Efficient Agent-based Multicast on Wormbhole Switch-based Irregular Networks

Yi-Fang Lin Jan-Jan Wu
Institute of Information Science, Academia Sinica
Nankang, Taipel, R.O.C.
{icewuj } @iis.sinica.edu.tw

Abstract

This paper describes an agent-based approach for
scheduling multiple multicast on wormhole switch-based
networks. Multicast/broadcast is an important communica-
tion pattern, with applications in collective communication
operations such as barrier synchronization and global com-
bining. Our approach assigns an agent to each subtree of
switches such that the agents can exchange information ef-
ficiently and independently. The entire multicast problem is
then recursively solved with each agent sending message
to those switches that it is responsible for. In this way,
communication is localized by the assignment of agents to
subtrees. This idea can be easily generalized to multiple
multicast since the order of message passing among agents
can be interleaved for different multicasts. We conduct ex-
periments to demonstrate the efficiency of our approach by
comparing the results with SPCCO, a highly efficient mul-
ticast algorithm. We found that SPCCO suffers link con-
tention when the number of simultaneous multiple multicast
becomes large. On the other hand, our agent-based ap-
proach achieves better performance in large cases.

1 Introduction

Multicast/broadcast is commonly used in many scientific,
industrial, and commercial applications [1]. Distributed-
memory parallel systems require efficient implementations
of multicast and broadcast operations in order to support
various applications.

In recent years, with the speed of microprocessors in-
creasing and cost decreasing and the availability of high
bandwidth, low latency switches (such as Fast Ether-
net switches, Myrinet switches, ATM switches, Servernet
switches) at a reasonable cost, it is popular to intercon-
nect workstations/PCs together with commodity switches.
This makes clusters of workstations/PCs an appealing vehi-
cle for cost-effective parallel computing.

Pangfeng Liu

Department of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan, R.O.C.
pangfeng@csie.ntu.edu.tw

To reduce communication latency and buffer require-
ment, wormhole switching technique [4, 15] is often used
in these switches. Systems with wormhole routing provide
a very small buffer space at each hop and divide a message
into small flits that travel through the network in a pipeline
fashion. The main drawback of wormhole switching is that
blocked messages hold up the links, prohibiting other mes-
sages from using the occupied links and buffers. In a mul-
ticast, the source node sends the same data to an arbitrary
number of destination nodes. When multiple multicast op-
erations occur at the same time, it is very likely that some
messages may travel through the same link at the same time
and thus content with each other, if they are not scheduled
properly.

Minimizing contention in collective communication has
been extensively studied for systems with regular network
topologies, such as mesh, torus and hypercubes [3, 5, 6,
10, 9, 11, 16]. Switch-based networks, on the other hand,
typically have irregular topologies to allow the construc-
tion of scalable systems with incremental expansion ca-
pability. These irregular topologies lack many of the at-
tractive mathematical properties of the regular topologies.
This makes routing on such systems quite complicated.
In the past few years, several deadlock-free routing algo-
rithms have been proposed in the literature for irregular
networks [2, 7, 12, 17]. These routing algorithms are quite
complex and thus make implementation of contention-free
multicast operations very difficult.

The goal of this paper is to develop efficient (multiple)
multicast algorithms for irregular wormhole switch-based
networks. In [8], Fan and King proposed an unicast-based
implementation of single multicast operation based on Eu-
lerian trail routing. In this paper, we consider the widely
used, commercially available deadlock-free routing strategy
called “up-down’ routing.

