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Abstract

This paper studies distributed scheduling of parallel I/O data transfers on sys-
tems that provide data replication. In our previous work, we proposed a centralized
algorithm for solving this problem in systems where data transfer information is cen-
trally available. This algorithm finds the optimal scheduling by constructing aug-

menting paths in the data transfer bipartite graph, requiring O(nm log n+n2 log
3

2 n)
time, with n nodes and m edges in the bipartite graph.

In this paper, we investigate this scheduling problem in distributed systems
where data transfer information may not be centrally available. We propose a
distributed scheduling algorithm, Highest Degree Lowest Workload First (HDLWF),
which approximates the augmenting path algorithm in distributed environments.
HDLWF is based on a distributed, two-step scheme that determines appropriate exe-
cution order of data requests through a small number of rounds of bidding between
clients and I/O servers. Our experimental results indicate that HDLWF yields sched-
ules close to the centralized optimal solution, and in some cases within 3% of the
optimal solution.

1 Introduction

While the speed, memory size, and disk capacity of parallel computers continue
to grow rapidly, the rate at which disk drives read and write data is improving
at a much slower pace. As a result, the performance of carefully tuned parallel
programs can slow down dramatically when they read or write files. Parallel I/O
techniques can help solve this problem by creating multiple data paths between
memory and disks. Over the past few years, significant research efforts have been
devoted to devising methodologies for enabling parallel I/O, ranging from low-level
solutions (such as disk striping [22] and disk-directed I/O [15]), through operating
system support (parallel file systems [17, 11, 20, 12, 3, 4] and compiler/library
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support ([23, 24, 26, 2, 19]), to high-level algorithmic design for out-of-core parallel
computation ([27]).

The performance of parallel I/O is dominated by how fast data can be trans-
fered between processing nodes and disks. The data transfer time can be reduced
in several ways. For instance, we may reduce the transfer time by choosing proper
placement of I/O servers in the network to reduce the amount of remote data trans-
fers [6], by prefetching or caching disk data to overlap computation with I/O op-
erations, or by prescheduling I/O requests to eliminate contention on the resources
(also referred to as parallel I/O scheduling). In this paper, we will focus on parallel
I/O scheduling.

Data replication is commonly used for computation-intensive or data-intensive
applications on distributed systems, both for reliability and performance reasons. It
is typical for an application to take a long period of time to complete its execution.
Failure of any disk will cause loss of data and thus faults in program execution.
Data replication is necessary to ensure availability of data. Furthermore, data repli-
cation is also frequently used for better performance of distributed systems. For
example, many web servers, multimedia servers and scientific databases use mir-
rored sites with replicated data to avoid hot spots in data transfers so as to increase
performance. To obtain better parallel I/O performance, a scheduling algorithm
should take data replication into consideration. However, data replication increases
the complexity of scheduling, because in addition to deciding the execution order of
data transfers, we also need to decide which copy of each data to be used.

In our previous work [16] we proposed a fast algorithm that finds optimal sched-
ule for parallel I/O on systems that provide multiple copies of data. The algorithm
first finds an optimal selection of data copy for all the data transfer requests by
constructing augmenting paths in the data transfer bipartite graph. The selected
set of data transfers with specific data copy represent an “optimal data transfer
pattern”. The algorithm then determines the execution order of the requests in the
optimal data transfer pattern by edge coloring. We shown that our augmenting path

algorithm finds an optimal data transfers pattern in O(nm log n + n2 log
3

2 n) time,
with n nodes and m edges in the bipartite graph. Our augmenting-path approach
is a centralized one, assuming global information about parallel I/O requests are
centrally available. This is usually not the case in distributed systems, however,
due to lack of shared memory or communication support between processing nodes
in a distributed system.

In this paper, we propose and evaluate a distributed algorithm to preschedule
I/O requests in the presence of data replication. Our algorithm is based on a
distributed, two-step scheme that determines appropriate execution order of data
requests through a small number of rounds of bidding between clients and servers.
Our experimental results indicate that our distributed algorithm yields schedules
close to the centralized optimal solution, in some cases within 3% of the optimal.

