization. We describe our
approach next.

We classify the data into two categories,
master copy and duplication. A master copy
is a data region in the original global structure
that is mapped to a processor. A master copy
can make copies of itself, called duplication,
on other processors. That is, all the data el-
ements that are essential to the computations
of the local master copies will be fetched into
the local substructure on the processor which
owns the master copies. As far as each mas-
ter copy is concerned, there is no distinction
between global and local structures. Note that
we do not have the notion of global pointers be-
cause all the pointers address a local memory

address, be it a master copy or a duplication.
The computations read and update the master
copy only — the duplications only provide data
and are read-only. Therefore, data coherence
is guaranteed by allowing only the master copy
to be updated, and only one master copy exists
for one data element.

Figure 3 shows the duplication mechanism
for a regular array, an unstructured mesh, and
an adaptive Barnes-Hut tree for N-body algo-
rithms. We assume that the computation of
each element in the regular array and the un-
structured mesh requires its neighbors, and the
per-particle force computation of the Barnes-
Hut algorithm requires a traversal on the adap-
tive Barnes-Hut tree.

PO P1 PO P1
(a) duplication for regular array structures
P1 PO P1

o o]

(b) duplication for unstructured meshes (irregular data structures)

PO P1
(c) duplication for adaptive tree structures

Figure 3: Duplication for distributed data
structures. The duplicated data are indicated

by solid black.

To assure synchronization, data elements are
duplicated before the actual computation is
performed. After data are partitioned, system
objects in the parallel abstraction layer dupli-
cate the data to the processors where they are
essential to the computation. A barrier syn-
chronization separates the duplication process

from the computation, assuring that all the
data are available and the computation can
proceed without any further communication.
This mechanism guarantees safety in a dis-
tributed environment. However, for efficiency
reasons, it is desirable to reduce the number of
global synchronizations between method invo-
cations whenever possible. The VGDS caller
can use Synchronization Relaration wrappers
around blocks of invocations which are known
to be non-interfering. This will allow the user
to relax synchronizations around noninterfer-
ing block computations in regular arrays, be-
tween distinct submeshes in an unstructured
mesh, and distinct subtrees below some level
of a distributed adaptive tree.

The master copies must be duplicated peri-
odically. When the data dependency and dis-
tribution are static, e.g. static unstructured
meshes, we only have to allocate storage for
the duplicated data once during the entire ex-
ecution, then update its value once the master
copy is changed. However, when the data dis-
tribution or dependency is not static, the stor-
age for duplicated data must be dynamically
allocated, or even deallocated. Nevertheless,
the principle of “read-only duplication, exactly
one master copy” remains the same.

4 Case Study: Arrays

In this section, we use VGRegular and Array
classes to illustrate the VGDS framework.

A regular data object is characterized by its
uniform shape (most likely a Cartesian space),
uniform data decomposition strategies (e.g.
block, cyclic), and operations to be performed
uniformly over its data elements. The VGDS
Regular framework contains classes that work
together to provide this functionality: Carte-
stanSpace (that captures the size and shape of a
Regular object), VGRegTemplate (that allows
Regular objects to be aligned to each other
and to share a common data distribution strat-
egy), and VG Regular (that defines the creation
of and the associated operations for a regular
data structure). All of these classes are im-

plemented as mirrored pairs of Global/Local
classes. The class Mapper< CartesianSpace>
supports standard block and cyclic distribu-
tions and user defined partitioning methods.

VGRegTemplate classes have functionality
similar to the TEMPLATE directives in HPF.
Regular data objects may be aligned to a com-
mon VGRegTemplate object, which in turn
can be partitioned using either user defined or
default partitioning strategy. A VGRegTem-
plate object does not allocate memory space;
it only serves as an abstract index space that
maintains interconnection geometry informa-
tion (e.g. neighbor processors, size and shape
of local substructure) of the data objects that
align to it.

template<class ElTy,
class Mapper<CartesianSpace>>
class VGRegTemplate : public LocRegTemplate<E1Ty>
{
CartesianSpace *my_substructure;
Processor_id #*my_neighbors;
// dataspace is the template space,
// processors is the processor space,
// partitioner is the data decomposition class
VGRegTemplate (CartesianSpace &dataspace,
CartesianSpace &processors,
Mapper<CartesianSpace> partitioner)
{ // determine local subgrids and
// neighbor processors
*my_substructure=partitioner.compute_my_role
(dataspace,processors);
#my_neighbors=partitioner.compute_my_neighbors
(dataspace,processors);

