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AbstractÐThis paper describes our experiences developing high-performance code for astrophysical N-body simulations. Recent

N-body methods are based on an adaptive tree structure. The tree must be built and maintained across physically distributed memory;

moreover, the communication requirements are irregular and adaptive. Together with the need to balance the computational work-load

among processors, these issues pose interesting challenges and tradeoffs for high-performance implementation. Our implementation

was guided by the need to keep solutions simple and general. We use a technique for implicitly representing a dynamic global tree

across multiple processors which substantially reduces the programming complexity as well as the performance overheads of

distributed memory architectures. The contributions include methods to vectorize the computation and minimize communication time

which are theoretically and experimentally justified. The code has been tested by varying the number and distribution of bodies on

different configurations of the Connection Machine CM-5. The overall performance on instances with 10 million bodies is typically over

48 percent of the peak machine rate, which compares favorably with other approaches.

Index TermsÐN-body simulations, parallel processing, Barnes-Hut algorithm, adaptive tree structure, Peano-Hilbert space filling

curve.

æ

1 INTRODUCTION

COMPUTATIONAL methods to track the motions of bodies
which interact with one another, and possibly subject

to an external field as well, have been the subject of
extensive research for centuries. So-called ªN-bodyº
methods have been applied to problems in astrophysics,
semiconductor device simulation, molecular dynamics,
plasma physics, and fluid mechanics. In this paper, we
restrict attention to gravitational N-body simulation.

The problem is stated as follows: Given the initial states

(position and velocity) of N bodies, compute their states at

time T . The most common, and simplest, approach is to

iterate over a sequence of small time steps. Within each time

step, the acceleration on a body is approximated by the

instantaneous acceleration at the beginning of the time step.

The instantaneous acceleration on a single body can be

directly computed by summing the contributions from each

of the other N ÿ 1 particles. While this method is concep-

tually simple, vectorizes well, and is the algorithm of choice

for many applications, its O�N2� arithmetic complexity

rules it out for large-scale simulations involving millions of

particles.
Beginning with Appel [3] and Barnes and Hut [5], there

has been a flurry of interest in faster algorithms. Experi-

mental evidence shows that heuristic algorithms require far

fewer operations for most initial distributions of interest,

and within acceptable error bounds. Indeed, while there are

pathological bad inputs for both algorithms, the number of

operations per time step is O�N� for Appel's method, and

O�N logN� for the Barnes-Hut algorithm when the bodies

are uniformly distributed in space, provided that certain
control parameters are appropriately chosen.

Greengard and Rokhlin [16] developed the fast multipole
method with O�N� arithmetic complexity, which is accurate
to any fixed precision. Sundaram [31] subsequently
extended this method to allow different bodies to be
updated at different rates; this reduces the arithmetic
complexity over a large time period. Thus far, however,
because of the complexity and overheads in the fully
adaptive three-dimensional multipole method, the algo-
rithm of Barnes and Hut continues to enjoy application in
astrophysical simulations.

Several parallel implementations of the algorithms

mentioned above have been developed over the years.

Board et al. [12], [13] implemented the 3D adaptive fast

multipole method on shared memory machines including

the KSR. Zhao and Johnsson [38] describe a nonadaptive

3D version of Greengard's algorithm on the Connection

Machine CM-2, and Singh et al. [29] implemented the

adaptive method in two dimensions on the experimental

DASH machine at Stanford. Finally, Nyland et al. imple-

mented a 3D adaptive FMM with data-parallel methodol-

ogy in a Proteus, an architecture-independent language

[21], [22]. Pringle [24] implemented the FMM in both 2D

and 3D on the Meiko Computer Surface, CS-1, a distributed

memory parallel computer with explicit message-passing

paradigm.
Salmon [26] implemented the Barnes-Hut algorithm,

with multipole approximations, on message passing archi-
tectures including the NCUBE and Intel iPSC. Warren and
Salmon [34], [35] report impressive performance from
extensive runs on the 512 node Intel Touchstone Delta.
Bhatt et al. applied the Barnes-Hut method to a multi-
filament fluid dynamic problem [15], [10], [9]. Singh et al.
[28], [30], [29] also implemented the Barnes-Hut algorithm
for the experimental DASH prototype. Warren et al.
implemented the tree code using 16 Intel Pentinum Pro
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processors, and reported sustained performance in excess of

one Gigaflop [33]. Blelloch [11] implemented and compared

the Barnes-Hut algorithm, FMM, and the Parallel Multipole

Tree Algorithm (PMTA) in NESL, a parallel programming

language developed in CMU.
More recently, the Tree-Code-Particle-Mesh method

(TPM) [37] combines multiple tree-code with a particle-

mesh algorithm to achieve better solution resolution with

low computation costs. For regions of dense particle

distribution the tree code is used to achieve good resolution,

and a fast particle-mesh algorithm is used in other regions

for better computation performance. The code is written in

PVM and is thus portable to a variety of computing

platforms, and has been used for slices of a CDM universe

in an 80 Mpc/h volume with a force softening length of

5 Kpc/h [37].
The remainder of this paper is organized as follows:

Section 2 reviews the Barnes-Hut algorithm, the issues in

parallel implementation, and recent related work. Section 3

describes our implementation and the reasons behind our

design choices. Section 4 discusses experimental results

from simulations, and Section 5 concludes.