The rest of the paper is organized as follows. Section 2 describes our model
of parallel I/O and the scheduling problem. Section 3 presents our distributed
algorithm, HDLWF, that approximates the augmenting path algorithm in distributed
environments. Section 4 reports our experimental results. Section 5 reviews related
works, and Section 6 gives some concluding remarks.

2



2 Parallel I/O Scheduling

We make the following assumptions for the specific I/O scheduling problem we will
consider in this paper:

• data transfers can be of arbitrary length but take place in units of fixed-size
blocks and preemption is permitted at block boundaries.

• the transfers may occur in any order,

• each client has a queue of data transfer requests each destined for a specified
server,

• a client or a server can handle at most one data transfer at any given time,
and

• each client can communicate with each I/O server via a direct link.

Given a batch of pending I/O data transfers, our goal is to decide a schedule for
performing these transfers whose total length is minimum.

2.1 Edge Coloring for I/O Scheduling

The scheduling problem can be modeled by a bipartite graph in which the vertices
on the left represent clients (denoted by Ci) and those on the right represent servers
(denoted by Sj). An edge is placed between Ci and Sj if a data in Sj is requested
by the client Ci. There is no time dependence among the requests.
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Figure 1: An example of data request pattern and two possible I/O schedules.

Figure 1(a) illustrates a system with three clients and two servers. Client C2 has
two requests and C1 and C3 each has one request so that there are totally four data
transfers, represented by four edges R1, R2, R3 and R4. A conflict exists at client
C2, which is the client of both R2 and R3. Similarly, a conflict exists at server I1

and I2 respectively. Figure 1(b) shows a possible schedule for this bipartite graph.
R1 and R4 are both scheduled to start simultaneously at the beginning. This is
legal because R1 and R4 share neither client nor server. R2 cannot start until R1

finishes since they both share server I1. Similarly, R3 can only start after R2 finishes
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because they share the same client C2. This schedule results in a total time of 3
time steps (Figure 1(b)). A better schedule can be obtained by scheduling R1 and
R3 first and then R2 and R4, as shown in Figure 1(c), in which the total time is
reduced to 2 time steps.

It is known that scheduling data transfers can be viewed as an edge coloring
problem, where data transfers scheduled in the same time slot form matching in the
bipartite graph. It is shown that d colors are necessary and sufficient to edge color a
bipartite graph with maximum degree d [14]. Efficient algorithms to obtain optimal
edge coloring can be found in [5, 13, 14, 18]. Some of these results show that when
the parallel I/O request pattern is known to the algorithm, it can improve parallel
I/O performance by 30% to 40% [13, 14].

2.2 Scheduling in the Presence of Data Replication

For ease of presentation, we use a tripartite graph to incorporate the factor of data
replication into the basic bipartite graph. In a tripartite graph G = (V,E), the
vertex set V consists of three subsets C, D, IO, where C represents the set of client
nodes, the set D is the set of data, and the set IO is the set of server nodes. Clients
access data, which are duplicated at various server nodes. The edge set E consists
of two subsets R and S. An edge in R connects a client c to a data d, which means
that client c requests for data d. An edge in S connects a data d to a server i,
which indicates that server i stores a copy of data d. Since the same data can be
duplicated in many servers, a data d may be connected to more than one server
via edges in S. Figure 2 illustrates a tripartite graph with three clients, four data
requests, and three servers.
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Figure 2: A tripartite graph with 3 clients, 4 data requests, and 3 servers

In Figure 2(a), data request R1 can be satisfied by either data copy S1 in server
I1 or copy S2 in server I2. Figure 2(b) and 2(c) show the two schedules when S1

and S2 are selected respectively. If S2 is selected, then requests R1, R2 and R4 have
to be processed sequentially in three stages because they joint at server I2 (Figure
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2(b)). By choosing S1 instead, requests R1 and R2 can be scheduled at the same
time slot, followed by R3 and R4 at the next time slot (Figure 2(c)).

