
A Simple Incremental Network Topology for Wormhole Switch-Based Networks

Pangfeng Liu1 Jan-Jan Wu2 Yi-Fang Lin1 Shih-Hsien Yeh2

1 Department of Computer Science and Information Engineering

National Chung Cheng University, Chiayi, Taiwan, R.O.C.
2 Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.

Abstract

Wormhole switching has become the most widely used
switching technique for multicomputers. However, the main
drawback of wormhole switching is that blocked messages
remain in the network, prohibiting other messages from us-
ing the occupied links and buffers. To address the dead-
lock problem without compromising communication latency
and the incremental expansion capability that irregular net-
works can offer, we propose a simple topology called Incre-
mental Triangular Mesh (ITM) for switch-based networks.
ITM is highly scalable, allows incremental expansion of
systems, has guaranteed deadlock freedom, and can support
contention-free multicast. First, we show that on a ITM,
shortest path routing method will not deadlock, therefore it
is ideal to be used as the escape paths in adaptive routing
networks. Secondly, we show that it is possible to arrange
the nodes of an ITM in a circular order so that two mes-
sages from independent parts of the circular order will not
interfere with each other, and we can find a circular order
for every ITM that has this contention-free property. This
is extremely useful for implementing contention-free multi-
cast and other collective communication operations. Our
experimental results demonstrate that ITM provides better
throughput than up-down routing.

1. Introduction

Wormhole switching [3, 14] has become the most widely
used switching technique for multicomputers. The avail-
ability of high-speed wormhole switches, such as Au-
tonet [7], Myrinet [1], and Servernet [12], has also made
network of workstations a promising alternative for cost-
effective parallel computing. In earlier stored-and-forward
routing method an entire message has to be stored in one
node before it could be sent to the next. In contrast, worm-
hole routing uses a cut-through approach that divides the
message into small flits that travel through the network in
a pipeline fashion, therefore eliminate the needs to allocate

large buffers in the intermediate nodes along the path [14].
This not only simplifies the switch design but also provides
a distance insensitive routing methodology for sufficiently
large messages.

The main drawback of wormhole switching is that
blocked messages remain in the network, prohibiting other
messages from using the occupied links and buffers, there-
fore wasting channel bandwidth. We further classify this
problem into two categories. First, a poorly designed rout-
ing algorithm might cause deadlock on a wormhole rout-
ing network, in which messages are tangled together and no
message can proceed. Secondly, for a particular communi-
cation pattern (e.g. multicast), a large number of messages
may go through a common channel and cause significant
delay. Although no deadlock occurs, the communication
performance is degraded due to this contention problem.

Deadlock-free routing and contention minimization have
been extensively studied for proprietary networks, in which
the processing nodes are usually interconnected into a reg-
ular topology, such as array, torus and hypercubes [4, 5,
6, 9, 8, 10, 15]. On the other hand, switch-based in-
terconnects have been a popular choice for building net-
works of workstations and PCs. Typically, these switches
support networks with irregular topologies. Such irregu-
larity allows easy design and wiring of scalable systems
with incremental expansion capability (allow to add one or
more switches at a time). However, the irregularity also
makes routing and deadlock avoidance on such systems
very complicated. Several deadlock-free routing algorithms
have been proposed in the literature for irregular networks
[1, 7, 12, 16]. These algorithms avoid deadlock by restrict-
ing routing to remove cyclic dependencies between chan-
nels. As a consequence, some messages may be routed
through non-minimal paths, resulting in increased latency.

To address the deadlock-free routing problem without
compromising communication latency and the incremental
expansion capability that irregular networks can offer, we
propose a simple topology called Incremental Triangular
Mesh (ITM) for switch-based networks. ITM is highly scal-
able, allows incremental expansion of systems, has guar-

1

0-7695-0990-8/01/$10.00 (C) 2001 IEEE



anteed deadlock freedom, and can support contention-free
multicast.