Kesavan and Panda proposed a series of single and mul-
tiple multicast algorithms [13]. The basic idea is to or-
der the destination processors into a sequence, then ap-
ply a binomial tree-based multicast [14] on these destina-

tions. The chain concatenation ordering (CCO) algorithm
first constructs as many partial order chains (POC) as pos-
sible from the network. A partial order chain is a sequence
of destinations such that we can apply a binomial multi-
cast on it without any contention. The CCO algorithm then
concatenates these POCs into sequence where a binomial
multicast is performed [13]. The sequence consists of frag-
ments of processor sequences in which messages within the
same fragment can be sent independently, therefore conges-
tion is reduced. Based on the CCO algorithm, the source-
partitioned CCO (called SPCCO) performs multiple multi-
casts simultaneously. Each multicast produces its own se-
quence (consisting of POCs), and each resulting sequence
is shifted until the source appears at the beginning of the
sequence. By shifting these sequence, the communication is
“interleaved” according to the source, and communication
hot-spots are avoided.

Both CCO and SPCCO use the idea of POC to reduce
contention. Within a single POC different messages do not
interfere with one another as long as they are from differ-
ent sections within a POC. However, this POC structure
may not always be preserved since the later binomial mul-
ticast is not aware of it. Our agent-based algorithm deals
with this issue by localization and interleaving. For a sin-
gle multicast, our algorithm uses a recursive construct to
localize communication. We then generalize it to multiple
multicast by interleaving the communication tasks among
different subnetworks.

Figure 1 compares the numbers of contented links per
multicast from SPCCO and our recursive agent-based mul-
ticast (RAM) under different number of simultaneous multi-
casts. The system consists of sixteen switches. Each switch
has 16 ports, with half of which connected to processors,
and the other half connected to other switches. Each multi-
cast has 101 and 408 destinations on the left and the right
side of Figure 1 respectively. As indicated in Figure 1, our
multicast algorithm incur less contention. More experimen-
tal data will be presented in Section 4.

ccccc ——
M

20007

Figure 1. Number of contented links under
different numbers of multicasts.

Our agent-based approach starts with a recursive multi-
cast algorithm. An agent for a multicast is chosen for each
subtree of the up-down routing tree. An agent is responsible

for relaying the multicast messages to all the destinations
in that subtree. This task is divided into subtasks for each
subtree, where they are performed recursively. We general-
ize this algorithm to multiple multicast by choosing a pri-
mary agent for each multicast. The primary agent are cho-
sen from the subtrees of the root of the routing tree, and are
properly interleaved so that the tasks are distributed evenly.
The primary agents for different multicasts exchange mes-
sages and then use the multicast algorithm to propagate
messages. Depending on how primary agents are chosen
and how the information are exchanged among the primary
agents, our agent-based multiple multicast algorithm has
four variations and will be described in detail in section 3.

The rest of the paper is organized as follows: Section 2
formally describes the communication model in this paper.
Section 3 first describes our multicast algorithm, and then
describes the generalization to multiple multicast. Section 4
reports our experimental results, and finally we conclude
with Section 5.

2 Modd

This section describes our communication model. The
connectivity of switches in the network can be represented
by agraph G = (V, E), where the set of nodes V' represents
switches, and the set of edges E represents the bidirectional
connection channels among switches. The graph G can be
highly irregular. In addition, each processor is connected to
a unique switch. Figure 2 illustrates an irregular network
consisting of 4 switches (each has 8 ports) and 15 proces-
sors, and the corresponding graph.

processor

Lol [Camlo
b4 b

processor processor

processor

Figure 2. An irregular network of 4 switches
and 15 processors and the corresponding
connection graph.

2.1 Routing Mechanism

We now describe the up-down routing [7] used in our
multiple multicast algorithm. The up-down routing mecha-

nism first uses a breadth-first search to build a spanning tree
T for the switch connection graph G = (V, E). Since T' is
a spanning tree of G, E is partitioned into two subsets — T°
and E — T'. Those edges in T" are referred to as tree edges
and those in £ — T as cross edges [13]. Since the tree is
built with a BFS, the cross edges can only connect switches
whose levels in the T differ by at most 1. A tree edge go-
ing up the tree, or a cross edge going from a processor with
a higher processor id to a processor with a lower one, are
referred to as up links. The communication channels go-
ing the other direction are down links. In up-down routing
a message must travel all the up links before it travels any
down links. Due to the acyclic nature of how the direction
of links are defined, the up-down routing is deadlock-free.