2 THE BARNES-HUT ALGORITHM

All tree codes exploit the idea that the effect of a cluster of

bodies at a distant point can be approximated by a small

number of initial terms of an appropriate power series. The

Barnes-Hut algorithm uses a single-term, center-of-mass,

approximation.

To organize a hierarchy of clusters, the Barnes-Hut
algorithm, sketched in Fig. 1, first computes an oct-tree
(BH-tree) partition of the three-dimensional box (region of
space) enclosing the set of bodies. The partition is computed
recursively by dividing the original box into eight octants of
equal volume until each undivided box contains exactly one
body. Fig. 2 is an example of a recursive partition in two
dimensions. Alternative tree decompositions have been
suggested [2], [14], [25]; the Barnes-Hut algorithm applies to
these as well.

Each internal node of the BH-tree represents a cluster.
Once the BH-tree has been built, the centers-of-mass of the
internal nodes are computed in one phase up the tree,
starting at the leaves. Step 3 computes accelerations; each
body traverses the tree in a depth-first manner starting at
the root. For any internal node, if the distance D from the
corresponding box to the body exceeds the quantity R=�,
where R is the side-length of the box and � is an accuracy
parameter, then the effect of the subtree on the body is
approximated by a two-body interaction between the body
and a point mass located at the center-of-mass of the tree
node. The tree traversal continues, but the subtree is
bypassed.

Once the accelerations on all the bodies are known, the
new positions and velocities are computed in Step 4. The
entire process, starting with the construction of the BH-tree,
is repeated for the desired number of time steps.

For convenience, we refer to the set of nodes which
contribute to the acceleration on a body as the essential
nodes for the body. Each body has a distinct set of essential
nodes which changes with time.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 11, NOVEMBER 2000

Fig. 1. The Barnes-Hut algorithm.

Fig. 2. A recursive partition in two dimension and its corresponding BH tree.



One remark concerning distance measurements is in
order. There are several ways to measure the distance
between a body and a box. Salmon [26] discusses several
alternatives in some detail. For consistency, we measure
distances from bodies to the perimeter of a box in the L1
metric. This is a conservative choice, and for sufficiently
small � avoids the problem of ªdetonating galaxiesº [26]. In
our experiments, we use � � 1; this corresponds to � � 0:5

for the original Barnes-Hut algorithm.
The overhead in building the tree and traversing it while

computing centers-of-mass and accelerations is negligible in
sequential implementations. With 10,000 particles, more
than 90 percent of the time is devoted to arithmetic
operations involved in computing accelerations. Less than
1 percent of the time is devoted to building the tree. Thus, it
is reasonable to build the BH-tree from scratch at each
iteration.

2.1 Issues in Parallel Implementation

The Barnes-Hut algorithm provides sufficient parallelism;
all bodies can, in principle, traverse the tree simultaneously.
However, a good implementation must resolve a number of
issues. To begin with, the bodies cannot all be stored in one
node of a distributed-memory machine. With the bodies
partitioned among the processors, the costs of building and
traversing the BH-tree can increase significantly. In con-
trast, the time for arithmetic operations will, essentially,
decrease linearly as the number of processors increases.
This tension between the communication overhead and
computational throughput is of central concern to both
applications programmers and architects.

The challenges to developing high-performance code can
be summarized as follows:

1. The BH-tree is irregularly structured and dynamic;
as the tree evolves, a good mapping must change
adaptively.

2. The data access patterns are irregular and dynamic;
the set of tree nodes essential to a body cannot be
predicted without traversing the tree. The overhead
of traversing a distributed tree to find the essential
nodes can be prohibitive unless done carefully.

3. The sizes of essential sets can vary tremendously
between bodies; the difference often ranges over an
order of magnitude. Therefore, it is not sufficient to
map equal numbers of bodies among processors;
rather, the work must be equally distributed among
processors. This is a tricky issue, since mapping the
nodes unevenly can create imbalances in the work
required to build the BH-tree.

Finally, our aim is not simply to develop an efficient
implementation of one algorithm. Rather, we seek techni-
ques which apply generally to other N-body algorithms as
well as other applications involving distributed tree
structures.

2.2 Related Work

We sketch the important aspects of Salmon's thesis [26],
which motivated us initially, as well as the more recent
reports of Warren and Salmon [34], [35], and of Singh et al.

[28], [30]. We also point out the differences of our
techniques from these approaches.

Salmon [26] and Warren and Salmon [34] weight each
body by the number of interactions in the previous time
step. The volume enclosing the bodies is then recursively
decomposed by orthogonal hyperplanes into regions of
equal total weight. Fig. 3 shows the resulting decomposi-
tion, often called the orthogonal recursive bisection, ORB for
short. When bodies move across processor boundaries, or
their weights change, work imbalances can result. The ORB
is recomputed at the end of each time step.

Each processor builds a local tree for its set of bodies
which is later extended into a locally essential tree. The locally
essential tree for a processor contains all the nodes of the
global tree that are essential for the bodies contained within
that processor. Once the locally essential trees have been
built, the rest of the computation requires no further
communication. Both implementations use quadrupole
moments for higher accuracy.

