Reduction Optimization in Heterogeneous Cluster Environments

Pangfeng Liu
Department of Computer Science
National Chung Cheng University

Chiayi, Taiwan, R.O.C.

pangfeng@cs.ccu.edu.tw

Abstract

Network of workstation (NOW) is a cost-effective al-
ternative to massively parallel supercomputers. As
commercially available off-the-shelf processors become
cheaper and faster, it is now possible to build a clus-
ter that provides high computing power within a lim-
ited budget. However, a cluster may consist of differ-
ent types of processors and this heterogeneity compli-
cates the design of efficient collective communication
protocols. For example, it is a very hard combinatorial
problem to find an optimal reduction schedule for such
heterogeneous clusters. Nevertheless, we show that a
simple technique called slowest-node-first (SNF) is very
effective in designing efficient reduction protocols for
heterogeneous clusters. First, we show that SNF is
actually an approzimation algorithm with competitive
ratio two. In addition, we show that SNF does give
the optimal reduction time when the cluster consists of
two types of processors, and the ratio of communication
speed between them is at least two.

1 Introduction

Network of workstation (NOW) is a cost-effective al-
ternative to massively parallel supercomputers [2]. As
commercially available off-the-shelf processors become
cheaper and faster, it is now possible to build a PC
or workstation cluster that provides high computing
power within a limited budget. High performance
parallelism is achieved by dividing the computation
into manageable subtasks, and distributing these sub-
tasks to the processors within the cluster. These off-
the-shelf high-performance processors provide a much
higher performance to cost ratio so that high perfor-
mance cluster can be built inexpensively. In addition,
the processors can be conveniently connected by indus-
try standard network components.

In parallel to the development of inexpensive and
standardized hardware components for network of
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workstations, system softwares for programming on
NOW are also advancing rapidly. For example, the
Message Passing Interface (MPI) library has evolved
into a standard for writing message-passing parallel
code [1, 4, 5]. MPI programmers use a standardized
high-level programming interface to exchange informa-
tion among processes, instead of a native machine-
specific communication library. MPI programmers can
write highly portable parallel codes and run them on
any parallel machine that has MPI implementation.

Most of the literature on cluster computing empha-
sizes homogeneous clusters — clusters consisting of the
same type of processors. However, we argue that het-
erogeneity is one of the key issues that must be ad-
dressed in improving performance of NOW. First it is
always the case that one wishes to connect as many
processors as possible to increase parallelism. Despite
the increased computing power, the scheduling man-
agement of such a heterogeneous network of worksta-
tion (HNOW) becomes complicated since these pro-
cessors will have different communication performance
from one another. Second, since most of the processors
that are used to build a cluster are commercially off-
the-shelf products, they will very likely be outdated by
faster successors before they become unusable. Very
often a cluster will consist of “leftovers” from the pre-
vious installation, and “new comers” that are recently
purchased. The issue of heterogeneity is both scientific
and economic.

Any workstation cluster requires efficient collective
communications [3]. For example, a scatter operation
distributes input data from the source to all the other
processors for parallel processing, then a global reduc-
tion operation combines the partial solutions obtained
from individual processors into the final answer. The
efficiency of these collective communications will affect
the overall performance, sometimes dramatically.

Heterogeneity of a cluster complicates the design of

efficient collective communication protocols. When the
processors send and receive messages at different rates,



it is difficult to synchronize them so that the message
can arrive at the right processor at the right time. On
the other hand, in a homogeneous NOW every proces-
sor requires the same amount of time to transmit a mes-
sage. For example it is straightforward to implement a
reduction operation on P processors in log P steps. In
a heterogeneous environment it is no long clear how we
should proceed to complete the same task.

This paper shows that a simple heuristic called
slowest-node-first (SNF) is very effective in designing
reduction protocols for heterogeneous cluster systems.
Despite the fact that SNF heuristic does not guaran-
tee the optimal reduction time, we show that SNF is
actually an approximation algorithm with competitive
ratio two. In addition, we show that SNF does give
the optimal reduction time when the cluster consists of
only two types of processors, and the ratio of commu-
nication speed between them is at least two.