2.2 Contention

We assume that a switch can deliver multiple messages
simultaneously from ports to ports, as long as the messages
are delivered from different source and destination ports.
This assumption is consistent with current routing hardware
technology. As a result, congestion on the communication
links becomes the major bottleneck.

processor

-
suna % annn % o

S &

o] ool] 2o
7y S s 7 SR Py

processor

Switch }—()

processor

@ (b)

Figure 3. Example cases that avoid con-
tention on the inter-switch channels.

We consider three cases where link contention can be
avoided. We will focus on a particular switch A. In the first
case, as shown in Figure 3(a), all source/destination proces-
sors are connected to the same switch A. In this case, there
will be no contention since the messages travel through dif-
ferent paths within the switch. In the second case, as shown
in Figure 3(b), both source processors reside on A. In this
case, both can send messages to destinations in different
subtrees of A simultaneously. Note that a destination node
could be any processor in these two subtrees.

We now consider the third case where two messages
travel through four subtrees of switch A, as indicated in
Figure 4. If the two messages both go through switch A,
there will be no link contention between them. Note that the
source and destination processors may appear anywhere in
the four subtrees.

Switch A

I A 1
IR IR

processor processor processor processor

1
. 564

processor

processor

Figure 4. An example case that avoids con-
tention on the inter-switch channels.

3 Agent-Based Algorithms

This section describes our framework of a agent-based
multiple multicast algorithm. We first introduce the algo-
rithm for single multicast, then generalize the idea to multi-
ple multicast. Note that our algorithms assume the up-down
routing mechanism. The algorithms specify how to perform
a single/multiple multicast by determining the source and
destination of all the intermediate communications, but the
actual route from source to destination is determined by the
up-down routing.

3.1 Single Multicast

For a given irregular network, we first construct a rout-
ing tree as in up-down routing [7]. The routing tree has all
the switches as the tree nodes, and the inter-switch commu-
nication channels as the tree edges. Every tree node is the
root of a unique subtree in this routing tree, and for ease of
notation we will not distinguish a tree node (a switch in the
network) from the subtree where it is the root.

For a given multicast message m and a switch v we will
define two functions — an agent function A(m,v) that re-
turns a processor within the subtree rooted at v and will be
responsible for relaying multicast message m, and a cost
function C'(m, v) that estimates the total cost of sending m
to all of its specified destinations within the subtree rooted
at v. Note that all these tree nodes here represent switches,
not processors.

We define these agent and cost functions recursively. Let
D(m,v) be the set of destination processors of message m
that are connected to switch v. First we consider the case
where v is a leaf in the routing tree, then A(m, v) is defined
to be an arbitrary destination processor in D(m, v), and the
cost function C(m,v) is log |D(m,v)|. If |D(m,v)] is 0,
that is, m does not have any destination attached to switch
v, we define A(m,v) to be an empty set and C(m,v) = 0.

We now consider the agent and the cost function for an
internal node v in the routing tree. The agent function for v

is defined as follows: If | D(m,v)| > 0, we pick an arbitrary
destination of m in D(m,v) to be A(m,v). Otherwise we
consider all the children of v that /m must be sent to, and
set A(m,v) to be the agent from these subtrees that has
the highest cost. Formally, let S(m,v) be the set of chil-
dren of v that have destinations of m in their subtrees, then
A(m,v) = wsuch that w € S(v) and C(m,w) > w' for
all w’ € S(v) . Note that from this definition the agent of a
switch is not necessarily connected to the switch itself.

The cost function for an internal node is defined as fol-
lows: For the purpose of recursion we assume that the agent
of v knows the message m. If | D(m,v)| is 0, the agents of
tree nodes from S(v) will first perform a multicast among
themselves using a binomial multicast [14], then as soon as
an agent a from S(m, v) finishes receiving m, it recursively
performs a multicast to all the destinations in the subtree
where it is defined as the agent. The total communication
cost is then defined as C'(m, v).