The global tree is neither explicitly nor implicitly built.
The process of building the locally essential trees requires
nontrivial bookkeeping and synchronization. The book-
keeping is complicated by the ªstore-and-forwardº nature
of the process: when a processor receives information, it
sifts through the data to retrieve any information that is
locally essential, figure out what information must be
forwarded, and discards the rest. The flow of information
follows the dimension order of the hypercube.

We too use the ORB decomposition and build locally
essential trees so that the final compute-intensive stage is
not slowed down by communication. However, there are
significant differences in implementation: 1) we build a
distributed representation of a global tree in a separate
phase, 2) the locally essential trees are built using a sender-
driven protocol that is significantly simpler, more efficient,
and network independent, 3) we update the ORB decom-
position and global BH-tree incrementally only as necessary
rather than recompute them at every iteration, and 4) the
computation to update positions and velocities is vectorized
to minimize time.

Since we carefully vectorized the final sequential stage, it
was imperative that the overhead due to parallelization be
as small as possible. Experimental results and comparisons
are given in Section 4.
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Fig. 3. A two-dimensional orthogonal recursive bisection.



More recently, Warren and Salmon [27], [35] reported a
new algorithm that uses a different criterion for applying
center-of-mass approximations. The new criterion considers
not only the geometry location of a cell, but also the the
detailed information of the particle distribution, including
the actual radius of the cluster, the distance to the
evaluation point of interest, and the multipole moments.
As a result, the set of essential data for a particle cannot be
determine a priori by the geometry information alone.
Therefore, the new implementation [35], [36] does not build
locally essential trees; instead, they construct an explicit
representation of the BH-tree. Each body is assigned a key
based on its position, and bodies are distributed among
processors by sorting the corresponding keys. Besides
obviating the need for the ORB decomposition, this also
simplifies the construction of the BH-tree. However, with-
out the computation, the stage is slowed down by
communication; the latency is hidden by multiple threads
to pipeline tree traversals and to update accelerations, but
the program control structure becomes complicated and
less transparent.

The DASH shared-memory architecture group at Stan-
ford [28], [30] has investigated the implications of shared-
memory programming for the Barnes-Hut algorithm as well
as the two-dimensional adaptive fast multipole method.
Each processor first builds a local tree; these are merged
into a global tree stored in shared memory. Work is evenly
distributed among processors by partitioning the bodies
using a technique similar to [35].

The arguments in [28] about the advantages of shared-
memory over message-passing implementations are based
largely on comparisons to the initial implementations of
Salmon [26] and Warren and Salmon [34]. Since our
message-passing implementation is considerably simpler
and more efficient, the import of the arguments of [30], [28]
is less clear. For example, contrary to their claims, ORB can
be implemented efficiently. Indeed, it is expensive to
compute ORB from scratch at every time step, but it is
simple to incrementally adjust the partition quickly. The
same is true for the BH-tree. While shared-memory systems
might ease certain programming tasks, the advantages for
developing production-quality N-body codes are not
entirely clear.

3 IMPLEMENTATION OVERVIEW

We separate control into a sequence of alternating compu-
tation and communication phases. This helps maintain
simple control structure; efficiency is obtained by proces-
sing data in bulk. For example, up to a certain point, it is
better to combine multiple messages to the same destination
and send one long message. Similarly, it is better to
compute the essential data for several bodies rather than
for one at a time. Another idea that proved useful is sender-
directed communication, send data wherever it might be
needed rather than requesting it whenever it is needed.
Indeed, without the use of the CM-5 vector units, we found
that these two ideas kept the overhead minimal because of
the parallelism.

Fig. 4 gives a high-level description of the code structure.
Note that the local trees are built only at the start of the first
time step. Steps 1b, 3, and 4 require no communication;
Step 3 is the most time-consuming step.

3.1 Data Partitioning

We use orthogonal recursive bisection (ORB) to distribute
bodies among processors. The space bounding all the
bodies is is partitioned into as many boxes as there are
processors, and all bodies within a box are assigned to
one processor. At each recursive step, the separating
hyperplane is oriented to lie along the smallest dimension;
the intuition is that reducing the surface-to-volume ratio is
likely to reduce the volume of data communicated in later
stages. Each separator divides the workload within the
region equally. When the number of processors is not a
power of two, it is a trivial matter to adjust the division at
each step accordingly.

The ORB decomposition can be represented by a binary
tree, the ORB tree, a copy of which is stored in every
processor. The ORB tree is used as a map which locates
points in space to processors. Storing a copy at each
processor is quite reasonable when the number of proces-
sors is small relative to the number of particles.

We chose ORB decomposition for several reasons. It
provides a simple way to decompose space among
processors, and a way to quickly map points in space to
processors. This latter property is essential for sender-
directed communication of essential data, for relocating
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Fig. 4. Outline of code structure.



bodies which cross processor boundaries, and for our
method of building the global BH-tree. Furthermore, ORB
preserves data locality reasonably well1 and permits simple
load-balancing. Thus, while it is expensive to recompute the
ORB at each time step [28], the cost of incremental load-
balancing is negligible, as we will see in the next section.