The rest of the paper is organized as follows. Sec-
tion 2 describes the communication model in our treat-
ment of reduction problem in HNOW. Section 3 de-
scribes the concept of the earliest possible schedule and
Section 4 describes the slowest-node-first heuristic for
reduction in heterogeneous cluster. Section 5 states the
main results and Section 6 concludes.

2 Communication Model

The communication model of a heterogeneous environ-
ment is defined as follows. The system consists of n pro-
cessors {po, ..., Pn—1}, €ach is capable of direct point-to-
point communication to one another. A processor p; is
characterized by its transmission time #(p;), i.e. the
time it takes for p; to send a message to any other
processor.

In order to make the communication model realis-
tic, we further assume that two communications can-
not overlap, i.e. neither the sender nor the receiver
of an ongoing communication can engage in any other
communication at the same time. This assumption is
based on that in practice most of the processors in a
clusters only have limited resource for communication.

We define the reduction problem with the communi-
cation model we just described. Suppose each processor
has a unit of information, and we would like to combine
all these informations into the final answer, how do we
schedule the processors so that the reduction takes the
least amount of time? For a homogeneous system a
simple tree algorithm can combine all the information
in logn rounds. However, due to the variance in com-
munication speed in a heterogeneous environment, this
algorithm cannot guarantee minimum reduction time.

We formally define the reduction as a scheduling
problem. We observe that during the reduction process
exactly n — 1 messages are sent by n — 1 different pro-
cessors. As a result the slowest processor should only
receive message and compute the final result. Based
on this observation, we define a reduction schedule as
a function from a processor to the time that it start
sending its message. Formally we define the schedule
function s so that for any processor p, p starts and com-
pletes sending its message at time s(p) and s(p) + t(p)
respectively. The interval [s(p), c(s, p)] is defined as the
transmission window of p, where c(s,p) = s(p) +t(p) is
the completion time of p under the schedule s.

Due to the constraint that a processor can only par-
ticipate a single communication at any given time, we
must distinguish valid schedule from invalid ones. To
formalize this constraint, we define two sets of proces-
sors for any schedule at any given time. Let A(s,t) be
the number of processors that are still actively sending
their messages, and C'(s, t) be the number of processors
that have completed sending their messages at time ¢
under schedule s.

A(s,t) = |{pi:s(p:) <t <cs,pi)}
C(s,t) = [{pi:t>c(s,pi)}l
2A(s,t) + C(s,t) < n (1)

A schedule function s is wvalid if and only if inequal-
ity 1 is true, which says that that at any time ¢, the
total number of senders and receivers, and those pro-
cessors that have sent out their messages, should not
be more than the number of processors. Figure 1 show
a valid schedule.
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Figure 1: An valid schedule example showing the A and
C functions. The system consist of seven processors
from A to G. The transmission time for the processors
are 10, 5, 5, 5, 4, 2, and 2.

3 Earliest-Possible Schedule

This section describe a technique called earliest possible
scheduling that can “normalize” all the possible valid



schedules. We use this canonical form to simplify the
discussion of finding an optimal schedule.

An earliest possible (EP) schedule is one in which
all the communications are initiated as early as possi-
ble. A new communication can be initiated as soon as
the number of free processors reaches 2 — one as the
sender and the other as the receiver. Let F(s,t) de-
note the number of processors that we are free to use
to initiate a new communication at time ¢ under sched-
ule s. That is, F(s,t) =n — CA(s,t) — C(s,t), where
CA(s,t) = {Pi|s(P;) <t < s(F;) +t(F;)}| is the num-
ber of processor that are in the middle of sending and
receiving messages. CA(s,t) is different from A(s,t),
which includes processors that will start sending and
receiving message at time t. As a result |[n/2| proces-
sors will start sending messages at time 0, and the rest
will start sending messages as soon as the number of
free processors reaches two, as illustrated by Figure 2.
The algorithm EP will assign non-decreasing start time
to the processors in the order they appear in the input
processor sequence P.

