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Abstract This paper gives an overview of the VGDS (Virtual
Global Data Structure) project. The VGDS e�ort focuses on de-
veloping an integrated, distributed environment that allows fast
prototyping of a diverse set of simulation problems in scienti�c
and engineering domains, including regular, irregular, and adap-
tive problems. The framework de�nes three base libraries, Array,
Graph, and Tree, that capture major data structures involved in
scienti�c computation. The framework de�nes multiple layers of
class libraries which work together to provide data-parallel rep-
resentations to application developers while encapsulate parallel
implementation details into lower layers of the framework. The
layered approach enables easy extension of the base libraries to
a variety of application-speci�c data structures. Experimental
results on a Sun UltraSparc workstation cluster is reported.

Keywords: distributed data structures, parallel scienti�c compu-

tation, object oriented framework

1 Introduction

With the advance of commercial o�-the-shelf microproces-
sors and interconnection technology, distributed-memory par-
allel machines (e.g. MPPs, workstation clusters, and SMP
clusters) have become an attractive computing platform for
solving large problems. In the past few years, a large number
of scienti�c computing applications have bene�t from such
parallel computers. Despite this success, parallel program-
ming for distributed-memory machines remains a di�cult
task, mainly because it often involves many intricate details
that are error-prone and di�cult to debug. This has become
the major bottleneck of HPC software development. This is
particularly evident in development of irregular and adap-
tive applications. The goal of this e�ort has been to identify
and nurture one enabling technology for high performance
scienti�c computation: object-oriented construction of vir-
tual global data structures.

Fortran 90 and High Performance Fortran (HPF) are
counted among HPC's software successes, because they demon-
strate the utility of parallel arrays for hiding low-level dis-
tributed memory details. This is possible because array
structures are used in highly idiomatic ways in scienti�c ap-

plications, and compiler and library writers exploit those
idioms to extract high performance|an HPF array being
just one instance of a virtual global data structure.

The uses of irregular and adaptive data structures in
commercial and scienti�c applications are even more styl-
ized, precisely because of their irregularity and similarity.
For example, most of the tree-based scienti�c codes use simi-
lar tree structures and exhibit similar computation patterns.
A uid mechanics code and a molecular dynamics code may
di�er only in the interaction formula. The tree structures are
basically the same except for the data stored in tree nodes
and the implementation-dependent tree representation. Fur-
thermore, di�erent simulation algorithms may use the same
data structure. For instance, fast multipole method and
Barnes-Hut's algorithm use the same oct-tree structure {
they di�er only in how they manipulate the trees. Therefore,
a general tree framework helps in developing tree codes for
di�erent application domains, and in implementing di�erent
tree algorithms as well. Another example is unstructured
mesh computation. Although unstructured mesh compu-
tations may perform di�erent calculations according to the
systems being simulated, they use the mesh virtually the
same way { A mesh point updates its stored data, which
represent some physical quantities at that point, by retriev-
ing the data from its neighbors and performing calculations
on them. Such property gives distributed data structure de-
signers the ability to map them to HPC architectures and
extract their parallelism.

In this paper, we present a data structuring framework,
Virtual Global Data Structures, for parallel and distributed
scienti�c computation. The VGDS framework de�nes three
base libraries, Array, Graph, and Tree, that capture ma-
jor data structures involved in scienti�c and engineering
computation. The framework implemented distributed data
structures as object-oriented classes with explicit associated
method interfaces. Application-speci�c data structures can
be derived from these base libraries through class inheri-
tance.

In the past few years, many research e�orts have been
devoted to designing e�cient numerical libraries for matrix-
based parallel computation (e.g. MultiMATLAB [20], PETSc
[16], and ScaLAPACK [7]). Research e�orts in providing
suitable object-oriented parallel languages/libraries for cer-
tain classes of applications have also been abundant [4, 8, 3,
13, 21]. Our VGDS e�ort distinguishes itself from others in
two aspects. First, instead of tackling one particular data
structure, we propose an integrated framework incorporat-
ing a diverse set of data structure classes that are essential
in scienti�c and engineering computation. These include



regular (in which data reference patterns are uniform), ir-
regular (in which data reference patterns are non-uniform),
and adaptive (in which data reference patterns keep chang-
ing dynamically and incrementally) applications.

Secondly, we use layered object-oriented design and anal-
ysis in the construction of the VGDS base libraries. System
objects in the upper layers of the framework are relevant
to application speci�c domains (e.g. computational uid
dynamics simulation, molecular dynamics simulation, etc.)
while objects lower in the framework capture the abstrac-
tion of parallelism and e�cient processor-level computation.
This layered approach provides a natural breakdown of re-
sponsibility in designing a complete HPC system, and allows
design e�ort and heavy-duty optimization to be easily ex-
pended exactly where it is most needed.