The ORB decomposition is incrementally updated in
parallel as follows: At the end of a time step, each processor
computes the total number of interactions used to update
the state of its particles. A tree reduction yields the number
of operations for the subset of processors corresponding to
each internal node in the ORB tree. A node is overloaded if
its weight exceeds the average weight of nodes at its level
by a small, fixed percentage, say 5 percent. It is relatively
simple to mark those internal nodes which are not over-
loaded but one of whose children is overloaded; call such a
node an initiator. Only the processors within the corre-
sponding subtree participate in balancing the load for the
region of space associated with the initiator. The subtrees
for different initiators are disjoint so that nonoverlapping
regions can be balanced in parallel.

At each step of the load-balancing step, it is necessary
to move bodies from the overloaded child to the
nonoverloaded child. This involves computing a new
separating hyperplane; we use a binary search combined
with a tree traversal on the local BH-tree to determine the
total weight within a parallelpiped.2

We found that updating the ORB incrementally is cost-
effective in comparison with either rebuilding it each time
or with waiting for a large imbalance to occur before
rebuilding.

3.2 Building the BH-Tree

Unlike the first implementation of Warren and Salmon [34],
we chose to construct a representation of a distributed
global BH-tree. An important consideration for us was to
investigate abstractions that allow the applications pro-
grammer to declare a global data structureÐa tree, for
exampleÐwithout having to worry about the details of
distributed-memory implementation. For this reason, we
separated the construction of the tree from the details of
later stages of the algorithm. The interested reader is
referred to [8] for further details concerning a library of
abstractions for N-body algorithms.

3.2.1 Representation

We represent the global BH-tree as follows: Since the oct-
tree partitions are oblivious of the input distribution, each
internal node represents a fixed region of space. We say
that an internal node is owned by the processor whose
domain contains a canonical point, say the center of the
corresponding region. The data for an internal node, the
multipole representation, for example, is maintained by the
owning processor. Since each processor contains a copy of

the ORB-tree, it is a simple calculation to figure out which
processor owns an internal node.

The only complication is that the region corresponding to
a BH-node can be spanned by the domains of multiple
processors. In this case, each of the spanning processors
computes its contribution to the node; the owner accepts all
incoming data and combines the individual contributions.
This can be done efficiently when the combination is a
simple linear function, as is the case with all tree codes.

3.2.2 Construction

Each processor first builds a local BH-tree for the bodies
which are within its domain. At the end of this stage, the
local trees will not, in general, be structurally consistent.
The next step is to make the local trees be structurally
consistent with the global BH-tree. This requires adjusting
the levels of all leaves which are split by ORB lines. A
similar process was developed independently in [28]; an
additional complication in our case is that we build the
BH-tree until each leaf contains a number, L, of bodies.
Choosing L to be much larger than 1 speeds up the
computation phase, but makes level-adjustment somewhat
tricky.

The level-adjusting process can be described as a
ªrequest-and-answerº process. If a processor p has a leaf u
that overlaps with multiple processor domains, p will send
a request for u to all the processors overlapping with u.
Upon receiving a request, a processor will send back an
answer that describes the distribution of bodies within u in
its domain. By receiving answers from other processors,
p can know the distribution of bodies within u but outside
its domain in order to adjust the level of u.

The level adjustment procedure also makes it easy to
update the BH tree incrementally. We can insert and delete
bodies directly on the local trees because we do not
explicitly maintain the global tree. After the insertion/
deletion within the local trees, level adjustment restores
coherence to the implicitly represented distributed tree
structure.

Once level-adjustment is complete, each processor
computes the centers-of-mass and multipole moments on
its local tree. This phase requires no communication. Next,
each processor sends its contribution to an internal node to
the owner of the node. Once the transmitted data have been
combined by the receiving processors, the construction of
the global BH-tree is complete. This method of reducing a
tree computation into a one local step to compute partial
values, followed by a communication step to combine
partial values at shared nodes is generally a useful method.

3.3 Locally Essential Trees

Once the global BH-tree has been constructed, it is possible
to start calculating accelerations. The naive strategy of
traversing the tree, and transmitting data-on-demand,
requires two-way communication (for request and reply),
and may cause large communication overheads if not
programmed carefully. For example, Warren et al. used a
user-level multithreading programming technique to
pipeline tree traversals, aggregate individual messages,
and hind communication latency [35].
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1. Clustering techniques which exploit the geometrical properties of the
distribution will preserve locality better, but might lose some of the other
attractive properties of ORB.

2. Each internal BH node will keep track of the total workload from the
local particles in its domain, therefore we can quickly determine the
workload within a parallelpiped by a tree traversal.



We propose that we first construct the locally essential
trees before computing the velocity. The owner of a
BH-node computes the destination processors for which
the node might be essential; this involves the intersection of
the annular region of influence of the node, called influence
ring, with the ORB-map. Fig. 5 shows the influence ring of a
node u when � � 1. Those particles that are not within the
influence ring are either too close to u to apply center-of-
mass approximation, or far away enough to use u's parent's
information, therefore u will be essential to only particles
within its influence ring. As a result, each processor first
collects all the information deemed essential to other nodes,
and then sends long messages directly to the appropriate
destinations. Once all processors have received and inserted
the data received into the local tree, all the locally essential
trees have been built.