First, we show that on an ITM, any shortest path routing
method will not deadlock. There are numerous deadlock
free routing algorithms in the literature that work in a sim-
ilar fashion – messages must travel through the channels in
a particular order to break the symmetry (e.g. dimensional
ordering [11] or up-down routing in [7]). These approaches
sacrifice certain throughput for deadlock free guarantee. In
contrast we argue that in ITM a message can go through any
shortest path without deadlock, therefore ITM can be used
as dedicated virtual channels to avoid deadlock in many
adaptive routing networks. Secondly, we show that it is pos-
sible to arrange the nodes of an ITM in a circular order so
that two messages from independent parts of the circular
order will not interfere with each other. It is shown in [17]
that it is impossible to find a linear order for every irregular
topology. Nevertheless, we show that we can find a circu-
lar order for every ITM that has contention free property.
This is extremely useful for implementing contention-free
multicast and other collective communication operations.

The rest of the paper is organized as follows. Section 2
describes the related works. Section 3 describes the dead-
lock free and contention free property of ITM, and gives
detailed proof. Section 4 describes our experimental results
from simulations, and Section 5 concludes.

2 Related Work

2.1 Deadlock-free Routing

Chien and Kim [2] describes a class of restricted adaptive
routing algorithms suitable for packet-switched data trans-
mission in multiprocessors. Planar-adaptive routing pro-
vides an effective compromise that sacrifices some routing
freedom to reduce the possibility of deadlock. Restricting
routing at each step to a specific hyperplane in k-ary n-cubes
still leaves many alternative routes, but the restriction al-
lows provably deadlock-free operation at a cost of only 3
virtual channels, regardless of the number of dimensions in
the n-cube. The result is a much lower hardware cost for
deadlock-free routers.

There are other general purpose deadlock-free routing
algorithms for wormhole switches. Up-down routing [7]
first constructs a breadth-first spanning tree on the switch-
ing network. A directed link is ”up” if it goes from a node
”upwards” towards the root, or it goes from one node to an-
other node in the same level, but with a higher processor
id. A legal route has all the ”up” links appearing before all
the ”down” links. Eulerian trial routing [16] assumes that
the network topology is Eulerian, then routes the messages
along this Eulerian path. Shortcut channels may be used to
reduce the length of the route [16].

Tseng et. al. describe a multicasting algorithm in
wormhole-routed networks [19]. A trip-based model is pro-
posed to support adaptive, distributed, and deadlock-free
multiple multicast on any network with arbitrary topology
using at most two virtual channels per physical channel.

With the introduction of virtual channel, [5, 18] sug-
gested another approach for deadlock-free routing on any
irregular networks. The network is split into two layers.
An arbitrary routing algorithm is running on the first layer,
while a deadlock-free routing algorithm is on the second
layer. The key idea is to compromise between maximizing
performance (on the first layer) and guaranteeing deadlock-
free (on the second layer). If a message is blocked at the
first layer, then it moves down to the second layer and stays
there until it reaches its destination. In this way, the second
layer network is used as escape paths to avoid deadlock.

2.2 Contention-free Routing

There are many contention free multicast algorithm
for regular switching topology. For example, McKin-
ley et. al. [15] suggested contention-free multicast on n-
dimensional meshes and hypercubes, and provided good
performance from implementation on nCube and Symlt 2-
D mesh. Ho and Johnsson [11] suggested dimensional or-
dering algorithms for broadcast and personalized all-to-all
communication on hypercubes. Other contention-free algo-
rithms include [5, 10].

It is much more difficult to design contention-free rout-
ing algorithms for irregular network topologies. In many
multicast algorithms processor are arranged as a linear list,
with the property that if nodes a, b, c and d appear in the list
in order, then the message between a and b will not inter-
fere, or contend from any links with the message between c
and d [17]. However, it is also shown in [17] that for some
irregular topologies such an ordering simply does not exist.