Since the data are duplicated on different servers, we must assign a server for
each data where it can be found by its requesting client. Formally we define this
mapping as a function m from D to IO so that m(d) = io indicates that data d will
be provided by server i. After this assignment is completed, the tripartite graph is
reduced to a bipartite graph G′(G,m) = (D ∪ IO,M), where an edge (d, io) is in
M if and only if m(d) = io.

After the mapping function m is determined, the tripartite graph is reduced to a
bipartite graph, which in turn can be edge-colored to determine the schedule of the
data transfers in the bipartite graph. The scheduling problem is therefore reduced
to finding a mapping function m from data to servers so that the reduced tripartite
graph minimizes the maximum degree among all servers.

3 Distributed Scheduling of Parallel I/O

In many distributed environments, global information about I/O data transfers
is not centrally available and clients (and similarly servers) do not have shared
memory or hardware support for fast communication between them. We propose
a distributed algorithm for scheduling parallel data transfers using only a small
number of rounds of bidding between clients and servers.

The distributed algorithm is based on a distributed, two-step bidding process.
During the first step, each client selects one of its pending transfers and sends a
bidding proposal to the associated server. In the second step, each server resolves
conflicts by selecting one of the bidding proposals it receives and sending back an
acceptance message. Bidding proposals from other clients are rejected. When every
bidding client has received an acknowledgment message (acceptance or rejection)
from the associated server, the algorithm proceeds to the next round of bidding.
The same process repeats until all the pending transfers have been scheduled. After
the scheduling phase completes, the clients send out data transfer requests one by
one as planned in their ordered lists.

The algorithm we propose, Highest Degree Lowest Workload First (HDLWF), is
a heuristic that aims to approximate our augmenting path based algorithm in a
distributed environment. First we introduce some data structures that are used
in HDLWF. Each server j maintains a client set Cj that will request data from j.
Each client i maintains a set of pending data requests along with their replicated
copies, denoted by Ri. The function server of(Ri) gives the server ids of the pending
requests. In addition, each client i maintains a list of current workload (CW[1,m])
of the servers that i will request data from. CW(k) represents the number of data
transfer requests that have currently been accepted by server k. CW(k) are all set to
zero initially and are updated upon receiving an acceptance/rejection message on
the client.

The distributed algorithm HDLWF has two steps in each round of bidding. During
the first step, each client i selects a server j with the smallest current workload
(smallest CW value) from Ri, and sends a bidding proposal to server j. The proposal
contains both the request and the degree of client i. In the second step, each
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server resolves conflicts by selecting the client that has the highest current degree.
It is known that to obtain an optimal edge coloring, every matching must be a
critical matching; i.e., must include an edge adjacent to the highest degree node.
By favoring high-degree clients on the server side, HDLWF increases the probability
of obtaining a critical matching. We also show in our previous paper [16] that to
obtain an optimal selection of data transfer pattern, the maximum degree of the
servers must be minimized. By favoring low-workload servers, HDLWF also increases
the probability of obtaining minimum degree.

Once the server has made its choice of client, it appends the selected data request
to its ordered list, increases its current workload by one, and sends back its new value
of current workload in an acceptance (rejection) message to the chosen (rejected)
clients. Upon receiving the acceptance message, the selected client appends the
data transfer request to its ordered list and updates its current workload entry CW(j)
accordingly. The selected client i also removes the data request and its replicated
copies from the set of pending data transfers Ri. Note that the current degree of
a client and the current workload of a server are exchanged between clients and
servers through the bidding proposals and the acceptance/rejection messages, and
thus they do not require additional message passing. Figure 3 gives the pseudo code
of HDLWF.

