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Load balancing and data locality are the two most important factors affecting the 

performance of parallel programs running on distributed-memory multiprocessors.  A 
good balancing scheme should evenly distribute the workload among the available proc-
essors, and locate the tasks close to their data to reduce communication and idle time.  
In this paper, we study the load balancing problem of data-parallel loops with predictable 
neighborhood data references.  The loops are characterized by variable and unpredict-
able execution time due to dynamic external workload.  Nevertheless the data refer-
enced by each loop iteration exploits spatial locality of stencil references.  We combine 
an initial static BLOCK scheduling and a dynamic scheduling based on work stealing.  
Data locality is preserved by careful restrictions on the tasks that can be migrated.  Ex-
perimental results on a network of workstations are reported. 

          
         Keywords: load balancing, data locality, MPI, work stealing, data parallel computation 

1. INTRODUCTION 

Three factors affect the execution time of a parallel program on distributed-memory 
platforms: computation cost, communication overhead and delay.  Computation cost is 
the time spent in the actual computation of the program and the delay can be caused by 
processors’ waiting for messages or sitting idle waiting for other processors to finish.  
To reduce the idle and communication time, a parallel program must evenly distribute the 
workload among the available processors, and allocate the tasks close to their data.  In 
other words, we need a load balancing scheme to handle this.  The reason why we 
choose dynamic load balancing but not static scheduling can be summarized as follows: 
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1. The amount of computation required for each task can vary tremendously between 
tasks and may change dynamically during program execution the work must be 
equally distributed among processors in a dynamic manner. 

2. The data reference patterns may be irregular and dynamic. As they evolve, a good 
mapping must change adaptively in order to ensure good data locality. 

3. The system load on the parallel machine may vary dynamically and is usually unpre-
dictable. A change of a single processor load can easily defeat a sophisticated strat-
egy for task (and data) assignment if we do not take this factor into consideration.  

A good balancing scheme should address all these issues satisfactorily.  However, 
these issues are not necessarily independent, attempts to balance the workload can affect 
locality, while attempts to improve locality may create imbalance of workload.   

In this paper, we study the load balancing problem of data-parallel computations 
which exploit neighborhood data references.  These computations are usually character-
ized by means of parallel loops characterized by iteration costs which are variable and 
often unpredictable, due to the dynamically changing external load.  On the other hand, 
the data referenced by each loop iteration exploits spatial locality of stencil references, so 
that boundary elements can be identified once a partitioning strategy is given, and op-
timizations such as message vectorization and message aggregation can be applied.  A 
large number of applications fall into this category.   

Many load-balancing schemes work in an “active” way.  They usually have a load 
balancer which actively balance the workload.  But if the load balancer cannot acquire 
accurate load information, it could make a wrong decision.  As a result the system load 
information must be constantly monitored and updated.   

In this paper, we propose a passive scheduling system, WBRT, that achieves load 
balancing and, at the same time preserves data locality.  We combine static scheduling 
and dynamic so scheduling that initially data are BLOCK distributed to preserve data 
locality for stencil-type data references, while dynamic load balancing is activated only 
when load imbalance occurs.  Furthermore, to avoid the synchronization overhead re-
quired by a centralized dispatcher, we employ a fully distributed scheduling policy that 
constantly monitors and updates the system load information.  Furthermore, to preserve 
data locality during program execution, migrations of tasks and data are in the way that 
preserves the BLOCK distribution as much as possible.  Finally, we duplicate boundary 
elements (shadowing) between adjacent processors to avoid inter-processor communica-
tion for computation of boundary elements and also to improve vectorization of the loop 
body, hence reducing the computation time of each processor.   

The rest of the paper is organized as follows.  Section 2 reviews some related 
works. Section 3 outlines the implementations of the WBRT system. Section 4 reports our 
experimental results on two network of workstations, and section 5 concludes the paper. 

2. RELATED WORK 

2.1 Loop Scheduling for Load Balancing 

Many studies have been carried out on various dynamic load balancing strategies for 
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distributed-memory parallel computing platforms. Rudolph and Polychronopoulos [1] 
implemented and evaluated shared-memory scheduling algorithms in the iPSC/2 hyper-
cube multicomputer.  It was not until early the 90’s that load balancing algorithms for 
distributed-memory machines were reported in the literature [2-7].  Liu et. al. proposed 
a two-phase Safe Self-Scheduling (SSS) [2].  Distributed Saft Self-Scheduling (DSSS), 
a distributed version of SSS, is reported in [3].  DSSS is further generalized in [4].  
Plata and Rivera [5] proposed a two-level scheme (SDD) in which static scheduling and 
dynamic scheduling overlap.  A similar approach focusing on adaptive data placement 
for load balancing is reported in [8].     