When | D(m,v) > 0|, the situation is more complicated
sicne the agent of v can send m to other destinations in
D(m,v), or to the agents of S(m,v). We apply a proce-
dure ForwardInSwitchthat determines the order for those in
D(m,v) and S(m,v) to receive messages. After the sched-
ule is fixed we compute the total cost C(m,v) for v. The
algorithm ForwardinSwitch takes D(m,v) and C(w, m)
for all w € S(m,v) as inputs, then computes an optimized
schedule and the total cost. The details of ForwardinSwitch
will be given later. The pseudo code of our recursive agent-
based multicast (RAM) is given in Figure 5.

RAM v, m
{
if (I(m v)| ==0)

A(m v) sends nessage mto all agnets in S(m v)
by a binom al multicast;
el se
call ForwardlnSwitch to determine the order for A(v, m
to send nmessgaes to elenments in D(m v) and
agents of S(m v);
For all switch s in S(m v)
call RAMs, m;

Figure 5. The pseudo code of RAM, which re-
cursively performs a multicast for each sub-
tree of switch v that has destinations of mes-
sage m.

When |D(m,v)| > 0, v does have some destination pro-
cessors for message m and one of them is the agent of
v. When the agent sends messages to those destinations
in D(m,v) (Figure 3 (a)), the messages will not interfere
with each other. Also when the agent of v sends messages
to those agents in S(m, v) (Figure 3 (b)), no contention is
possible if no cross edges are involved. In addition, the mes-
sage passing from one category (Figure 3 (a)) will not con-

tend with those in the other category (Figure 3 (b)).

When |D(m,v)| = 0, we use a single multicast to send
the messages among all the agents of S(m,v), with one
of them now being assigned as the agent of v. From Fig-
ure 4 we conclude that these messages will not contend
with each other unless cross edges are involved, since the
agents of different subtrees in S(m,v) will not be in the
same subtree. After guaranteeing low congestion, the al-
gorithm ForwardInSwitch, which optimizes the schedule of
the message-passing among agents, computes the total cost.

3.2 ForwardIinSwitch Scheduling

The inputs of ForwardinSwitch are the switch v whose
cost will be determined, the set of destinations attached to v
(D(m,v)), and a set of subtrees of v to which the message
m must be sent (denoted previously by S(m,v)). Let A =
(a1, aq, ...an,) be the agents of these subtrees from S(m, v),
and C' = (c1, o, ...cy,) be their costs respectively. For ease
of explanation we assume that the list A and C have been
sorted in non-increasing cost, that is, ¢; > ¢;41.

First the algorithm orders the n agent and |D(m,v)]
destination processors into a sequence Seq by which they
will be scheduled to receive m. We keep two lists of pro-
cessors that have not yet been scheduled (A, and D) — one
for the agents and the other for the destinations attached to
v. The algorithm maintains the size of D and estimates the
time to complete all of them as comp(D) = [log(|D|+1)].
If the current comp(D) is greater than the cost of the first
agent a in A (with the largest cost), we schedule a desti-
nation from D by moving it from d to Seq and recompute
comp(D). If the current comp(D) is smaller than the cost
of a, we schedule a by moving a from A to Seq. We repeat-
edly do so until all processors in A and D are scheduled.

After knowing the Seq we schedule communication tasks
one at a time. Let K be the set of processors that have re-
ceived message m. During each step the algorithm com-
putes the number of processors in K that were from D, and
moves this many processors from the head of the list of Seq
into K. Note that we only use destinations in D to forward
messages to the agents, since the agents will be busy for-
warding messages to the destinations they are responsible
for.

3.3 Multiple Multicast

This section describes our generalization of single mul-
ticast algorithm for multiple multicast.

1. For each message m we choose a primary agent among
the agents of S(m,r) - the set of subtrees of root r.
Each source processor then sends its message to its
primary agent.