The locally essential tree approach has its advantages
and limitations. First, the processors send the essential data
to where they are needed directly, without two-way request
and reply overheads. In addition, after the processors
collect the essential data, they can proceed their computa-
tion without any communication. However, as pointed out
in [27], [35], sometimes it is difficult to determine a priori
where a cluster will be needed by its geometry information
alone. In other words, the ªMultiple Acceptability Criter-
ionº (MAC)Ðthe test to determine whether a cluster is far
away to apply approximationÐrequires more information
than just the location of the cell. For example, if we measure
the distance from a body to a cell as the the minimum distance
from the body to any point in the cell, (MD MAC in [27]), then a
processor can easily determine the influence area without
knowing particle distribution inside the cell. However, this
naive MAC will cause serious accuracy problem (e.g.,
ªDetonating Galaxyº in [27]). On the other hand, the
remedy of using a strict � in MAC will cause unnecessary
high computation costs. As a result, it will be more cost-
effective to include the particle distribution into the MAC.
For example, Barnes and Hut's method defines the distance
from a body to a cell as the L2 distance from the body to the
center of mass of the cell (Barnes-Hut MAC in [27]). Salmon
and Warren [27], [35] also introduced MAC that guarantees
the error bound for each approximation, which requires the
interaction distance, the cell size, and the multipole
moments for better tradeoff between computation costs
and accuracy.

It is possible for the locally essential tree approach to
adapt to the complicated MAC that requires more than
geometry information of the cell alone. For example, in our

tree code the center of mass and the multiple moments are
computed recursively with the representative approach in
Section 3.2. As a result, the locally essential tree approach
can be extended so that a cell, having all the necessary
information from its parent and itself, can determine the
region that will need this cell as essential data. However,
there are several issues one must resolve. First, commu-
nication may still be necessary for a cell to determine to
which region it should send the data, since the representa-
tive of its parent may not be in the same processor. Second,
we will not be able to determine the influence region if we
want to impose error tolerances which vary from particle to
particle [27], [35]. Finally, with MAC other than MD MAC,
it will be difficult to guarantee the caching performance in
Theorem 1 that will be described in details next.

3.3.1 Calculating Accelerations

The final phase to compute accelerations does not require
any communication. In order to use the CM-5 vector units
effectively, we calculate the accelerations of groups of
bodies. Instead of measuring distances from bodies to
BH-boxes, we instead measure distances between bounding
boxes for groups of bodies and BH-boxes. This guarantees
that the resulting calculations are at least as accurate as
desired.

Grouping bodies does increase the number of calcula-
tions, but it also makes them more regular. More significant
is the reduction in the time spent traversing the tree. This
idea of grouping bodies was used earlier by Barnes [4].

A further reduction in tree traversal is possible by
caching essential nodes. The key observation is that the set
of essential nodes for two distinct groups that are close
together in space are likely to have many elements in
common. Therefore, we maintain a software cache for the
essential nodes.

A judicious choice of caching strategy is necessary to
ensure that cache maintenance overheads do not under-
mine the gains elsewhere. It is also important to order the
different groups such that the total number of cache
modifications is minimized. Our strategy is to pick a
space-filling curve; the groups are chosen in their order
along the space-filling curve. Fig. 6 shows an example using
the Peano-Hilbert curve.

In what follows, we show that, under certain conditions,
the number of cache modifications is asymptotically smaller
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Fig. 5. The influence ring of a node u when � � 1.

Fig. 6. Peano-Hilbert sequence.



than the number of two-body calculations when the velocity
of particles is computed in their order along the space-
filling curve. In particular, suppose there are N bodies in the
system. The number of interactions computed by the
Barnes-Hut algorithm is 
�N logN�. We show that the
number of cache modifications is bounded by O�N� under
recursive tree traversal, if either � � 1 or if the distribution
of bodies is uniform. The general case, when � 6� 1 and the
distribution of bodies is nonuniform, remains open. It is
worthwhile to note that under the L1 metric we use, � � 1
is a reasonable choice for large systems.

Theorem 1. When � � 1, the number of cache modifications
under recursive tree traversal is O�N�, independent of the
distribution of bodies.

Proof. For ease of exposition, we give the proof for two
dimensions; the extension to three dimensions is
straightforward. The theorem follows from two observa-
tions. First, the number of times a tree node u enters the
cache (denoted by tu) is the number of times the traversal
enters the influence ring of u. Therefore, the total number
of cache modifications is the sum of tu, over all tree
nodes u.

Second, when � is 1, the influence ring of any tree
node u coincides with a BH-node boundary; the
influence ring can be partitioned into twelve squares,
as in Fig. 5, and each square corresponds to a possible
BH-tree node. If the corresponding tree node of a square
does not exist, then a leaf must cover this square, as well
as some other adjacent squares. In any case, 12 tree nodes
suffice to cover any influence ring.

Node u enters the cache each time the traversal enters
the influence ring of u from outside, but this can happen
at most 12 times. It follows that the number of cache
updates is bounded by a constant factor times the size of
the BH-tree.