The difficulty of load balancing is in deciding whether work migration is beneficial 
or not.  None of the above balancing strategies has addressed this issue however.  The 
SUPPLE system [9] is a run-time support for parallel loops with regular stencil data ref-
erences and non-uniform iteration costs.  It is targeted for homogeneous, dedicated 
parallel machines and handles only load imbalance caused by non-uniform application 
programs.  While the degree of this kind of imbalance changes only gradually, the load 
situations in a network of workstations may vary dramatically and frequently.  Hence, 
the load balancing actions should quickly respond to the actual system load.     

2.2 Dynamic Data Redistribution for Load Balancing 

Another class of load balancing algorithms is based on changing the distribution of 
data periodically during program execution.  A dynamic re-mapping of data parallel 
computations is described in [10].  It considers only data re-mapping when a computing 
phase change occurs.  A similar work based on a heuristic approach was reported in [11].  
The DataParallel-C group [12] formulates data-parallel computation by the concept of 
virtual processors.  In [13], Feschet et. al. proposed a data structure called ParList for 
dynamic load balancing based on data redistribution for image-processing applications. 

The potential problem with these data re-mapping methods for dynamic load bal-
ancing is that they under-utilize multiprocessor resources such as CPU, memory, and 
network, because the load-balancing is carried out in sequential phases that require global 
synchronizations.  Our WBRT system employs a fully distributed, work stealing strategy 
to avoid global synchronizations. 

2.3 Work Stealing for Load Balancing 

The idea of work stealing is not new.  Cilk [14, 15] is a multi-thread language with 
runtime support for dynamic load balancing.  At runtime, an idle processor steals work 
from a random victim processor by migrating a task from the top of the job queue in the 
victim processor.  On a shared memory environment, Cilk reported good speedup for 
various applications.  However, the randomized work stealing strategy may perform 
poorly for data-parallel applications, where data locality is a critical factor in code per-
formance.  And Cilk does not make an attempt to analyze the profitability of work steal-
ing either. 
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3. WBRT SYSTEM 

In research reported here we implemented a workload balancing runtime system 
(WBRT) as a runtime environment for parallel programming on distributed networks.   

3.1 Programming Model 

Internally, WBRT implements an array based on the Single-Program-Multiple-Data 
(SPMD) model, in which every processor executes the same program operating on the 
portion of the array mapped to it.  And a one-dimensional partitioning scheme is 
adopted to minimize the number of inter-processor communications.   

WBRT provides a global view of the data, in which the data structure is treated as a 
whole, with operators that manipulate individual elements and implicitly iterate over sub-
structures.  When WBRT initialized, the global data structure is partitioned and mapped 
into local memory segments following the “owner-computes-rules”.  Conceptually, 
WBRT array operations are decomposed into parallel tasks.  When the program starts 
execution, every processor self-schedules its own portion of the tasks, and when the need 
arises, tasks at processor boundaries are migrated among processors by work stealing 
technique (Fig. 1). 

 

Fig. 1. A mapping of data array to processors.  Each task computes two data elements and each 
computation on a data element references its two neighbor, so the padding size is one. 

3.2 WBRT API 

WBRT provides a simple interface for the application to operate on the tasks.  Fig. 
2 shows how a sample code communicates with WBRT runtime system.   

A WBRT handler (WBRT_H) is the window through which the application can com-
municate with the WBRT runtime system.  The structure records detailed information on 
the runtime environment.     
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WBRT applications start the execution by calling WBRT_Run. The WBRT_Run function 
repeatedly get a task for execution.  The task returned by the WBRT may be a local or 
remote task that was stolen from other processors.  In other words, the task stealing is 
transparent to the application, and the application does not need to know where the task 
came from.  All the details of sending/receiving data associated with the migrating tasks 
are handled by WBRT. 