3}

VG Regular classes capture the allocation,
deallocation and general behavior of regular
data objects, which themselves are the ag-
gregation of more primitive data types (de-
noted by ElTy), such as integer, single- and
double- precision floating point, etc. When cre-
ated, a VG Regular object is aligned to a given
VG Reg Template object. The constituent local
Regular object is then created according to the
substructure information cached in the VG Reg
- Template object. The VGRegular classes are
also facilitated with a set of member functions
for assignment, arithmetic, copying, printing,
subscripted references, and data movement op-
erations.

template<class E1Ty>
class VGRegular : public LocRegular<ElTy>
{
VGRegular (VGRegTemplate<ElTy> &template)
: LocRegular<ElTy>
(*(template.my_substructure)) {};

// [subshape] operation for section references
VGRegular<E1Ty> &operator[] (CartesianSpace *ss)

// per-element operations are delegated
// to LocRegular

(e.g. +,—-,%,/, logical ops, arith. ops, etc.)

. and many other member functions

The Mapper< CartesianSpace> class pro-
vides generic interface to data decomposition
implementations for regular data structures.
Two virtual functions are defined:
get_neighbors (which collects the processors
that are neighbors of the local substruc-
ture in the global interconnection geometry,
and subscript_send_recv, which computes the
send/receive pairs for subscripted assignment
operations. The following shows a contiguous
block partitioner class CSBlock that is derived
from Mapper< CartesianSpace> class.

class CSBlock
: public Mapper<CartesianSpace>

public:
int *get_neighbors
(RegGeometry<CartesianSpace> &vrt)
{ ...return a list of processor ids };
CartesianSpace **subscript_send_recv
(RegGeometry<CartesianSpace> &lhs,
CartesianSpace **&recv_set,
RegGeometry<CartesianSpace> &rhs,
CartesianSpace *x&send_set)

Array classes are constructed by instanti-
ating VGRegular classes with another set of
member functions that provide common func-
tionality for HPF-like array-based computa-
tion. These include intrinsic array opera-
tions (e.g. reduction, spread, array trans-
pose), and composite arithmetic operations
(e.g. multiply-and-add) that can be performed
efficiently on many HPC platforms.

The following code segment implements the
Shallow Water Equations Solver using the Ar-
ray class.

// size and shape declarations for

// the template (tspace) and processors (pspace)
CartesianSpace tspace (Intvl(1l,m),Intvl(1i,n));
CartesianSpace pspace (Intvl(1l,p),Intvl(1,q));
// template is partitioned into blocks

VGRegTemplate<double> T (tspace, pspace, CSBlock);

// By aligning to T, all these arrays have
// the same shape and data distribution
Array<double> u(T),v(T),p(T),unew(T) ,vmew(T),
pnew(T) ,u0ld(T), vold(T), pold(T),cu(T),
cv(T) ,z(T) ,h(T) ,p_temp(T) ,u_temp(T),
v_temp(T) ,T1(T),T2(T),T3(T);
. initializations
// start the periodic condition
// iterate itmax times
while (ncycle<itmax) {
// cshift array p at the second dimension by
// one element and assign the result to array cv
cv.recv_cshift(&p,2,-1);
// arithmetic operations
cv = .5x(ptcv)*v;
p_temp.recv_cshift(&p,1,-1);
p_temp += p;
u_temp.recv_cshift(&u,1,1);
v_temp.recv_cshift(&v,2,1);
h=p+0.25 *
(u_temp*u_temp+uku+vkv+v_temp*v_temp) ;

unew.recv_cshift(&z,2,1);
T2.recv_cshift (&v_temp,2,1);
T3.recv_cshift(&h,1,-1);
unew = uold +

tdts8* (unew+z)* (v_temp+T2)-tdtsdx*(h-T3);

vnew.recv_cshift(&z,1,1);
T2.recv_cshift (&u_temp,2,-1);
T3.recv_cshift(&h,2,-1);
vnew = vold -

tdts8* (vnew+z)* (u_temp+T2)-tdtsdy*(h-T3);

T1.recv_cshift(&cu,1,1);
T2.recv_cshift (&cv,2,1);
pnew = pold-tdtsdx*(Tl-cu)-tdtsdy*(T2-cv);

u = unew; v = vhew; P = pnew;

}; // end while

5 Related Work

Virtual Shared Memory for HPC Systems

The goal of our virtual global data struc-
tures approach, namely, making programming
HPC systems easier, is similar to that of hard-
ware [12, 19] or operating systems [13, 10] ap-
proaches to support virtual shared memory on

top of physically distributed memory machines
or distributed shared memory architectures.
While underlying hardware mechanisms and
operating systems techniques would be helpful
and complementary to our programming level
approach, VGDS focuses on exploiting the ad-
ditional, domain-specific locality information
which may not be obtained and exploited read-
ily by the generic techniques employed by cache
and virtual memory systems.

