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This paper describes the implementation of a parallel tree code library that can be used
in the study of multi-filament vortex simulations. The simulations involve distributions
that are irregular and time-varying. The library uses object-oriented techniques to isolate
the tree structure details from the end users to enable fast prototyping of N-body tree
codes. The library has been used previously to develop N-body code for gravitational
force field computation, and in this paper we further demonstrate its versatility by im-
plementing a vortex dynamic simulation code using Biot-Savart model. The additional
advantages of the library include automatic parallelism and portability among different
parallel platforms and we report very competitive timing results on Sun Ultra cluster.

1. Introduction

Computational methods to track the motions of bodies which interact with one another,
and possibly subject to an external field as well, have been the subject of extensive
research for centuries. So-called “N-body” methods have been applied to problems in
astrophysics, semiconductor device simulation, molecular dynamics, plasma physics, and
fluid mechanics.

Computing the field at a point involves summing the contribution from each of the
N — 1 particles. The direct method evaluates all pairs of two-body interactions. While
this method is conceptually simple, vectorizes well, and is the algorithm of choice for
many applications, its O(N?) arithmetic complexity rules it out for large-scale simulations
involving millions of particles iterated over many time steps.

Larger simulations require faster methods involving fewer interactions to evaluate the
field at any point. In the last decade a number of approximation algorithms have emerged;
the fastest methods require only O(NV) evaluations [13]. All heuristic algorithms exploit
the observation that the effect of a cluster of particles at a distant point can be approxi-
mated by a small number of initial terms of an appropriate power series. This leads to an
obvious divide-and-conquer algorithm in which the particles are organized in a hierarchy
of clusters so that the approximation can be applied efficiently. Barnes and Hut [4] ap-
plied this idea to gravitational simulations. More sophisticated schemes were developed



by Greengard and Rokhlin [13] and subsequently refined by Zhao [28], Anderson [1], and
better data structures have been developed by Callahan and Kosaraju [7].

Several parallel implementations of the N-body tree algorithms mentioned above have
been developed. Salmon [24] implemented the Barnes-Hut algorithm on the NCUBE
and Intel iPSC, Warren and Salmon [25] reported experiments on the 512-node Intel
Touchstone Delta, and later developed hashed implementations of a global tree structure
which they report in [26,27]. They have used their codes for astrophysical simulations and
also for vortex dynamics. This paper builds on our previous CM-5 implementations of the
Barnes-Hut algorithm for astrophysical simulation [5,20-22] and vortex dynamics [6,11],
and contrast all the previous efforts with an easy-to-use object-oriented programming
interface that provides automatic parallelism.

The remainder of this abstract is organized as follows. Section 2 describes the multi-
filament vortex simulation in some detail. Section 3 outlines the fast summation algorithm
which is essentially the Barnes-Hut algorithm. Section 4 describes the structure of the tree
library and how we use it to build implicit global trees in distributed memory. Section 5
describes experimental results on Sun Ultra workstation cluster.

2. Vortex method in fluid dynamics

Many flows can be simulated by computing the evolution in time of vorticity using
Biot-Savart models. Biot-Savart models offer the advantage that the calculation effort
concentrates in the regions containing the vorticity, which are usually small compared
to the domain that contains the flow. This not only reduces considerably the computa-
tional expense, but allows better resolution for high Reynolds number flows. Biot-Savart
models also allow us to perform effectively inviscid computations with no accumulation
of numerical diffusion [2,18,19].

Vortex method are also appropriate for studying the many complex flows that present
coherent structures. These coherent structures frequently are closely interacting tube-like
vortexes. Some of the flows of practical interest that present interacting tube-like vortex
structures are wing tip vortices [9,16], a variety of 3D jet flows of different shapes [14,15]
and turbulent flows [10].

The study of small scales formation in high Reynolds number flows tends to require
substantial amount of computational resources. In multi-filament models, the O(N?)
nature of computational expense of the Biot-Savart direct method (where N is the number
of grid points) severely limits the vortex collapse simulations. leaving the most interesting
cases of collapse beyond the cases that have been examined to date[12]. Therefore, fast
simulation algorithms, like various tree codes in N-body simulation, should be used to
increase the resolution under a given computation resource constraint.