#include "WBRT.h"   

 

#define D_ARRAY_SIZE 500  

#define BOUNDARY 1  

#define TASK_SIZE  5  

 

int ARRAY_SIZE = 20000;   

typedef struct{    

int org[D_ARRAY_SIZE];    

int res[D_ARRAY_SIZE] ;  

} DATA;   

 

/* User functions to initialize and manipulate the data in a Task */  

void DoTask(Task *);  

void InitData(DATA*);   

 

int main(int argc, char *argv[ ])   

{    

WBRT_H wrh;    

WBRT_Init (argc, argv, &ARRAY_SIZE, TASK_SIZE, BOUNDARY, &wrh,  

InitData, DoTask);    

WBRT_Run(&wrh);    

WBRT_Finalize();  

} 

Fig. 2. A sample application using WBRT interface. 

3.3 Implementation Details 

A WBRT execution consists of two threads on each processor: The AP thread is the 
user application thread and the RT thread is the runtime system thread.  An AP can re-
quest only tasks from the corresponding RT on the same processor.  RTs work together 
to handle all the low level details of work stealing and task migration. 

3.3.1 Initial tasks assignment 

At the beginning of execution, WBRT distributes the workload according to the ini-
tial load on processors.  First, each processor test-runs a task to determine its current 
load, then the processors distribute all the tasks among themselves accordingly.  The 
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load information obtained in this way is most accurate.  Formally, let the load on the i-th 
processor Pi be Li, and Nall be the total number of tasks.  The number of tasks given to 
the i-th processor Pi, denoted by Ni, is  

Ni = Nall * 


















∑ L

Li

1

1

.                                                    (1) 

3.3.2 Work stealing 

The most important function of WBRT is work stealing.  When an AP requests 
work from a corresponding RT by WBRT_Gettask, the corresponding RT will give it a 
local task if one is available, otherwise the RT will try to steal a set of contiguous tasks 
from other processors.  See Fig. 3 for an illustration.  

 

 

Fig. 3. A mapping of 9 tasks to three processors. (a) and (b) show the situation before and after 
processor 1 steals two from processor 3. 

A processor must determine if it is underloaded before performing work stealing.  
Let Si be the time for Pi to finish a task under the current workload, Ri be the number of 
remaining tasks in Pi.  Then we define Wi to be the amount of time to Pi to finish its 
tasks. 

Wi = Ri * Si                                                                                      (2) 
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We define that a processor Pi is underloaded if Wi < k * Wavg, where k is a constant 
that we can tune by experiments, and Wavg is the sum of all workloads. 

An underloaded processor locates its victim for task stealing by message passing.  
It sends a request message to each of the other processors.  A processor will return a 
reply message when it receives this request.  And the requesting processor then deter-
mine if it wants to steal tasks from the replying processor.   

A reply message from Pj consists of Sj, Rj, and Tj, namely, the current computation 
cost per task, the number of remaining tasks, and the time for Pj to send a task to other 
processors, respectively.  The requesting processor Pi uses all this information to select 
the victim processor to steal tasks from.   

To determine the most suitable victim processor we define a cost ratio for a possible 
victim processor Pj.  

j

j

W

T
jC =                                                          (3) 

This ratio indicates the relative cost of stealing tasks from Pj among other choices.  
A processor with a small Cj is either overloaded or can send tasks to others very quickly; 
both indicate that it is a good candidate for work stealing.  So we choose the one with 
the smallest Cj as a victim.  Then we compare the victim’s Cj with a fixed threshold δ.  
If Cj is smaller than δ, the requesting processor will steal from the victim.  But if all the 
processors have Cj larger than δ, the requesting processors will not try to steal workload 
from others.  We argue that under such a circumstance it will not be beneficial to mi-
grate the tasks despite a load imbalance, since the communication overheads will be high. 

After having located the victim processor, the underloaded processor will transfer 
tasks from the victim to itself.  The victim makes sure the tasks that will be sent out 
form a contiguous block so that data locality is preserved, and only up to half of the tasks 
are allowed to be transferred.  It will be impractical to maintain a single block partition 
at all times, since the most suitable victim processor for P, as far as cost C is concerned, 
may not be adjacent to P.  To distribute workload and maintain data locality simultane-
ously, we make the following comprise that each processor can have up to a small num-
ber of contiguous segments.  If the number of segments in a processor P reaches the 
limit, P’s any further stealing must be adjacent to its existing segments.  These restric-
tions reduce high communication costs in task migration and data fragmentation due to 
work stealing. 