Forwardl nSwi tch(L, D)
{
initialize A, D and Seq
while Aor Dis not enpty, do the follow ng
if the cost of the first processor fromA > conp(D)
renove the first processor fromA
and append it to Seq
el se
renove a destination fromD and reconpute conp(D)
append this destination to Seq
K = the agent of v
while Seq is not enpty, do the follow ng
conpute p, the nunber of processors in K that
were nmoved from D
nmove the first p processors fromSeq to K

Figure 6. The pseudo code of ForwardInSwitch.

2. The primary agent sends its message m to a destina-
tion d in D(m, r) if any, and to the agents of S(m, v).

3. Eachagent a of S(m, r) sends messages to its destina-
tions by calling RAM, and a sends m to D(m, r) with
a binomial multicast.

We consider several alternatives in the first two steps of
our multiple multicast algorithm. First we consider two al-
ternatives in choosing the primary agent. It is now clear
that if different multicasts select different primary agents,
we can ““interleave™ the traffic in the second step and
achieve good performance. On the other hand, we do not
want to place the primary agents away from the original
multicast source very often, which may cause large traffic
through the root of the routing tree. As a result there is
a tradeoff between good locality and interleaving. In our
implementation we experimented two methods — we either
choose the primary agent that is in the same subtree as the
multicast source, or any agent of switches in S(m, v) at ran-
dom. These two approaches will be denoted as SameTree
and Random respectively.

Secondly, we consider alternatives in implementing the
second step of our multiple multicast algorithm. After the
primary agent is chosen, it has to send the message to a pro-
cessor in D(m, r) and all the agents of switch in S(m,).
This can be implemented in two different methods — the pri-
mary agent can send m to all the others with a binomial
multicast, or it can work together with all the other primary
agents to propagate information cyclicly. In the second ap-
proach, we arrange the chosen processor in D(m,v) and
all the primary agents as a ring. Each processor in the ring
is responsible for relaying the information to the right side
neighbor in the ring. Initially every primary agent places
its message into this “circular track™ and the message will
be relayed to all the primary agents. We refer to these two
approaches as Binomial and Cyclic respectively. Combined
with the alternatives we have four multiple multicast algo-

rithms as follows — SameTree-Binomial, SameTree-Cyclic,
Random-Binomia and Random-Cyclic. These four algo-
rithms will be denoted as STB, STC, RB and RC, and their
performances will be reported in the next section.

4 Simulation Experiments and Results

In this section, we present results of simulation exper-
iments to compare the algorithms proposed in Section 3
and the two order-chain-based algorithms proposed in prior
works (CCO, SPCCO).

4.1 Experimentsand Performance M easures

We developed a C++, discrete event-based simulator for
our experiments. The simulator can model wormhole rout-
ing switches with arbitrary network topologies. We chose
system parameters as follows. Communication start-up
time was 5.0 microseconds, link transmission time was 10.5
nanoseconds, and routing delay at switch was 200 nanosec-
onds. The default buffer size at each port was assumed to be
1 flit. The default numbers of input ports and output ports
were assumed to be 16. The network topologies were gen-
erated randomly. For each data point, the multicast perfor-
mance was averaged over 100 different network topologies.

For all experiments, we assumed a default system con-
figuration of a 512-processor system interconnected by 64
sixteen-port switches in an irregular topology. 50% of the
ports on a switch are connected to processors, and the other
50% of the ports are connected to other switches. Links
were not allowed between ports of the same switch. A ran-
dom number generator was used to decide the port and
switch or the processing node to which a given switch port
should be connected to.

4.2 Performance Comparison

For our study, we varied each of the following parame-
ters one at a time: the message length (NBM), the number of
destinations in each multicast (ND), the number of simulta-
neous multicast operations (NM), the number of switches
(NS), and connectivity of switches (HP). Since message
length, number of multicast operations, and system size
varied in our experiments, instead of using latency as the
measurement of performance, we use throughput, which is
defined by M/T, where M is the total length of the mes-
sages and 7' is the parallel completion time of the (multi-
ple)multicast operation.