4 Experimental Results

We conducted simulations to evaluate the effectiveness of our algorithms. The
simulation parameters include network latency and bandwidth, disk latency and
bandwidth, synchronization cost, and buffer size. These parameters are obtained
experimentally from a 32-node Pentium-III cluster with Myrinet interconnects and
IDE disks. In all of the experiments, we fix the number of clients to be 256. For
our study, we investigate the impact of the following factors on the performance of
different scheduling algorithms: number of I/O servers, number of data transfers,
number of replicated copies of data, and data transfer patterns (uniform vs. non-
uniform or hot spots).

The most important factor is data transfer pattern. Although “uniform” data
transfers are frequently seen in scientific applications (where each client requests
roughly the same amount of data which are evenly distributed among the I/O
servers), there are also many applications that exhibit hot spots in specific parts of
the data and therefore in specific I/O servers. Thus, the actual effect of scheduling
algorithms depends very much on the workload that is applied in the system. Since
there are very few studies on workload analysis of parallel I/O and we have had
difficulty obtaining real parallel I/O trace data, we generate synthesis workload in
the following way. We do a one-to-one mapping of a geometric sequence of m items
to the m I/O servers, with common ratio r, where 0 < r <= 1.0 (that is, the first
item is 1.0, the second r, the third r2, and so on.) Let the sum of the geometric
sequence be S. Then we divide each item with S. Let the resulting sequence be
p1, p2, . . . , pm. It is clear that for all pi, 0 < pi <= 1.0, and

∑m
1 pi = 1. pi represents

the probability that a data transfer will be assigned to I/O server i. For each data
transfer, we choose its I/O server by picking a random number between 0 and 1 and
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Algorithm HDLWF:

On each client i:

Repeat until all R_i become empty

/* choose the pending request whose server has the lowest current workload */

Select data request j from R_i that has the smallest CW(server_of(j)).

Send bidding proposal (i, j) to server_of(j)

wait for acceptance/rejection message + new_CW.

if proposal accepted

append (i, j,server_of(j))) to schedule

remove all_copies_of(j) from R_i.

end if

CW(server_of(j)) <- new_CW /* update current workload of the server */

End repeat

On each server j:

schedule_done = false

Repeat until schedule_done

Wait for all bidding proposals, B, until time out

if B is not empty

then choose B(i) such that client_of(B(i)) has the highest current degree

append (B(i),client_of(B(i)),j) to schedule

CW <- CW + 1

Send acceptance message and CW to client_of(B(i)).

/* send reject message to all the other bidding clients */

Send rejection message and CW to clients_of(B) - client_of(B(i))

else schedule_done = true

end if

End repeat

Figure 3: The pseudo code of Highest Degree Lowest Workload First (HDLWF) algorithm.
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then deciding its location by comparing the random number with the prefix sums of
the probabilities sequence. With large number of sampling, our synthetic workload
generation emulates a normal distribution function. The advantage of this method
is that by choosing different common ratio r, we are able to experiment with a wide
range of workload, ranging from uniform workload (r = 1.0) to workload with hot
spots (with a very small r). Multiple hot spots can also be generated by mapping
multiple sets of geometric sequences to the I/O servers.

In this section, we compare our distributed algorithm, HDLWF, against the cen-
tralized augmenting path algorithm, AP, which always finds the optimal schedule. In
addition, we also use a randomized scheduling algorithm as a basis for comparison.
We show that despite of lack of global information on data transfers between clients
and I/O servers, HDLWF consistently produces better schedules than the randomized
strategy. This shows the importance of optimization. Furthermore, under the same
simulation configuration, HDLWF yields parallel performance within 15% of AP in
almost all cases, and in some cases within 3% of AP.