Object-Oriented Approaches for Parallelism

The benefit of data abstraction in object-
oriented languages on scientific code develop-
ment has been demonstrated by various ef-
forts [8, 16]. Particularly influential and rel-
evant to our class-specific VGDS approach are
the work reported by Angus [1] and Shart
and Otto[18] where class-specific compiler opti-
mizations are introduced into a compiler writ-
ten in an object-oriented fashion. Qur VGDS
approach has taken their class-specific philoso-
phy further into the realm of runtime support
for a diverse set of shared data structures (be-
yond simply array classes) on high performance
platforms.

Another line of work uses objects to de-
fine data structures with built-in data distri-
bution capabilities. This again relates directly
to our VGDS approach. Examples of work
along this line include the Paragon package
[5], which supports a special class PARRAY
for parallel programming, the A++4/P++ Ar-
ray class library [15], PC++ proposed by Lee
and Gannon [11, 20], which consists of a set
of distributed data structures (arrays, priority
queues, lists, etc.) implemented as library rou-
tines, where data are automatically distributed
based on directives. Interwork II Toolkit [3] de-
scribed by Bain supports user programs with
a logical name space on machines like iPSC.
The user is responsible for supplying proce-
dures mapping the object name space to pro-
cessors. In a related work by ourselves [4], we
report abstractions of adaptive load balanc-
ing mechanisms and complex, many-to-many
communications as C++ classes for support-

ing HPC challenging applications. Otto [14]
describes a light-weight sharing mechanism to
support applications that use adaptive meshes.
Instead of tackling one particular data struc-
ture such as arrays, VGDS proposes an inte-
grated, layered object-oriented design frame-
work for a diverse set of distributed data struc-
tures, where data distribution, data sharing,
data coherence, and synchronization between
data references are mediated by the runtime
system.

Our VGDS effort has similar goals and ap-
proaches to the POOMA package [2] and the
Chaos++ library [17]. POOMA supports a
set of distributed data structures (fields, matri-
ces, particles) for scientific simulations. To our
knowledge, POOMA has not supported adap-
tive data structures as VGDS does. Chaos++
is a general-purpose runtime library that sup-
ports pointer-based dynamic data structures
through an inspector-executor-based runtime
preprocessing technique. The VGDS frame-
work focuses on a more specific class of data
structures essential to scientific simulations
and engineering computing; therefore, VGDS
is able to exploit optimizations that would be
difficult for a general preprocessing technique.

In addition to the above work on object-
oriented parallelism which has influenced ours,
a large body of work in the literature can be
categorized as “object-parallelism,”
jects are mapped to processes that are driven
by messages. If a message is sent in between
two processes residing on two different pro-
cessors, this message will be implemented via
inter-processor communication. Examples of
parallel C4++4 projects using this paradigm in-
clude the Mentat Run-time System [9], Con-
current Aggregates (CA) [6] by Dally et al.,
and VDOM by [7]. Our use of object-
orientation is for structuring the VGDS classes
and their specializations for optimizations,
debugging, profiling, etc., which is entirely
distinct in philosophy from that of object-
parallelism.

where 0b-

6 Conclusion

We have implemented a prototype of VGDS
base libraries and a set of distributed data
structures derived from this basis, including
Array, Graph, and BHTree. The current pro-
totype supports a set of predefined data par-
titioning strategies, including block partition
for regular data structures and ORB parti-
tion for irregular and adaptive data structures.
We plan to incorporate other commonly used
data partitioning and user-defined partitioning
strategies.

Our preliminary experiences with two appli-
cation programs, the Shallow Water code de-
veloped using the Array class and a gravita-
tional Nbody simulation code developed us-
ing the BHTree class, on a network of four
Ultra Sparc workstations are quite encourag-
ing. The VGDS class libraries significantly re-
duced the code sizes and development times of
these two applications. The performance of the
Shallow Water code developed using the Ar-
ray class achieved a speedup factor of 3.5, and
achieved more than 90% of the performance
of a message-passing version hand-coded by
experienced programmers. The Nbody code
achieved a speedup factor of 3.4, where the
uniprocessor time was measured by running
the sequential program written by Barnes and
Hut on a single workstation. The main sources
of overhead in the libraries include dynamic
memory allocation/deallocation for data ob-
ject creation/destruction, non-optimized com-
putation kernel for long expressions, and addi-
tional overhead in support of portability of the
library. We expect that as the project grows
more mature and more efficient implementa-
tion of MPI becomes available, this overhead
can be further reduced.