3 Incremental Triangular Mesh

This section describes the properties of incremental tri-
angular mesh (ITM). The first property is that ITM guaran-
tees freedom from deadlock for any shortest path routing.
This property allows ITM to provide maximum bandwidth
without the risk of a deadlock. The second property is that
we can partition a special subset of ITM so that the mes-
sages traveling in different partitions will not interfere with
one another. Kesavan et. al. [17] have shown that for some
irregular graphs this contention-free ordering does not ex-
ist. We show that ITM, which can be very irregular, does
provide this ordering. The next two sections describe these
two properties in details.
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3.1 Deadlock-free Routing

Most of the deadlock-free routing on a regular network
requires certain “dimension ordering” in order to break the
symmetry and guarantee deadlock-free. This restriction
may limit the available bandwidth since some routes may
be unnecessarily avoided just because of the possibility of
a deadlock. In an ITM network a message can choose any
shortest path it wants without risking a deadlock.

3.1.1 ITM construction

Before we introduce the concept of incremental triangular
mesh (ITM) we need to define an operation called AddNode.
Let G0 = (V 0; E0) be a undirected graph and e0 2 E. To
add a node v into G0 at edge e0 = (x; y) means that we add
v into V 0 and connect v to the two endpoints of e0. The edge
e0 is called the corresponding edge of v. Formally we have
the following.

AddNode(G0; v; (x; y)) = (V 0 [ v; E [ f(v; x); (v; y)g)

The incremental triangular mesh (ITM) is defined re-
cursively as follows. First the clique of three nodes is
an ITM. A graph G is an ITM if and only if there exists
another ITM (denoted by G0) of n � 1 nodes such that
G = AddNode(G0; v; e0), where e0 2 E0 is the correspond-
ing edge of the newly added node v. For switch-based net-
works, the nodes correspond to the switches and the links
represent the channels connecting the switches. Next, we
establish the key properties of ITM in the following lemma.

Lemma 1 An ITM G = (V;E) is planar and has 2jV j � 3
edges, and for all cycles C in G, there exists an edge e 2 E

such that e connects two nodes in C that are of distance
two.

Proof. Omitted due to space limitation.

Note that Lemma 1 does not require each added node to
have a unique corresponding edge. The lemma is valid as
long as the newly added nodes form a clique with its neigh-
bors in the graph. However, to simplify the discussion in
the next section, from now on we will define that in an ITM
each added node will have a unique corresponding edge.

Theorem 2 Any routing discipline that takes the shortest
path is deadlock-free in ITM.

Proof. First we formally define a circular wait, which is
a necessary condition for a deadlock. Then we prove the
theorem by showing that circular wait is impossible on an
ITM when all messages go to the destinations by the short-
est routes.

A circular wait is a list of messages in which each mes-
sage waits for the previous one to release a communication
link in a circular manner. Let C = (v0; v1; :::; vc�1) de-
note a cycle in an ITM G, and ei = (vi; vi+1 mod c). As-
sume there are m messages (M0 through Mm�1) that are
traveling along C, and the source of Mi is vsi . A circu-
lar wait occurs when each message Mi is holding the links
esi ; esi+1; :::; esi+1�1 and is waiting for esi+1 .

vi-1

vi

v

v

v

v

1

2

i+1

cv

M

0

i-1i
ee

vi-1vi+1

v

v

v

v

1

2

i

cv

MM k-1
k

0

i-1i
ee

Figure 1. Two subcases in the proof of
deadlock-free property.

From Theorem 2 we know that there exist a vi that
vi�1 mod c and vi+1 mod c are connected in G. There are
two subcases to consider, as shown in Figure 1. If this node
vi is not a starting point for any message, i.e. vi 6= vsj for
any j, then the two edges (ei�1 and ei) both have been al-
located by the same message M . However, vi�1 mod c and
vi+1 mod c are connected in G, which is a contradiction to
the fact that all messages, includingM , will go by a shortest
path.

For the second subcase, if the node vi is indeed a start-
ing point for message Mk, then by definition message
Mk�1 mod m is holding the link ei�1 mod c and waiting for
ei. Again this is impossible under any shortest path routing
since vi�1 mod c and vi+1 mod c are connected.