4.1 Effect of System Size

 1

 1.2

 1.4

 1.6

 1.8

 2

 5  6  7  8  9  10  11

no
rm

al
iz

ed
 s

ch
ed

ul
e 

le
ng

th

n, 2^n is the number of data transfers

(a) Data to IO ratio = 8 

Optimal
HDLWF
Random

 1

 1.2

 1.4

 1.6

 1.8

 2

 6  7  8  9  10  11

no
rm

al
iz

ed
 s

ch
ed

ul
e 

le
ng

th

n, 2^n is the number of data transfers

(b) Data to IO ratio = 16

Optimal
HDLWF
Random

 1

 1.2

 1.4

 1.6

 1.8

 2

 6  7  8  9  10  11

no
rm

al
iz

ed
 s

ch
ed

ul
e 

le
ng

th

n, 2^n is the number of data transfers

(c) Data to IO ratio = 32

Optimal
HDLWF
Random

 1

 1.2

 1.4

 1.6

 1.8

 2

 6  7  8  9  10  11

no
rm

al
iz

ed
 s

ch
ed

ul
e 

le
ng

th

n, 2^n is the number of data transfers

(d) Data to IO ratio = 64

Optimal
HDLWF
Random

Figure 4: Effect of the number of data transfers on the schedule lengths of HDLWF, AP
(Augmenting Path, the optimal solution), and Random.

In this set of experiments, we fix the data transfer distribution ratio r = 1.0,
meaning that the I/O servers have even workload. Each data has two copies stored
on different servers.
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We use normalized schedule length as the metric for performance comparison. A
schedule length is normalized by dividing it by the shortest schedule length found by
the AP algorithm from all combination of simulation parameters in this experiment.
As a result the AP algorithm under a particular configuration may have a normalized
schedule length greater than 1.

Figure 4 compares the normalized schedule lengths from the three algorithms,
HDLWF, AP and Random under different data-to-IO-server ratios (8,16,32 and 64 re-
spectively). HDLWF is superior to Random in all cases. This indicates the importance
of optimization. There is very small discrepancy in the normalized schedule lengths
generated by HDLWF and AP when the number of data transfers increases (ranging
from 25 to 211 data transfers). This is an indication that HDLWF is quite stable with
the increase in data transfer traffic. Furthermore, as the data-to-IO-server ratio
increases, the gap between HDLWF and AP becomes smaller. That is, the heavier
the workload on the servers, the closer the schedule generated by HDLWF is to the
optimal one. This indicates good scalability of HDLWF.

4.2 Effect of Data Transfer Patterns

In this set of experiments, we fixed the number of I/O servers to be 16 and varied
the common ratio in data transfer distribution. (ranging from r = 0.25 to r = 1.0).
The four figures in Figure 5 compare the three algorithms under different number of
data transfers respectively ((a)128, (b)256, (c)1024 and (d)2048). In each figure, the
common ratio r ranges from 0.25 to 1.0. The lower the value of r, the less uniform
the data transfer distribution. When r = 1.0, the servers have even workload, while
when r = 0.25, there is one hotspot server which receives almost 75% of the total
data transfer requests.

As expected, the schedule lengths all increase when the common ratio r becomes
smaller, because when there is a hotspot in data transfers, the overall schedule
length tends to be dominated by the hotspot server. Furthermore, HDLWF is superior
to Random in almost all cases except for small number of data transfers with a
hotspot (for example, when r = 0.2 in Figure 5(a) and (b)). When the data transfer
traffic becomes heavier, HDLWF performs consistently better than Random. When the
data transfer traffic is lighter (Figure 5(a) and (b)), HDLWF is more sensitive to the
distribution of data transfers, in that the discrepancy between the performance of
HDLWF and the optimal algorithm increases when the data transfers concentrate on
a hotspot. However, when the data transfer traffic becomes heavier, HDLWF becomes
less sensitive to the distribution of data transfers and is able to find a schedule close
to the optimal one (Figure 5(c) and (d)).