2.1. The Biot-Savart model

The version of the vortex method we use was developed by Knio and Ghoniem [17].
The vorticity of a vortex tube is represented by a bundle of vortex filaments x;(co,t*), each



of them with circulation I';. The n; filaments forming the bundle are advected according
to the velocity field
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where g(p) =1 — exp( —p /(53 ) :

2.1.1. Discretization

Each filament of the vortex ring is discretized by ng grid points or vortex elements.
Once this is done, the order of the summations in Equation 1 is unimportant, i.e. (1) is
solved numerically at N discrete points or vortex elements x, by using the approximation
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where the filament ordering has to be considered in the computation of the central
difference Ax;
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This is a characteristic of the filament approach in 3D vortex methods. In contrast with
the “vortex arrow” approach [19,27], the evaluation of the vortex elements “strengths”
in the filament method does not require the evaluation of the velocity gradient, which
involves computing for another integral over all of the vortex element. Also, filaments
with form of closed curves, satisfy the divergence free condition of the vorticity field. This
is not always the case at all times in the vortex arrow approach.

The velocity field in eq. (2) can be computed more efficiently by using the multipole
expansion
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The strength of the vortex element is &, = ') Ax, and ¥(p) = [§ g(s)ds/s* + (0) .
The term V x ®,, is the truncation error that results from using a finite number of terms
in the multipole expansion (4).



2.2. Initial conditions

The multi-filament ring is constructed around the center line

(X17 X2, X3) = (CI, COSH’ b Sine? c Sin20)7 (7)

where 0 < 6 < 27. The grid points are located at equally spaced intervals Af or at
variable intervals, with the smaller intervals on the collapse region. We call this geometry
the “Lissajous-elliptic” ring because of its projections on two orthogonal planes (for ¢ >
0). The thickness of the multi-filament ring is dc. The circulation distribution I';, and
the initial filament core radius d; also need to be specified. Besides the fact that its
parameter space contains cases of very rapid collapse, the low number of parameters of
this configuration allows a complete parameter study at less computational expense. Low
aspect ratio elliptic rings a > b, ¢ = 0 correspond to rings with periodic behavior that can
be used for dynamic and long time behavior testing of the algorithm.

3. N-body problem and Barnes-Hut algorithm

To reduce the complexity of computing the sum in Equation 2, we use the Barnes-Hut
algorithm. The Barnes-Hut algorithm is one of the “tree codes” that all explore the idea
that the effect of a cluster of vortex elements at a distant point can be approximated by a
small number of initial terms of a Taylor series (Equation 4). To apply the approximation
effectively, these tree codes organize the bodies into a hierarchy tree in which a vortex
element can easily find the appropriate clusters for approximation purpose.

The Barnes-Hut algorithm proceeds by first computing an oct-tree partition of the
three-dimensional box (region of space) enclosing the set of vortex elements. The partition
is computed recursively by dividing the original box into eight octants of equal volume
until each undivided box contains exactly one vortex element!. An example of such
a recursive partition in two dimensions and the corresponding BH-tree are shown in
Figure 1. Note that each internal node of the BH-tree represents a cluster. Once the
BH-tree has been built, the multipole moments of the internal nodes (Equation 5) are
computed in one phase up the tree, starting from the leaves.

To compute the new velocity, we loop over the set of vortex elements observing the
following rules. Each vortex element starts at the root of the BH-tree, and traverses down
the tree trying to find clusters that it can apply approximation. If the distance between
the vortex element and the cluster is far enough, with respect to the radius of the cluster,
then the velocity due to that cluster is approximated by a single interaction between the
vortex element and the multipoles located at the geometry center of the cluster. Otherwise
the vortex element visits each of the children of the cluster.? The leaves of the subtree
traversed by a vortex element will be called essential data for the vortex element because

'In practice it is more efficient to truncate each branch when the number of vortex elements in its subtree
decreases below a certain fixed bound.

2Formally, if the distance between a vortex element and a cluster is more than RADIUS (cluster)/, then
we will approximate the effect of that cluster as a point mass.
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Figure 1. BH tree decomposition.

it needs these nodes for interaction computation. Once the velocity on all the vortex
elements are known, the new positions can be computed.

4. Tree Code Library

Figure 2 illustrates the class hierarchy in the tree code library. The generic tree layer
supports simple tree construction and manipulation methods. The Barnes-Hut tree layer
extends generic tree layer (Sec 4.2) to include BH algorithm specific operations. The
application layer uses classes in the Barnes-Hut tree layer, to develop applications.