3.1.2 ITM for deadlock-free adaptive routing

Deadlock can be avoided by providing some escape paths
without restricting routing [5]. ITM’s deadlock-free prop-
erty and incremental expansion capability make it a suitable
choice for building the escape paths. Since we would like
to use ITM as the escape path for the two layer routing ap-
proach in [5], we would like to know what kind of graph has
ITM as its subgraph, so that part of the links can be used as
ITM edges. The following theorem answers this question.

Theorem 3 A graphG = (V;E) has an ITM subgraph that
contains all the nodes in V if and only if:

� G is Hamiltonian.
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� There exists a Hamiltonian cycle for which G is totally
triangulated. A graph G is totally triangulated for a
Hamiltonian cycle C if and only if when the vertices of
G are around a circle according to the order they ap-
pear in C, no edge can be added without intersecting
an edge of G.

Proof. Omitted due to space limitation.

3.2 Contention-free Routing

This section describes the contention-free property of
ITM. We assume that each link in the network is bi-
directional and two messages are contention-free as long as
they do not go through the same link in the same direction.
We also emphasize that each added node of the ITM will
have a unique corresponding edge. We further classify the
edges of ITM into interior and exterior edges. First all three
edges in the kernel three-node-clique are marked as exterior
edges. When a node v is added into an ITM G = (V;E),
it can only use an exterior edge (x; y) as its correspond-
ing edge, and then (x; y) becomes an interior edge, and
(v; x) and (v; y) are added into AddNode(G; v; (x; y)) as
two new exterior edges. It is easy to see that the exterior
edges of an ITM G form a “boundary” around G.

Lemma 4

A n node ITM G = (V;E) has n exterior edges, n � 3
interior edges, and n � 2 facets. The exterior edges of G
form a simple cycle C and every node in V is in C.

Proof. Omitted due to space limitation.

In switch-based network routing it is desirable to have
an ordering among all the nodes in a network such that two
messages involving processors from different sectors of this
ordering do not interfere with each other. That is, suppose
we can define a total order < among processors such that
when w < x < y < z, then any message-passing be-
tween w and x will not interfere with those between y and
z. Using this property we can design simple contention-
free recursive algorithms for broadcast and multicast, i.e.
the source processor first sends the message to the proces-
sor in the middle of the list, and repeats the process on the
two sub-lists. Despite that this property can be obtained
for some regular graphs, it is shown in [17] that there exists
irregular graphs for which an ordering is impossible. Never-
theless, we will show that for ITM we can define a similar
order that has this nice “non-interfering” property, despite
the irregularity of ITM .

We now define a “circular” order among the nodes in
an ITM G = (V:E). From Lemma 4 all the nodes in G

form a simple cycle in G. We then enumerate the nodes in

G clockwise or counterclockwise to define a circular order.
We define w < x < y if a node w appears before another
node x, which appears before the other node y in the circu-
lar order.

Consider two messages m and m0. The message m goes
from w to x, and m0 goes from y to z. The two messages
are independent if and only if w < x < y < z in the
circular order. The following theorem shows that all the
shortest paths of two independent messages will not share a
communication link in the same direction.

Theorem 5 Two independent messages will not traverse
the same edge in the same direction in an ITM under any
shortest path routing discipline.

Proof.
Let m and m0 be two independent messages, and m goes

from w to x, and m0 goes from y to z. Let’s further as-
sume that a shortest path p for m share directed edges with
a shortest path p0 for m0.
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Figure 2. The case when y is not on the short-
est path from w to x.

We will consider two cases. First we assume that y is
not on p. Let s be the first segment of shared edges between
p and p0, and a and b be the starting and end points of s,
respectively. As indicated by Figure 2, p0 must go from b to
the final destination z. Since y < z < w, p0 must intersect
with either the segment between y and a, or the segment
between a and w because ITM is plannar. We will consider
the two subcases separately.

For the first subcase let p0 intersect with the segment be-
tween y and a at c. In this case the path that follows p0 from
y to c, then follow p0 to z will certainly be shorter than p0

itself. This contradicts the assumption that p0 is a shortest
path going from y to z.