Finally, the tree size is proportional to the number of
bodies. The only complication is that two bodies that are
very close together can form a long chain in the tree (see
Fig. 7). However, this chain can be lumped into a single
node because the tree nodes along the chain represent
the same cluster. As a result, the size of BH-tree is ��N�
and the theorem follows. tu

Suppose the bodies are uniformly distributed in a unit
square; we show that the number of cache modifications is
bounded by O�N� for any �. We first define some notations.
The unit square is uniformly refined until no more than a
constant number of bodies is in any bottom level box (Fig. 8).
Since the bodies are uniformly distributed, the number of
bottom level boxes is ��N�. A rectangle is m� n if its length
and width consist of m and n bottom level boxes,
respectively. A partition line is on i-boundary if it is between
two 2i � 2i BH-tree nodes.

Lemma 1. Every m� n rectangle can be partitioned into O�m�
n� BH-tree nodes.

Proof. We decompose the rectangle into layers of increasing
width, with thinner layers on the outside. If a boundary
line of the rectangle is not on 1-boundary, we cut a strip
of 1� 1 BH-nodes from the boundary so that the new
boundary lines are on 1-boundary. After removing at
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Fig. 7. A chain of two nearby bodies.

Fig. 8. Boundary lines in different levels. (a) 0-boundary. (b) 1-boundary. (c) 2-boundary.



most m� n 1� 1 boxes, the new area can be partitioned

into 2� 2 boxes. In general, the number of 2i � 2i boxes

removed at the ith iteration is O�m�n2i �, and all the new

boundary lines will be on i+1-boundary. Summing up,

the total number of BH-nodes required to partition an

m� n rectangle is O�m� n�. tu
Theorem 2. When the bodies are uniformly distributed, the

number of cache modifications under recursive tree traversal is

O�N�, independent of �.

Proof. Similar to the proof of Theorem 1, we bound the

number of BH-nodes required to cover an influence ring.

We extend the influence ring just enough to cover the

bottom-level boxes that were partially covered. The

influence ring of a BH-node u in level ` has O�
���
N
p
2`
� boxes

on the perimeter, and can be partitioned into four

rectangles of O�
���
N
p
2`
� �O�

���
N
p
2`
�. From Lemma 1, the

number of tree nodes required to cover the influence

ring of u is O�
���
N
p
2`
�. Therefore, the number of cache

modifications is
Plog4 N

`�1 4`
���
N
p
2`
� O�N�. tu

The case of nonuniform distribution and arbitrary �
remains open. In this case, we can bound the total distance
covered under a specific tree traversal. While this does not
directly bound the number of cache modifications, the
intuition is that keeping the average distance between
consecutive bodies should keep the number of cache
modifications small. In particular, we use a recursive tree
traversal corresponding to the Peano-Hilbert curve in Fig. 6.
The worst-case length of a space-filling curve for N bodies
in the unit square is ��

�����
N
p
� [23]. In fact, it has been

established that the length of the Peano-Hilbert curve is
always within a O�logN� factor of the optimal TSP tour in
d-dimension [6], [7], [23].

Theorem 3. [23]. Suppose that N bodies are distributed within

the unit square (alternatively, the unit cube). Then the total

distance covered by the Peano-Hilbert traversal is O�
�����
N
p
�

(O�N 2
3�).

3.4 Reducing Communication Times

The communication phases can all be abstracted as the ªall-
to-someº problem. Each processor contains a set of
messages; the number of messages with the same destina-
tion can vary arbitrarily. The communication pattern is
irregular and unknown in advance. For example, level
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adjustment is implemented as two separate all-to-some

communication phases. The phase for constructing locally

essential trees uses one all-to-some communication.
The first issue is detecting termination: When does a

processor know that all messages have been sent and

received? The naive method of acknowledging receipt of

every message, and having a leader count the numbers of

messages sent and received within the system, proved

inefficient.
A better method is to use a series of global reductions,

the control network of the CM-5, to first compute the

number of messages destined for each processor. After this,

the send/receive protocol begins; when a processor has

received the promised number of messages, it is ready to

synchronize for the next phase.
We noticed that the communication throughput varied

with the sequence in which messages were sent and

received. As an extreme example, if all messages are sent

before any is received, a large machine will simply crash

when the number of virtual channels has been exhausted. In

the CMMD message-passing library (version 3.0), each

outstanding send requires a virtual channel [32] and the

number of channels is limited.

Instead, we used a protocol which alternates sends with
receives. The problem is thus reduced to ordering the
messages to be sent. For example, sending messages in
order of increasing destination address gives low through-
put, since virtual channels to the same receiver are blocked.
In an earlier paper [18], we developed the atomic message
model to investigate this phenomenon. Consistent with the
theory, we find that sending messages in random order
worked best.

4 EXPERIMENTAL RESULTS

This section describes experimental results we obtained
from two sets of implementations. Both implementations
are based on the same key ideas described in Section 3.