Vortex_BH_tree Vortex_element
Vortex_BH_node  Vortex_cluster Vortex_interaction Application
BH_tree Cluster Check_particle_bh_box_consistency Interaction
) BH_tree
BH_tree node  Compute _cluster_data Find_edata
A A ‘A
‘ Tree traversal_with_traverser
Tree Tree node  Tree_reduction Tree
Tree traversa

Figure 2. The class hierarchy in generic tree, Barnes-Hut tree, and application layers.

4.1. Generic tree layer

The generic tree layer is the foundation of our framework from which complex tree
structures can be derived. The class Tree serves as a container class in which every tree
node has a pointer to data of the given data type. The desired data type is given as
a template parameter. We define basic tree manipulation methods in the generic tree



layer, including inserting/deleting a leaf from the tree, and performing tree reduction and
traversal.

We have also implemented two tree operations — reduction and traversal, as special
classes. Objects instantiated from the reduction class compute the data of a tree node
according to the data of its children, e.g. computing the multipole moments in Equation 5.
Objects instantiated from the traversal class walk over the tree nodes, and perform a
user-defined operation (denoted as per node function) on each tree node.

The tree reduction/traversal operations were implemented in an application-independent
manner. Both operations are implemented as class templates so that users can supply
tree and tree node type for a customized tree reduction/traversal operations. For tree
reduction, users are required to provide two functions: init(Data*) and combine(Data
xparent, Data* child), which tell reduction class how to initialize and combine the
data in tree nodes, respectively. For tree traversal, users are required to provide the per
node function bool process(Data*) that is to be performed on every tree node.

4.2. Barnes-Hut tree

By extending the Tree class, each tree node in BH_tree contains a data cluster, and
the data cluster of each leaf node contains a list of bodies.®> The types of the body and
cluster are given by the user of the BH_tree class as template parameters AppCluster and
AppBody. The BH_tree class also supports several operations: computing cluster data,
finding essential data, computing interaction, and checking body position and BH box
for consistency. Most of these methods can be reused in implementing the fast multipole
method.

Cluster data computation is implemented as a tree reduction. init(AppCluster
cluster) resets the data in the cluster and if the cluster is a leaf, it combines the
data of the bodies from the body list into the data of the cluster. The other function
combine (AppCluster* parent, AppCluster* child) adds children’s data to parent’s.

After collecting the essential clusters and bodies, a body can start computing the inter-
actions. The computation class Interaction goes through the essential data list* and
calls for functions to compute body-to-body and body-to-cluster interactions defined by
the user of Interaction.

After bodies are moved to their new positions, they may not be in their original BH
boxes. Therefore, the tree structure must be modified so that it becomes consistent with
the new body positions again. This function is universally useful for all tree code because
the dynamic tree structure is expensive to rebuild, but relatively cheap to patch up.

4.3. Application Layer

We now show an example of application development using the tree framework — a
vortex dynamic N-body application built on top of the BH_tree layer. First we construct

3Recall that each leaf may have more than one body.
Lists obtained from the class Find_Edata.



a class Vortex_element for bodies that interact with one another according to Equation 2,
then we build the cluster type Vortex_cluster from Vortex_element. Next, in the
Vortex_cluster class we define the methods for computing/combining moments and the
methods for testing essential data.

Then, in class Vortex_interaction, which is derived from the class template Interaction,
we define methods to compute vortex element interactions. We specify the vortex element
interaction rules in the definition of body_body_interaction and body_cluster_interaction.

Finally, we define the BH-tree type Vortex_BH_tree and tree node type Vortex_BH_node.
These two data types serve as template parameters to instantiate BH-tree related opera-
tions, like Compute_cluster_data, Find edata, and Check _particle_bh box_consistency.
See Figure 2 for their inheritance relations.

4.4. Parallel implementation

In our current implementation, we assume SPMD (single program multiple data) model
for parallel computation. Under this model, we would require abstractions for data map-
ping and interprocessor communication. We have designed two groups of classes for
this purpose — Mapper classes that are responsible for defining the geometry of the tree
structure, and Communicator classes that provide all-to-some communications that are
common in N-body simulations.