Algorithm EP(P)
{
1= 1; time = 0; free = n;
Active = empty set; Complete = empty set;
while (3 < n-1) {
do while (free > 2) {
set the start time of the ith processor in P
to time;
add the ith processor in P into Active;
t=14+1;
free = free - 2;
}
find the set of processors p that has the smallest
completion time in Active;
time = the completion time of p;
move p from Active to Complete;
free = free + the number of elements in p ;

}
}

Figure 2: The earliest possible scheduling algorithm.

By definition an earliest possible schedule s has the
following properties. See Figure 3 for details.

1. n—1<2A(s,t) + C(s,t) <n.

2. For any processor p that s(p) > 0, there exist an-
other processor ¢ such that s(p) = ¢(s, q).

Note that we can convert any valid schedule into an
EP schedule by moving the transmission windows ear-
lier, without increasing the total time. As a result EP
schedule servers as a canonical form in which we will
limit our search of an optimal schedule. Figure 3 shows
the earliest possible schedule converted from Figure 1.
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Figure 3: The EP schedule converted from the schedule
in Figure 1

3.1 Sender Dependency and Destina-
tion Assignment

In Figure 1 we only show the senders of the reduction
communication. For for any EP schedule, it is possible
to specify all the destinations without violating the con-
straint that a processor cannot participate more than
one communication simultaneously.

Lemma 1 For any earliest possible schedule we can
assign the destinations for all processors so that no two
overlapping transmission windows have any sender or
recetver in common.

Proof. First we establish the dependency among the
processors. Note that in algorithm EP it requires two
free processors to start a new transmission. As a re-
sult we define the predecessors of a sender processor to
be the two senders that must complete before the new
transmission can start (when the number of processor
is odd , one of the processor will have only one prede-
cessor). This dependency forms a binary tree among
all sender processors. See Figure 4 for an illustration.
Now we select destinations for all senders. First we
assign the slowest processor as the destination of the
last send. Then for a sender/receiver pair s and r, we
assign s and r to be the destination of the two prede-
cessors of s. Since both predecessors complete sending
their messages before s starts, no overlapping transmis-
sion windows have common processors. [ |
Figure 4 shows the destination for the schedule in
Figure 3. The assignment is not unique since we can
assign s and r to either of the two predecessors.

4 Slowest-Node-First Schedule

We introduce a simple scheduling method called
slowest-node-first (SNF) for the reduction problem.
SNF sorts the processors in non-increasing order, and
gives the sorted sequence P = (p1,pa,...Pn—1), t(pi) >
t(p;) if i < 7, to algorithm EP. This simple technique
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Figure 4: The destinations for all senders in Figure 3
and the predecessor dependency tree.

is very effective in obtaining a good reduction sched-
ule. Figure 5 shows the SNF schedule from the cluster
in Figure 3.
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Figure 5: SNF schedule from the cluster in in Figure 1
and 3.

The rationale of having the slowest processors to
send messages first is as follows. At the beginning of
the reduction process, we would like to overlap as many
communication windows as possible. Intuitively we let
all the slow processors send first so that they will over-
lap with each other, instead of having to wait for each
other at the end of the reduction.

5 Main Results

We begin with an exchange lemma that clarifies our
intuition that slow processors should send first.

Lemma 2 Let s be a valid schedule and processor p
starts right after processor q ends, i.e. s(p) = c(s,p).
If t(p) > t(q) then we can exchange p and q so that the
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Figure 6: An illustration on the contribution to the
sum of C' and 2A.

modified schedule s' in which s'(p) = s(q) and s'(q) =
c(s',p) is also valid.