In the following we compare the performance of our pro-
posed algorithms, RAM STC, RC, STB, and RB, and the two
ordered-chain-based algorithms, CCOand SPCCO.

4.2.1 Effect of Number of Multicast Operations

First we examined the effect of variation in the number of
multicast operations on the performance of the proposed al-
gorithms. Other parameters were assumed to be as follows:
number of switches NS = 64 (and thus 512 processors),
number of ports connected to processors HP = 8, and
number of destinations in each multicast ND = 408. We
also chose two different distributions for multicast sources:
distributing the sources among 2 subtrees (NDL=2) or dis-
tributing the sources over the entire network (NDL=all).
The destinations were generated randomly. For each data
point, the multicast performance was averaged over 50 dif-
ferent sets of destinations.

As shown in Figure 7, when there are few (less then eight)
multicast operations, ordered-chain-based algorithms per-
form better than our agent-based algorithms. This is be-
cause when the number of multicast operations is small,
message contention is not significant and thus the impor-
tance of reducing number of communication stages out-
weights that of reducing message contention. However,
when the number of multicast operations increases, the im-
pact of message contention becomes more important and
therefore the benefit of agent-based optimization becomes
more significant.

o
BM= 1,ND = 408, HP = 5, nd NS =64 Variod N, e NDL = 2, NBI = 1, ND = 06, WP =5, and NS =64

Figure 7. Throughput under different number
of multicast operations

4.2.2 Effect of Number of Switches

We studied the scalability of the proposed algorithms on dif-
ferent systems sizes. We varied the number of switches from
16 to 256, with 50% of the ports connected to processors
and the other 50% connected to switches, For each switch
size, we chose three different numbers of multicast opera-
tions, NM=8,32,0r 128. Each multicast has 101 randomly
generated destinations. For each data point, the multicast
performance was averaged over 50 different sets of destina-
tions.

As shown in Figure 8, the throughput of the agent-based
algorithms, the throughput of the ordered-chain-based al-
gorithms, and the improvement ratio of the agent-based al-
gorithms over the ordered-chain-based algorithms all in-
crease when the number of switches (and processors) in-

creases. A possible reason is that when number of switches
increases, the level of the up-down routing BFS tree also
increase, hence the number of hops between the sender
and the receiver of a cross-subtree message may increase.
Longer path increases the potential of contention. Since our
agent-based algorithms guarantee the path of each mes-
sage be no more than 2 hops, they are scalable with re-
spect to number of switches. Furthermore, Figure 8 shows
that when the number of multicast operations increases
(NM=8,32,128 respectively), the improvement ratio of our
agent-based algorithms over the ordered-chain-based algo-
rithms also increases.

o
256 % o

Figure 8. The throughput under different num-
bers of the switches

4.2.3 Effect of Number of Destinations

In this experiment, number of switches N'.S = 64 and num-
ber of ports connected to processors HP = 8. We chose
three different numbers of multicast operations NM =
8,32,128. We varied the number of destinations for each
multicast from 100 to 512. Figure 9 shows the through-
put of these algorithms. As we can see, the throughput of
these algorithms increases when the number of destinations
increases, and the improvement ratio of the agent-based al-
gorithms over the ordered-chain-based algorithms also in-
creases on size increase in destinations.

—
Throughiput

e

B 20 0 w0

o w0 w0 40
Vared ND, e NDL = 2, NG =6, NMI =8, HP =8, and NS = 64

—
Throughiput

™

0
00 150 20 20 w00 0 a0 450
Varied ND, fxed NDL =2, NBM =32, NM = 52, HP = 8, and NS = 64

o
0 10 a0 20 a0 30 40 40 500 550
vared D, fxed NDL = al NBM = 52, N = 32, HP = 8, and ' = 64

E)