Figure 6 examines the effect of hotspots on the scheduling. The total number of
data transfers is fixed to be 256 and 2048 in Figure 6(a) and Figure 6(b) respectively
and the number of hotspots varied from 1 to 8. In both figures, the schedule lengths
decrease as the number of hotspots increases, because the data transfer traffic be-
comes evenly distributed over the hotspot servers. Again, when data transfer traffic
is light, HDLWF is more sensitive to small number of hotspots. When the traffic be-
comes more evenly distributed, HDLWF is almost as good as AP (Figure 6(a)). When
the data transfer traffic becomes heavier, HDLWF is less sensitive to hotspots and is
able to generate near-optimal schedule (Figure 6(b)).
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Figure 5: Effect of the distribution of data transfers on the schedule lengths of HDLWF,
AP, and Random. x-axis represents the common ratio r used for the distribution of data
transfers, the higher/lower the value of r, the more/less uniform the load between servers.
When r = 1.0 every server has approximately the same workload. When r = 0.25, there
is a hotspot server which receives almost 75% of the total data transfers.
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Figure 6: Effect of hotspots on the schedule lengths of HDLWF, AP and Random. A
common ratio r=0.25 for distribution of data transfers is used for all experiments.
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4.3 Effect of Data Replication (Number of Data Copies)
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Figure 7: Effect of data replication on the schedule lengths of HDLWF, AP, and Random.
x-axis represents the number of data copies stored on the servers.

In this set of experiments, we examine the impact of data replication on the
scheduling. In Figure 7(a) and Figure 7(b), data transfers are evenly distributed
among the servers (i.e. the servers have even workload). In this case, the results
show that only a small number of replication is needed to achieve the overall optimal
schedule. For instance, in Figure 7(a), when there are two or more copies of the
data, the optimal schedule length does not decrease, and AP is always able to find
this overall optimal schedule. On the other hand, three copies of replication is
sufficient for HDLWF and Random. When the data transfer traffic becomes heavier
(Figure 7(b)), all three algorithms require only two copies of replication to achieve
their best scheduling results; there is no need for keeping more copies of replication.

On the other hand, Figure 7(c) and Figure 7(d) show that when there are
hotspots in data transfers, data replication seems to always help in reducing sched-
ule length. In an idealized world where there is no cost for distributed scheduling
and no cost for maintaining multiple copies of data, data replication always helps
in speeding up parallel I/O.
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5 Related Work

In this section, we discuss some of previous works in parallel I/O scheduling, in-
cluding both centralized scheduling and distributed scheduling.

5.1 Centralized Scheduling

Jain, et. al [13] investigate parallel I/O scheduling on multi-bus systems. Their
model assumes that at most k data transfers can occur simultaneously at any given
time. They prove that when k is unbounded, exactly d colors are necessary and
sufficient to color a bipartite graph of degree d. When k is bounded, the scheduling
problem is equivalent to k-coloring of a graph, in which each color may be used
to color at most k edges. It is shown that at least p = max(d, dm/ke) colors are
necessary to k-color a bipartite graph with m edges and degree d.

To further improve the scheduling time, Jain, et. al [14] propose greedy heuristics
(called HDF and HCDF) which are essentially approximation algorithms for k-coloring
the edges of a bipartite graph. For each color, the algorithm attempts to color as
many edges as possible with that color. They show that when k is unbounded, a
greedy heuristic produces a coloring using at most 2d− 1 colors, and that both HDF

and HCDF are able to edge-color the graph with exactly 2d−1 colors. For bounded k,
it is shown that a greedy heuristic produces a coloring using at most bm/kc+(2d−1)
colors. HDF and HCDF are the fastest centralized algorithms known so far.

Several other researchers also proposed fast algorithms for constructing minimum
length schedule for parallel I/O, including the algorithm KT [1], which takes time
O(mn(m + n)), Somalwar’s algorithm [25], which takes time O(mn1.5 log n), and
algorithm A2 [13], which takes time O(mn0.5 log n).