Proof. From Figure 6 we observe that the contri-
bution of p and ¢ to the sum of C and A functions is
always higher in s than in s', therefore if s can satisfy
Inequality 1, so can s'. ]

From Lemma 2 it follows that in the search of an op-
timal reduction schedule we can neglect those schedules
that have a slower sender p with a faster predecessor q.
There are two cases to consider. First if s(p) = ¢(s, q)
then by Lemma 2 we can switch p and q. If there is
a gap between the transmission windows of p and g,
then we can delay the window of ¢ until it touches p’s
window since there is no new transmission initiated be-
tween s(p) and s(q) + t(q).

Corollary 1 There exists an optimal schedule such
that the predecessors of every senders have an equal
or higher transmission time than the sender.

5.1 Competitive Ratio

We now consider a special class of clusters (called power
2 clusters) in which the transmission time of every pro-
cessor is a power of 2. Without lose of generality we
assume that the fastest processor has a transmission
time of 1, and the slowest one has 2¥. We show that
SNF gives an optimal scheduling for all power 2 clus-
ters.

Theorem 1 The slowest-node-first method gives an
optimal schedule for all power 2 clusters.

Proof. We show that every schedule for a power 2
cluster can be converted into the SNF schedule without
increasing the total reduction time. We reschedule all
the slowest processors as early as possible, until there is
no faster processor ahead of them. Then we reshcdule
the second slowest processors the same way, and repeat
this rescheduling until the final schedule is the same as
SNF.



When the transmission time of every processors is a
power of 2, we claim that the start time of every proces-
sor is a multiple of its transmission time. Since every
processor has a predecessor that ends when it starts,
we locate a “chain” of predecessors all the way back
to time 0. In addition, every one of these predecessors
has a transmission time of equal or larger power of 2.
Therefore the start time, which is the sum of the trans-
mission time of these predecessors, is also a multiple of
its transmission time.

Consider a slowest processor p, and the set F of faster
processors that starts before p. Let ¢ be the processor
completes last in F'. If ¢ finishes right when p starts,
then by Lemma 2 we can exchange p and q. If there
is a gap between s(p) and s(q) + t(g), then any pro-
cessors starts within this gap must end within this gap
as well since all the processor must start and end at
the multiple of its transmission time. Therefore g will
not be the processor with the largest completion time
in F. Similarly we argue that any processor completes
in that gap must also start in that gap, therefore we
can safely delay the transmission window of ¢ so that ¢
ends when p starts. By Lemma 2 we can then exchange
p and ¢ and the theorem follows. ]

Theorem 2 The slowest-node-first schedule has a to-
tal reduction time no greater than twice of the time of
an optimal schedule for all clusters.

Proof. Let s be an optimal schedule for a clus-
ter P. Without lose of generality we assume that the
fastest processor in P has a transmission time 1. We
first convert P into a power 2 cluster by increasing the
transmission time of every processor p to 2/1°8*(®)1 We
call this new cluster P’

We argue that there exists a schedule s' for P’ in
which every processor p starts at time no later than
2s(p). The claim follows from a simple induction that
if every processor p in P’ waits for the two predecessors
q and r defined by s, then it can start at time no later
than 2s(p), since both p and ¢ starts no later than 2s(q)
and 2s(q), and their transmission time at most double
in P'.

Now we have constructed a new schedule s’ for P’
that has a reduction time at most twice of s. Since s
is a schedule for a power 2 cluster, its reduction time
will be no less than the optimal schedule s* produced
by SNF for P'. Finally the SNF schedule s” on P is at
least as fast as the SNF schedule s* for P’, since every
processor starts earlier in P than in P’ because both
of its two predecessors can start earlier in P, and sends
message faster. Therefore the reduction time of s” is
no more than s*, which in turn is no more than twice
of s. [ ]

5.2 Two Types of Processors case

We prove that SNF gives the optimal reduction time
when the cluster consists of two types of processors and
the ratio of communication speed between them is at
least two.