Acknowledgment

This research is supported in part by National
Science Council of Taiwan under grant 86-
2213-E-001-010, the Institute for Mathematics
and its Applications with funds provided by
the National Science Foundation of USA, and

a special start-up grant from National Chung
Cheng University for the second author.

References

(1]

[4]

[5]

ITan G. Angus. Applications demand class-
specific optimizations: The c++4 compiler can
do more. In Proceedings of the First Annual
Objet-Oriented Numerics conference, 1993.

Susan Atlas, Subhankar Benerjee, Julian C.
Cummings, Paul J. Hinker, M. Srikant,
John V.W. Reynders, and Marydell Tholburn.
Pooma: A high performance distributed sim-
ulation environment for scientific applications.
In Supercomputing95, 1995.

W. L. Bain. Aggregate distributed objects
for distributed memory parallel systems. In
The 5th Distributed Memory Computing Con-
ference, Vol II pages 1050-1055, Charleston,
SC, April 1990. IEEE.

S. Bhatt, M. Chen, C.-Y. Lin, and P. Liu. Ab-
stractions for parallel n-body simulations. In
Scalable High Performance Computing Con-
ference SHPCC-92, pages 38 — 45, Williams-
burg, VA, April 1992.

C. M. Chase, A. L. Cheung, A. P. Reeves,
and M. R. Smith. Paragon: A parallel pro-
gramming environment for scientific applica-
tions using communication structures. In 1991

International Conference for Parallel Process-
ing, Vol II, pages 211-218, August 1991.

A. A. Chien and W. J. Dally. Concurrent ag-
gregates (CA). In 2nd ACM SIGPLAN Sym-
postum on Principles and Practice of Parallel
Programming, pages 187-196, Seattle, Wash-
ington, March 1990. ACM.

M. J. Feeley and H. M. Levy. Distributed
shard memory with versioned objects. In
OOPSLA 92, pages 247 — 262, Vancouver,
BC, Canada, October 1992.

D. W. Forslund, Wingate C., Ford P., Junkins
S., Jackson J., and Pope S. C. Experiences in
writing a distributed particle simulation code
in C++. In 1990 USENIX C++ Conference,
pages 1-19, 1990.

A. Grimshaw. The mentat run-time system:
Support for medium grain parallel computa-
tion. In The 5th Distributed Memory Com-
puting Conference, Vol II, pages 1064-1073,
Charleston, SC, April 1990. IEEE.

[10]

[12]

[13]

[15]

[16]

[17]

[19]

[20]

P. Keleher, A. Cox, S. Dwarkadas, and
W. Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and
operating systems. In 199/ Winter USENIX
Conference, pages 115-132, 1994.

J. K. Lee and D. Gannon. Object oriented par-
allel programming experiments and results. In
Supercomputing ’91, pages 273-282, November
1991.

Daniel E. Lenoski et al. The directory-based
cache coherence protocol for the DASH mul-
tiprocessor. In the 17th Annual International

Symposium on Computer Architecture, pages
148-159, 1990.

Kai Li. Shared Virtual Memory on Loosely
Coupled Multiprocessors. PhD thesis, Depart-
ment of Computer Science, Yale University,

December 1986.

Steve W. Otto. Parallel array classes and
lightweight sharing mechanisms. In Proceed-
ings of the First Annual Objet-Oriented Nu-
merics conference, 1993.

R. Parsons and D. Quinlan. A++/p++ array
classes for architecture independent finite dif-
ference calculations. In Proceedings of the Sec-
ond Annual Object-Oriented Numerics Con-
ference, April 1994.

J. S. Peery, K. G. Budge, and A. C. Robin-
son. Using C++ as a scientific programming

language. In CUG11, 1991.

J. Saltz, A. Sussman, and C. Chang.
Chaos++: A runtime library to support dis-
tributed dynamic data structures. Gregory V.
Wilson, Editor, Parallel Programming Using
C++, 1995.

Michael D. Sharp and Steve W. Otto. A class
specific optimizing compiler. In Proceedings
of the First Annual Object-Oriented Numerics
conference, 1993.

J. P. Singh, W.-D.Weber, and A. Gupta.
SPLASH: Stanford Parallel Applications for
Shared Memory. Computer Architecture News,
20(1):5-44, March 1992.

S. X. Yang, J. K. Lee, S. P. Narayana, and
D. Gannon. Programming an astrophysics
application in an object-oriented parallel lan-
guage. In Scalable High Performance Comput-
ing Conference SHPCC-92, pages 236 — 239,
Williamsburg, VA, April 1992.