Note that although using the same name, our Communicator class is quite different
from the communication package in [8]. Our Communicator is a C++ class with a high
level communication protocol. Therefore, the only optimizations we perform is message
aggregation and random destination permutation, and leave all the other optimization to
MPI library. Whereas the Communicator in [8] is a low level optimizer that will remove
redundant communication, combining separate communications, and perform communi-
cation pipelining automatically.

Mapper classes

The Mapper classes define the geometry of data structures (e.g. BH trees in N-body
simulations). Over the course of a simulation, Mapper objects are created during the
construction of data structure objects (e.g. BH tree objects). When created, a Mapper
object invokes the data partitioning function specified by the user or performs default
behavior when no partitioning strategy is specified, it then gathers and caches geometry
information from the partitioning function. In later stage of a simulation, the Mappers
mediate object operations that require interprocessor communication.

In our previous parallel C implementation, we constructed an ORB partitioner and
two associated geometry resolution functions: data to_processor (that translates a data
coordinate to a processor domain) and dataset_to_processors (that translates a rect-
angular box, which contains multiple data, to a set of processor domains). In addition,
we defined a simple data structure MappingTable to store the ORB map. These data and
methods have been integrated into the Mapper classes in our parallel framework. As part
of this research effort, we are also extending the Mapper class to incorporate a number of



commonly used partitioning strategies and user-defined mapping methods.

Communicator classes

The Communicator classes support general-purpose all-to-some communications for N-
body tree codes. A Communicator class defines two functions: extract (that, when
given a data pointer, constructs an outgoing data) and process (that processes each
incoming data). When a communicator is constructed, it goes over the list of data
pointers, calls extract to build outgoing data, packs many outgoing data into actual
messages, sends/receives all the messages according to the communication protocol, and
finally unpacks messages and calls process to perform appropriate actions.

The technique we developed for communicator has proven to be both efficient and gen-
eral enough to support all-to-some communication in N-body tree codes. For instance,
the essential data gathering was implemented as a tree traversal followed by a communi-
cator phase. The tree traversal goes over the BH nodes, computes the proper destination
set where the tree node might be essential, and appends its address to a pointer list to
that destination. Each destination processor will have a separate pointer list that con-
tains the addresses of those tree nodes that might be essential to the destination’s local
vortex elements. The extract routine assures that only essential parts of a tree node
are transmitted. The process routine inserts incoming data into the local tree. All the
message packing/unpacking/transmission are handled by communicator.

5. Experimental Study

We demonstrate the flexibility of the parallel tree library by implementing a multi-
filament fluid dynamic calculation code, in addition to the previous gravitational force
field computation code in [23]. Both applications were developed within the tree library
framework; therefore, all the tree structure details and communications were taken care
of by predefined tree operations and the communicator classes.

The experiments were conducted on four UltraSPARC-II workstations located in the
Institute of Information Science, Academia Sinica. The workstations are connected by a
fast Ethernet network capable of 100M bps per node. Each workstation has 128 mega
bytes of memory and runs SUNOS 5.5.1. The communication library in the framework is
implemented on top of MPI (mpich version 1.0.4 [3]).

The multiple-filament vortex method computes the vorticity on each vortex element,
and requires an extra phase in the tree construction to compute the vorticity. The vorticity
of a vortex element is defined as the displacement of its two neighbors in the filament
(Equation 3). Once the vorticity on each vortex element is computed, we can compute
the multipole moments on the local trees. Finally, each processor sends its contribution
to a node to the owner of the node so that individual contributions are combined into
globally correct information, as in the gravitational case [23].

The fluid dynamics code developed using the tree framework delivers competitive per-
formance. The speedup factors are higher than those of the gravitation code [23] because



the fluid dynamics code performs more computation on each vortex element, which amor-
tizes the overhead of parallelization and object orientation.

problem size 8k 16k 24k 32k 40k 48k 56k 64k 128k 256k

sequential time | 17.38 | 41.78 | 67.53 | 93.75 | 122.23 | 148.60 | 175.46 | 204.18 | 404.34 | 801.81

parallel time | 5.51 | 12.81 | 19.77 | 27.84 | 34.96 | 43.00 | 51.37 | 59.05 | 117.20 | 231.07

speedup | 3.15 | 3.26 | 3.42 | 3.38 3.46 3.42 3.42 3.46 3.45 3.47

Table 1

Timing comparison for the fluid codes. Time units are seconds. The parallel code were
written using the tree framework, and the sequential code was converted from Barnes and
Hut’s code.
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