Lemma 3 Let s be a valid schedule, p be a slow pro-
cessor and q1,q2,qs be fast processors. If s(p) is within
the transmission window of q1, q1 stars right after gs,
and g2 starts right after qs, then there exists a schedule
s' with following properties.

1. s'(p) = s(q3), i-e. process p starts sending message
in s' the time process q3 starts sending message in
s.

2. §'(q3) = s(p), i.e. process qs starts sending mes-
sages in s' the time process p starts sending mes-
sage in s.

3. Process q, starts right after qo and q; ends in s'
at the same time as p ends in s.

time -

Figure 7: Rearrange the communication windows of p
and a1,92,43-

Proof. From Figure 7 we observe that 2A4(s, s(p)) +
C(s, s(p)) = 6 because p is at least twice as slow as ¢,
and s'(g2) < ¢(s',p), i.e. p ends before ¢ starts in s'.
The theorem follows since at any time ¢ the value of
2A + C is always equal or higher in s than in s’. ®H
By Lemma 2 there exists an optimal schedule in
which no slow processor will start right after a fast
processor. Therefore, we can assume for every slow
processor, its predecessors are slow processors as well.
The starting time of every slow processor is a multi-
ple of its transmission time, and we can layer the slow
processors according to their starting time as follows.

Definition 1 Layer one processors are the set of slow
processors starting at time 0. Layer i + 1 processors
are the set of slow processors starting right after layer
1 PTOCEesSSOTs.



Theorem 3 SNF is optimal when there are only two
types of processors and the ratio of communication
speed between them is at least two.

Proof. Assume that there exists an optimal solution
in which there exits a slow processor that starts later
than a fast processor. Let p be the one in the earliest
layer among such slow processors, and ¢ be the one
that has the latest completion time among all those
fast processors before p. We show that it is always
possible to reschedule p so that it starts earlier than ¢
without increasing the total time.

There are three cases to consider — the processor p
can start before, at, or after the processor g ends. For
the second case we apply Lemma 2 and switch p and
q. For the third case, since ¢ finishes last among all
the fast processors starting before p, there will be no
processor starting after ¢ ends and before p starts. As
a result we can delay the transmission window of ¢ so
that q ends right when p starts, then we apply Lemma 2
to move p earlier.

We now consider the first case. Since every processor
has a predecessor that ends when it starts, we locate a
“chain” of predecessors for ¢ all the way back to time 0.
For the processor ¢ we need at least two levels of pre-
decessors and both of them must be fast ones, since the
ratio of communication speed is at least two and the
slow processors must start at a multiple of its transmis-
sion time. By Lemma 3 we find a new schedule when p
starts before g. We repeatedly reschedule the slow pro-
cessors p earlier until no fast processor before it, and
the theorem follows. ]

Figure 8 shows a counterexample that SNF always
gives optimal reduction time. This cluster has 4 slow
processors with transmission time z, and 8 fast proces-
sors with transmission time 1. The alternative sched-
ule requires 2z + 1 time when 1.5 < x < 2, or 4 when
1 < z < 1.5. In contrast SNF requires = + 3 time for
both cases, and has a longer reduction time for for all
z between 1 and 2. As a result the bound of two in
Theorem 3 is tight.

6 Conclusion

This paper shows that the slowest-node-first scheduling
is very effective in designing reduction communication
protocols for heterogeneous cluster systems. We show
that SNF is actually an approximation algorithm with
competitive ratio two. In addition, we show that SNF
does give the optimal reduction time when the cluster
consists of two types of processors, and the ratio of
communication speed between them is at least two.
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Figure 8: A counterexample that SNF always gives op-
timal reduction time.

It will be interesting to extend this technique to other
communication protocols and models. In a more prac-
tical and complex model the communication time may
be a function of both the send and the receiver. Also
it is important to investigate the possibility to extend
the analysis to similar protocols like parallel prefix,
all-to-all reduction, or multicast. These questions are
very fundamental in designing collective communica-
tion protocols in heterogeneous clusters, and will cer-
tainly be the focus of further research in this area.
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