4.1 Connection Machine CM-5

Our platform is the Connection Machine CM-5E with
SPARC vector units. All experiments reported here were
run on a 256-node CM-5. Each processing node has
128 Mbytes of memory and can perform floating point
operations at a peak rate of 160 Mflop/s. We use the
Connection Machine CMMD library (version 3.0). The
vector units are programmed in CDPEAC which provides
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an interface between C and the DPEAC assembly language

for vector units. The rest of the program is written in C.
Our experiments included three input distributions:

uniform distribution, Plummer distributions [1] with mass

M = 1 within a sphere, and two colliding Plummer spheres.

The Plummer sphere has very large density in the center.

All examples contained about 10 million particles. Fig. 9

shows the time spent per phase for the Plummer sphere.

Fig. 10 and Fig. 11 show corresponding numbers for

uniform distribution and two colliding Plummer spheres.

The time can be classified into four categories. The first is

the time to manage the distributed Barnes-Hut tree. This

includes level adjustment, BH-tree update, and combining

the local trees into the global representation. Less than

10 percent of the total time is spent for these activities for

uniform and Plummer distribution. The corresponding

figures for the two Plummer sphere distribution is

13 percent. The total execution times were 26 seconds,

42 seconds, and 33 seconds, respectively.

The second category is the time for constructing locally

essential trees. The implementation packs information into

long messages to improve communication throughput. This

phase uses less than 5 percent of the total time.
The third category is time to compute accelerations. This

category includes the time for vector units to compute
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Fig. 11. Time breakdown for two Plummer spheres.

Fig. 12. Comparisons with implementations of Warren and Salmon [34]
[35]. The second last row is the percentage of time devoted exclusively
to computing interactions (the entry for WS92 includes time for tree
traversal).



interactions among particles, and the time to modify the
essential data cache. The vector units compute interactions
at the rate of 96-113 Mflop/s, depending on the distribu-
tions. Even at this rate, the time spent by the vector units
dominates; only 7-10 percent of the total time goes to cache
modification.

The final category is the time for load balancing. Our
implementation successfully balances the workload with
negligible overhead. The simulation adjusts the workload
distribution only when the imbalance exceeds 5 percent. As
a result, the amortized cost for remapping is extremely
small per simulation step.

The implementations sustains an overall rate of over
77 Mflop/s per processor, or 19.7Gflop/sec for the
256-node configuration. The hand-written CDPEAC assem-
bly routine achieves 113 Mega flops in the interaction
computation. The rest of the overhead is less than
24 percent. For the uniform distribution, the corresponding
figure is less than 19 percent.

These figures compare favorably with those reported by
Warren and Salmon [34], [35] (see Fig. 12). One important

remark is in order: while our simulations were run over

several minutes of wall-clock time, Warren and Salmon's
figures are averages over almost 17 hours.

Our incremental tree structure is more efficient than the
conceptually simpler method of [35]. The tree building

phase in their implementation takes more than 12 percent of

the total time. Singh et al. present a method similar to ours
which takes about 5 percent to build the tree. If the final

phase in both these approaches is speeded up by grouping

bodies as we do, then the fraction of time in building the
tree will be significantly higher. In contrast, our code

spends less than 10 percent of the total time to update the

tree for uniform distribution.

4.2 Discussion of Results

BH tree Adjustment. Fig. 13 compares the time to
dynamically adjust the BH tree versus building it from

scratch. The time for rebuilding the tree is taken from the

first time local trees are built. The actual rebuilding time in
later steps is larger because the number of bodies per

processor can vary greatly after the first time step.
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The memory allocation routine is the major overhead in
tree building process. Whenever a new BH node is inserted
into the tree, the implementation must allocate memory for
it. The memory management routines (malloc) provided by
UNIX operating systems has extra overhead and contri-
butes to the slow tree building process. In the implementa-
tion, we use our customized memory allocation routine to
acquire memory for BH tree. Although the customized
routine reduces the overhead in memory management
considerable, the rebuilding is still more expensive than
adjustment because of the extra overhead in releasing and
allocating all the BH nodes.

In [28], Singh suggests that shared memory architecture
has substantial advantages in programming complexity
over an explicit message-passing programming paradigm,
and the extra programming complexity translates into
significant runtime overheads in message-passing imple-
mentation. However, in our implementation, we do not see
this happen. Our implementation uses direct message-
passing communication to manage the BH tree, but the

overhead is very small with respect to the overall execution
time.

Caching vs. Traversal. Fig. 14 shows the effect of
different group size on the time for vector units to compute
interactions. The computation time increases when the
maximum number of bodies in a group (denoted by G)
increases. As we compute acceleration for larger groups, the
bounding box for the group increases in size. As a result,
the number of BH boxes opened unnecessarily also
increases, as does the size of essential data cache. Therefore,
the time for vector unit to process essential data increases.

The increase in computation time is not significant until
G increases to around 400 for the following reason.
Consider a uniform particle distribution. In order to double
the size of the bounding box, the number of bodies must
increase by a factor of eight in three dimensions. Therefore,
the increase in G must be significant to increase the cache
length. Second, only those BH boxes surrounding the
bodies will be affected by the change in G. Finally, the
vector units process essential data in blocks of sixteen, so a

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 11, NOVEMBER 2000

Fig. 14. Time to compute interactions for different group sizes for a Plummer sphere containing 10 million bodies.



small increase in G may not affect the total time for vector

units to compute interactions.
Fig. 15 shows the effect of G on the time to prepare

essential data for interaction computation. When G in-

creases, the time to collect essential nodes decreases in both

tree traversal and caching method. The effect on tree

traversal strategy is easy to understand. The number of tree

traversals is inversely proportional to G, so the tree

traversal time decreases as G increases.
Increasing G has two different effects on the time to

modify cache data. First, the number of cache modification

decreases as more bodies are processed at a time, so the

time should decrease as G increases. On the other hand,

each cache modification will become more expensive when

G increases. The increased size of the bounding box will

decrease the cache hit rate because the distance from one

group to the next increases. As a result, more expand/

shrink operations become necessary and this increases the

cost.