0
0
i

asoriz etz
i —— B
sPiEo 2
3 S
iz ssertz =
e
T
ssertz e
soon2
soviz
pr
5 2serz H
2 g e
£ e H
Lotz
1seriz
112

roughip

o o
o 1m0 w0 20 a0 S0 ss0 00 150

B0 w0 a0 500
Varied ND, fixed NDL = il NG = 126, NW = 128, HP = 8, and NS = 64

0 20 a0 a0 =)
Vared N, fed NDL =2, NG = 126, NM = 128, HP =5, and NS = 64

Figure 9. Throughput under different num-
bers of destinations

4.2.4 Effect of Switch Connectivity

In this experiment, number of switches N'.S = 64 and num-
ber of destinations ND = 408. We chose three different
numbers of multicast operations NM = 8,32,128, and
varied the number of ports connected to processors. Fig-
ure 10 shows the throughput of these algorithms. As we
can see, the throughput of our agent-based algorithms in-
creases when the number of ports connected to processors
(HP) increases, but the throughput drop when the value of
HP reaches a threshold value (12 in this case). This is be-
cause when number of processors increases, the parallelism
in relaying messages also increases. However, the number
of links connected to other switches decreases as HP in-
creases, which in turn increases the chance of contention.
When HP reaches the threshold value, the impact of con-
tention outweights the benefit of parallelism. The ordered-
chain-based algorithms also behave similarly to the agent-
based algorithms, although not as evident.

4.2.5 Effect of Message Length

We examined the effect of message length on the perfor-
mance of proposed algorithms. We chose two message
lengths, 128 K B for short messages and 32M B for long
messages, and varied the number of multicast operations
with long messages (NBM). The source and destinations

0

b ——
SPCCO

R

—

e

]

|

s 3 s w

B 95 0 108
varied HP, fixed NDL =2, NEM =5, NM = 5, ND = 408, and NS = 64

sseri2

b ——
SPCCO

35412

Througniput

202

1502

10412
o 10 13 14 s
Varied HP. fxed NDL = al NBM = 32, NV = 32, ND = 408, and NS = 64

o ——
SPCCO

Thoughtout

1 s ©

B 10 1 12) as, 9 95 0 ws 1 s
vared HP, e NDL = all NEM = 128, NM = 126, ND = 408, and NS = 64 vared 1, fied NDL = 2, NBM = 128, N = 128, ND = 408, and NS = 64

Figure 10. The throughput under different
numbers of host ports

of a multicast were generated randomly. We also chose
three different numbers of multicast operations, NM =
8,32, 128. Asshown in Figure 11, when the number of long-
message multicast operations is small, the performances
of the agent-based algorithms are worse than those of the
ordered-chain-based algorithms. The possible reason is
that long messages are likely to increase the chance of con-
tention, and when the number of long-message multicast op-
erations is small, they may not be evenly distributed in the
BFS tree and thus may cause hot-spots in communication.
In summary, the agent-based algorithms and the
ordered-chain-based algorithms compliment each other.
The ordered-chain-based algorithms are superior to the
agent-based algorithms for small number of multicast op-
erations, while the agent-based algorithms perform better
than the ordered-chain-based algorithms for larger number
of multicast operations (larger than 8 in our experiments).
The difference in performance of these algorithms increases
with increase in number of switches, number of multicast
destinations, and number of processors in the system.

5 Conclusion

This paper describes an agent-based approach for
scheduling multiple multicast on wormhole switch-based
networks. Our approach assigns an agent to each subtree of

111111

‘‘‘‘‘

‘‘‘‘‘‘‘‘‘‘

sssss

sssss

E]
126, ND = 408, HP = 8, and NS = 54 Vared NEM, fixed NDL =2, NM = 126, ND = 408, HP =5, and NS = 64

Figure 11. Throughput under different num-
bers of long-message multicasts

switches such that the agents can exchange information ef-
ficiently and independently. The entire multicast problem is
recursively solved with each agent sending message to those
switches that it is responsible for. Communication is local-
ized by the assignment of agents to subtrees. In addition, the
agent mechanism provides an easy mechanism in perform-
ing multiple multicasts simultaneously, without high level
of congestion. We compare the results with SPCCO [13]
and conclude that SPCCO, a highly efficient multicast al-
gorithm, in some large cases may not interleave multi-
ple multicast well enough. In contrast our agent-oriented
approach dispatches multiple multicast sufficiently well in
large cases.