The only work that we are aware of that schedules parallel I/O for systems
providing data replication is the Lowest Destination Degree First (LDDF) algorithm
proposed by Chen and Majumdar [5]. LDDF considers I/O nodes in ascending order
of degrees, and selects a client randomly for each I/O node. Once a data is scheduled,
all the edges corresponding to its duplicated copies are removed from the graph. This
process repeats until all the data requests are scheduled. In each iteration, it requires
O(n log n) steps to sort the I/O nodes and O(m) steps to pick the client/server pair.
The algorithm iterates n times, resulting in total time of O(n2 log n + nm). Since
LDDF relies on heuristics, it has no guarantee for finding the optimal solutions. Our
augmenting path based algorithm always finds the optimal solution and requires

O(nm log n + n2 log
3

2 n) time. In our experiments, we found that our algorithm
does not require more scheduling time than the algorithm LDDF in most cases.

5.2 Distributed Scheduling

The following distributed algorithms are shown analytically or experimentally to
be efficient for various sets of data transfer traffic. However, none of them has
considered data replication in its scheduling.

Panconesi and Srinavasan [21] present a distributed edge coloring algorithm
(PS) for bipartite graphs. Their algorithm is based on the same two-step bidding
mechanism that we used. They show analytically that their algorithm requires at

12



most 1.6δ + O(log1+δn) colors to edge-color the entire graph in at most O(logδ)
phases, where delta is the maximum degree. However, their algorithm requires the
initial degree of the graph to estimate the current degree of the graph at each stage.
It would requires O(logδ) communication to decide the degree of a distributed
graph. In extensions of this work, Dubhashi, Grable and Panconesi propose faster,
randomized, distributed edge coloring algorithms [10, 7]. Their algorithms require
at most O((1 + O(1))δ) colorings with high probability.

Durand, Jain and Tseytlin also propose randomized, distributed edge coloring
algorithms for bipartite graphs [8, 9]. Their algorithms also use a two-step bidding
routine. In their algorithm, Highest Degree First (HDF), during the bidding, each
server grants the request of the highest degree client, with ties broken arbitrarily.
It is known that to obtain an optimal edge coloring, every matching must be a
critical matching; i.e. must include an edge adjacent to the highest degree node.
The intuition is that by favoring high-degree nodes, HDF increases the probability
of obtaining a critical matching. Another algorithm, MPASSES, uses multiple rounds
of bidding to obtain denser matchings, which in turn improves the schedule length.

6 Conclusion

This paper studies distributed scheduling of parallel I/O data transfers on sys-
tems that provide data replication. We propose a distributed scheduling algorithm,
Highest Degree Lowest Workload First (HDLWF), which approximates our previous
centralized augmenting path algorithm, but in a distributed environment. HDLWF

is based on a distributed, two-step scheme that determines appropriate execution
order of data requests through a small number of rounds of bidding between clients
and I/O servers. Our experimental results indicate that HDLWF yields schedules close
to the centralized optimal solution, and in some cases within 3% of the optimal so-
lution.

Our experimental results indicate that the existence of data transfer hotspots
has a significant impact on data transfer schedule length. However, when the data
transfer traffic increases, the normalized schedule length of HDLWF actually decreases,
indicating that the schedule length of HDLWF increases at a slower pace than the
optimal one. We also found that only two or three copies of duplication is necessary
to improve data transfer rate under uniform data access patterns; more duplication
does not help. However, when there are data transfer hotspots, increasing copies
of duplication helps in improving data transfer rate. Furthermore, under all types
of data transfer patterns (uniform, non-uniform, hotspots), the performance gap
between HDLWF and the optimal algorithm decreases as the data transfer traffic
increases. This indicates good scalability of HDLWF.

Currently HDLWF use a single round of bidding in each scheduling step. Those
clients that were rejected by the servers will wait for the next scheduling step. It
would be interesting to allow the possibility of multiple bidding, i.e., a client may
bid for several servers, or multi-stage bidding in which those rejected clients are able
to compete again immediately after they received the rejection. We will continue
the investigation on these alternatives, and develop bidding techniques that can
improve data transfer performance in a distributed environment.
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