Fig. 16 shows the total time for force computation under

different values of G. The combined effect of increasing

vector unit times for computing interactions and decreasing

time for preparing essential data gives minimum total time

when G is about 320 for caching (450 for tree traversal).

Although the advantage of caching gradually disappears

when the group size increases to very large values, it

outperforms tree traversal for all group size up to 512, and

gives the overall minimum force computation time.
From the experiments, we can see that the effect of

reduced number of cache modification is more significant

than the increased cost per cache modification. As a result,

the time for cache modification decreases as G increases.

The reducing rate is slower than the tree traversal method

in which the cost per group does not change.
Fig. 17 also shows that the cache hit rate decreases as

more bodies are processed in a group. The increased

bounding box size increases the distance from one group of

bodies to the next group.
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4.3 Network of Workstations

Based on the CM-5 implementation, we also implemented a

platform-independent parallel N-body framework [19],

[20]. Within the framework, the users will be able to

concentrate on the computation kernels that differentiate

different tree-structured scientific simulation problems, and

let the framework take care of the tedious and error-prone

details that are common among these applications.
We demonstrate the flexibility of the parallel tree

framework by implementing two applicationsÐa gravita-

tional force field computation and a multifilament fluid

dynamic calculation. Both applications were developed

within the tree library framework; therefore, all the tree

structure details and communications were taken care of by

predefined tree operations and the communicator classes.
The experiments were conducted on four UltraSPARC-II

workstations located in the Institute of Information Science,

Academia Sinica. The workstations are connected by a fast

Ethernet network capable of 100 Mbps per node. Each

workstation has 128 Mbytes of memory and runs on

SUNOS 5.5.1. The communication library in the framework

is implemented on top of MPI.

4.3.1 Gravitational Force Field Calculation

Table 1 summarizes the speedup factors of our parallel

implementation on a cluster of four workstations. To get fair

speedup numbers, we compare the parallel execution time

with the timing from a highly optimized sequential C code,

implementing the same algorithm, written by Barnes and

Hut. The input configuration is a set of uniformly

distributed particles in three dimension. The C code uses

various techniques including in-memory caching of the

vector ~xi ÿ ~xj between determining whether to open a cell

(traverse down the tree for smaller subcluster) and the

actual evaluation of the potential filed and acceleration.

Nevertheless, our implementation gives competitive per-

formance, even compared with this highly optimized

C code.
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Fig. 17. Cache hit rate.

TABLE 1
Timing Comparison between the Parallel C++ Code Using the Framework and a Sequential C Implementation for Gravitation Field

Computation

The time units are seconds.

TABLE 2
Timing Comparison for the Fluid Codes

The time units are seconds. The parallel code was written using the tree framework, and the sequential code was converted from Barnes and Hut's
code.



4.3.2 Multiple-Filament Vortex Simulation

We implemented a multifilament vortex method using our

framework. This line of work is based on a previous

CM-5 implementation [15], [10]. We solve Biot-Savart's

interaction between vortex elements using the algorithm by

Knio and Ghoniem [17]. The multiple-filament vortex

method computes the vorticity on each particle, and

requires an extra phase in the tree construction to compute

the vorticity. The vorticity of a particle is defined as the

displacement of its two neighbors in the filament (see (1)).

Once the vorticity on each particle is computed, we can

compute the multipole moments on the local trees. Finally,

each processor sends its contribution to a node to the owner

of the node so that individual contributions are combined

into globally correct information, as in the gravitational

case.

d~xi
dt
� ÿ 1

4�

X

j

�~xi ÿ~xj� ��~xj
j~xi ÿ~xjj

�1ÿ e
ÿj~xiÿ~xj j

3

�3
j �

�~xj �
1

2
�~xj�1 ÿ~xjÿ1�:

�1�

Table 2 summarizes the timing comparison between our

parallel code and a sequential C code modified from the

previously mentioned Barnes and Hut's implementation,

which is highly optimized. The fluid dynamics code

developed using the tree framework also delivered compe-

titive performance. The speedup factors are higher than

those of the gravitation code, because the fluid dynamics

code performs more computation on each particle, which

amortizes the overhead of parallelization and object

orientation.

5 CONCLUSIONS

Our experiments demonstrate that adaptive and irregular
tree structures for N-body simulations can be implemented
efficiently in distributed memory using explicit message-
passing communication. Maintaining incremental data
structures substantially reduces the overheads due to
parallel implementation. We also find that Barnes' techni-
que of grouping bodies to compute accelerations reduces
the time dramatically by allowing efficient utilization of the
vector units.
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