Now consider that case that p0 intersects with the seg-
ment between w and a at another node d. Let m, n and l

be the length of s, the part of p0 that goes from b to d, and
the part of p that goes from d to a. Since p0 is a shortest
path from y to z, l � m + n, and m + l � 2m + n > n

since m > 0. However, this indicates that m can construct
a shorter path than p by first following p from w to d, then
following the part of p0 from d to b, then follow the rest of
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p to the final destination x. This is a contradiction to the
assumption that p is a shortest path from w to x.
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Figure 3. The case when y is on the shortest
path from w to x.

We now consider the case that y is on p (see Figure 3
for an illustration). Similarly we define s to be the first seg-
ment of shared edges between p and p0, and a and b are the
starting and end points of s, respectively. We consider two
subcases – when s is on the segment of p between w and y,
or on the segment between y and x.

For the first subcase, let m, n and l be the length of s,
the length of p0 from y to a, and the length of p from b to
y respectively. Since p0 is a shortest path from y to z, we
have l � m + n, and conclude that m + l � 2m + n > n

since m > 0. As a result m can go from w to a following p,
then follow p0 from a to y and come up with a shorter path,
an contradiction to the assumption that p is a shortest path
from w to x.

For the second subcase we argue that p0 must intersect
p at d between w and y. Let m, n, l, and q be the length
of s, the length of p0 from b to d, the length of p from d to
y, and the length of p from y to a respectively. Since p0 is
the shortest path from y to z, l � p +m + n. That means
l + p + m � 2p + 2m + n > n since m > 0. Then the
path from w to d following p, then from d to b following p0,
then from b to x following p, will be shorter than p. This
contradicts to the assumption that p is a shortest path from
w to x.

4 Simulation Results

We conduct a series of experiments to verify the effi-
ciency of ITM routing. We also compare the performance
of ITM routing with that of the up-down routing. For this
purpose, we implement a wormhole switch-based network
simulator on top of the OMNet++ (version 2.0b4) object-
oriented discrete event simulation library. First, we gener-
ate seven input network topologies. We randomly gener-
ate seven ITM networks and add additional communication
channels into them. This is to make a fair comparison with
the up-down routing. The ITM routing algorithm, which

randomly chooses a shortest route, will not use any non-
ITM channels. The up-down routing is free to use all the
communication links.

We compare the ITM routing and up-down routing on
the seven network topologies by measuring the average la-
tency for a message from the source to its destination, and
the throughput, which is the data volume that the routing
algorithms can route per time unit.

The simulation consists of both short messages (60 units)
and long messages (180 units). The channel between two
switches can deliver 125,000,000 data units per time unit.
The minimum delay (t) is defined as the time span from the
channel becoming available to actually injecting the mes-
sages. In other words, t indicates the frequency of injecting
messages into the system, and is set from 50 to 20000 10�9

time units in the experiments.
Figures 4 indicates the latency from both algorithms un-

der different t values. As expected, the less often messages
are injected into the network, the smaller the latency, since
the network is less congested. In addition, the ITM routing
always outperforms the up-down routing in large networks.
In small networks this advantage gradually vanishes as the
t increases, since the traffic in the network is so light that it
makes no difference which algorithm is used.
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Figure 4. Latency under different minimum in-
ter message time (t).
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5 Conclusions

In this paper, we have proposed a new interconnecting
topology, Incremental Triangular Mesh, for switch-based
network of workstations. We have shown that ITM guar-
antees deadlock freedom for any shortest path routing. We
have also shown that ITM can support contention-free mul-
ticast. Our experimental results also indicate that ITM pro-
vides better latency and throughput than up-down routing.

The nice properties of ITM also make it an ideal can-
didate for supporting adaptive routing in many networks.
Adaptive routing can be implemented by changing the rout-
ing tables and adding links in parallel with existing ones, or
by splitting physical channels into virtual ones. Deadlock
can be avoided either by restricting routing so that there
are no cyclic dependencies between channels, or simply by
providing some escape paths to avoid deadlock, without re-
stricting routing. ITM’s deadlock-free property and incre-
mental expansion capability make it a suitable choice for
building the escape paths.
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