We will conduct further investigation in the alternative of
choosing primary agents and the way to exchange informa-
tion among them. The two approaches for choosing primary
agents, Random and SameTree are two completely different
approaches. We may be able to find a balance between com-
munication locality and even workload distribution. Simi-
larly, we will consider other alternatives in information ex-
change among primary agents. Since the primary agents
are very likely to be close to the root of the routing tree, it is
possible that we can derive good algorithms to exploit this
locality.

References

(1
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[19]

[16]

(17]

In Message Passing Interface Forum, MPI: A Message-
Passing Interface Standard, Mar. 1994.

N. J. Boden, D. Cohen, R. F. Felderman, A. E. Kulawik, C. L.
Seitz, J. Seizovic, and W, Su. Myrinet - a gigabit per second
local area network. |EEE Micro, pages 29— 36, Feb. 1995.
W, Dally. Deadlock-free message routing in multiproces-
sor interconnection networks. 1EEE Trans. Comput., C-
36(5):547-553, May 1987.

W, J. Dally and C. L. Seitz. Deadlock-free message routing
in multiprocessor interconnection networks. |EEE Transac-
tions on Computers, C-36(5):547—553, May 1987.

J. Duato. On the design of deadlock-free adaptive routing
algorithms for multicomputers. In Proceedings of Parallel
Architectures and Languages Europe 91, June 1991.

J. Duato. A necessary and suffi cient condition for deadlock-
free adaptive routing in wormhole networks. In Proceedings
of the 1994 International Conference on Parallel Proceed-
ing, August 1994.

M. D. S et. al. Autonet: A high-speed, self-confi guring local
area network using point-to-point links. Technical Report
SRC research report 59, DEC, April 1990.

K.-P. Fan and C.-T. King. Effi cient multicast on wormhole
switch-based irregular networks of workstations and pro-
cessor clusters. In Proceedings of the Internationl Confer-
ence on High Performance Computing Systems, 1997.

P. T. Gaughan and S Yalamanchili. Adaptive routing pro-
tocols for hypercube interconnection networks. |EEE Com-
puter, 26(5):12—23, May 1993.

C. Glassand L. Ni. The turn model for adaptive routing. J.
ACM, 41:847—-902, Sept. 1994.

G. Gravano, G. D. Pifarre, P. E. Berman, and J. L. C. Sanz.
Adaptive deadlock- and livel ock-free routing with all mini-
mal paths in torus networks. |EEE Trans. Parallel and Dis-
tributed Systems, 5(12):1233—1251, Dec. 1994.

R. Horst. Servernet deadlock avoidance and fractahedral
topologies. In Proceedings of the International Parallel Pro-
cessing Symposium, pages 274— 280, April 1996.

R. Kesavan and D. K. Panda. Effi cient multicast onirregular
switch-based cut-through networks with up-down routing.
In |EEE Trans. Parallel and Distributed Systems, volume 12,
August 2001.

F. T. Leighton. Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, hypercubes. Morgan Kaufmann.
L. Ni and P. McKinley. A survey of wormhole routing tech-
niques in direct networks. IEEE Computer, 26(2):62—76,
February 1993.

A-H. E. PK. McKinley, H. Xu and L. Ni. Unicast-
based multicast communication in wormhole-routed net-
works. |EEE Transactions on Parallel and Distributed Sys-
tems, 5(12):1252— 1265, December 1994.

W. Qiao and L. Ni. Adaptive routing in irregular networks
using cut-through switches. In Proceedings of the 1996 In-
ternational Conference on Parallel Proceeding, pages |:52—
60, August 1996.