3.3.3 Boundary padding  

WBRT maintains a read-only padding (shadowing) around the processor domain 
boundary.  The size of this padding is set during WBRT_init.  This padding is main-
tained by WBRT to simplify the application code.  Each task being passed to DoTask is 
automatically padded by WBRT so that user code can directly access the data in the pad-
ding.  In addition, when the boundary between two processors is changed, the padding is 
automatically adjusted by WBRT.  The existence of padding is completely transparent to 
applications. 
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3.3.4 Synchronization 

  The scheduling between AP and RT is important.  We implement AP and RT as two 
Pthreads in one processor.  The RT will wake up every 500 microseconds to see if there 
is anything it needs to do.  There is a tradeoff between shorter response time and better 
CPU utilization by AP in picking the length of the sleep.  

3.3.5 Task execution order 

At the beginning of WBRT_Run, every processor has a set of contiguous tasks.  The 
execution order of these tasks may affect data locality, especially when work-stealing 
happens. WBRT uses a middle-first strategy, i.e., it chooses tasks from the middle of the 
local task set for execution, in order to keep data locality.  When work stealing happens 
from either end, tasks may be given from the part nearest to the thief’s local tasks.  The 
purpose of this mechanism is to keep every processors’ local tasks as contiguous as pos-
sible (Fig. 4). 

 
Fig. 4. An example showing task execution and migration. (a) indicates that P2 executed tasks 17, 

16, 18, 15, and is executing 19 due to the middle-first strategy. (b) shows the configuration 
after P3 steals tasks 21, 22, and 23 from P2. 

4. EXPERIMENTAL RESULTS 

We design a series of experiments to evaluate the efficiency of WBRT on a cluster of 
four Sun Dual UltraSPARC II workstations.  Each workstation is running SunOS release 
5.6 on Dual UltraSPARC II 296Mhz with 1GB of memory, and we use mpich 1.1.2 for 
message passing, and POSIX thread for multi threading.   
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The application is a graphic relaxation process that computes the value of every 
pixel as the average of its four neighbors.  The computation domain is an N by 500 ma-
trix where N is between 1000 and 10000. 

4.1 WBRT Runtime Overheads 

First, we examine the overheads due to WBRT.  We run the graphic relaxation code 
sequentially and compare the results with WBRT with/without workload stealing. Dif-
ferent problem sizes are tested.  Fig. 5 shows that the speedup on the cluster of four 
Dual UltraSparc II workstations, with WBRT work stealing, is between 3.46 to 3.81.  
This substantial speedup indicates that WBRT API introduces only a very small amount 
of overhead.  

 

Fig. 5. Speedup of the relaxation code with and without work stealing the relaxation code sequen-
tially, on a cluster of four Dual UltarSPARC II workstations. 

4.2 Effectiveness in Load Balancing 

The second set of experiments examine if work-stealing can effectively balance the 
load on a real cluster system.  We run the same relaxation code on the UltraSPARC 
cluster, and compare the timing with and without work stealing.  These two clusters are 
located at Academia Sinica and is heavily used from time to time.   

On the cluster we run the relaxation code with WBRT.  The experiments on this 
cluster show that the same code with work-stealing runs about 1.5 time as fast as without 
(Fig. 6).  This significant improvement indicates that WBRT does reduce the parallel 
execution time on a multiprocessor with dynamic external workload.   
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Fig. 6. Timing results from running the relaxation code on a cluster of four UltraSparc II with and 
without work-stealing respectively. 

Fig. 6 also indicates that the execution time with work stealing increases more 
smoothly than without.  In other words, WBRT with work that stealing gives much more 
predictable, and also shorter, execution time. 

5. CONCLUSIONS 

In this paper we show that the simple technique of work-stealing improves parallel 
efficiency.  The key observation is that by letting the idle processors steal tasks from 
busy processors, every processor can be busy all the time.  In other words, idle proces-
sors should actively search for tasks to execute, instead of letting a high level scheduler 
decide which task should go to which processor. 

Data locality is important to parallel execution efficiency.  By restricting that the 
tasks must be migrated as contiguous blocks, data locality can be preserved.  This is as 
important as even distribution of workload, especially in a distributed memory multi-
processor.  

Preliminary experiments show that WBRT work stealing effectively balances the 
load on a real cluster system.  The speedups indicates that WBRT does reduce the paral-
lel execution time on a multiprocessor environment with dynamically changing external 
workload.  In addition, WBRT with work stealing also gives much predictable execution 
time than without.  
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