This paper reports on the progress of our VGDS e�ort.
Section 2 describes the organization and functionality of the
VGDS framework. Section 3 discusses some implementa-
tion details of virtual global data structures in distributed-
memory environments. Section 4 illustrates the core func-
tionality of the VGDS framework using the Tree library as
a running example. Section 5 reports our experimental re-
sults on a Sun UltraSparc-2 workstation cluster. Section 6
describes related work and Section 7 concludes.

2 The VGDS Framework

The VGDS framework de�nes three layers of C++ classes:
the global layer, the parallel abstraction layer, and the lo-
cal layer. Layers of application components can be built
atop the VGDS basis. Figure 1 depicts the structure of this
framework.
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Figure 1: The VGDS Framework

The global and local layers together de�ne various vir-
tual global operations on regular (such as arrays), irreg-
ular (such as graphs, unstructured meshes), and adaptive
(such as adaptive trees, and adaptive grids) data structures.
The global layer de�nes global data types. Objects in the
global layer are bookkeepers that delegate computational
tasks to the local layer. The local layer implements generic,
processor-local computational kernels for each VGDS com-
ponent. The interactions between the global and the local
layers are mediated by the parallel abstraction layer that
captures the abstraction of parallelism, including data de-
composition, interprocessor communication, and load bal-
ancing.

Currently, the VGDS framework provides three basic

data structures: Array (for regular computation), Graph (for
irregular graph-based computation), and Tree (for adaptive
tree-based computation). Application-speci�c data struc-
tures can be derived from these basic data structures. For
instance, a dense matrix class can be derived from the Array
class by inheriting the Array class and de�ning additional
methods essential in dense matrix computation. Table 1
outlines the classes and functionality of each layer, details
of which are described in the following sections.

Table 1: VGDS Framework Functionalities
Layers Classes Functionality

Base Derived

Array Grid

Matrix data-parallel

Global Graph UMesh operations

Tree BHTree

AdaptGrid

LocArray LocGrid

LocMatrix processor-local

Local LocGraph LocUMesh operations

LocTree LocBHTree

LocAdaptGrid

Mapper BlockPartitioner data layout

management

Parallel ORBPartitioner

Abstraction Communicator inter-processor

communication

Message message

abstractions

2.1 Global and Local Layers

The VGDSs within the global layer provide a global view of
the data, in which the data structure is treated as a mono-
lithic whole, with operators that manipulate individual ele-
ments and implicitly iterate over substructures. In the local
view (the local layer), each processor contains only a part of
the whole, with operators acting only on the local data.

When a global data structure is instantiated, it creates a
constituent local data substructure on each processor. When-
ever a kernel operator associated with the data structure is
invoked, the operation is carried out by �rst retrieving the
handles to the local data, then delegating complete local
computation to each local data substructure. If communi-
cation is required, it is performed through system objects in
the parallel abstraction layer.

2.2 Parallel Abstraction Layer

The parallel abstraction layer de�nes classes for data layout,
interprocessor communication, and load balancing for vir-
tual global data structures. Classes in this layer are imple-
mented as abstract classes and can be shared among various
data structures. The key features of this layer are encapsu-
lated into two groups of classes { data decomposition classes
that are responsible for processor geometry, data partition-
ing and mapping, and load balancing, and communication
classes that take care of data movement between processors.

Data Decomposition Classes

The global data structure are partitioned into local sub-
structures on each processor according to the Mapper class.
Mapper is an abstract class that de�ne common service inter-
face for �nding the geometry of a VGDS, identifying global
neighbor relations between their constituent local substruc-
tures, and deriving logical send- and receive-sets for a given
global subscript resolved into the local substructure. Con-
crete mapping classes that are derived from Mapper provide
domain speci�c information and functionality that can be
tuned to the need of the speci�c data structure. For ex-
ample, VGDS supports a BlockPartitioner for arrays and
a ORBPartitioner (Orthogonal Recursive Bisection) for ir-
regular and adaptive data structures. By instantiating the



Mapper class, the user can also construct customized data
decomposition strategies.

Communication Classes

Two groups of classes are implemented to support portable,
transparent message-passing communication on distributed-
memory machines { Message and Communicator. The Mes-
sage class is used to encapsulate data in a common format for
easy data delivery and retrieval of di�erent data structures.
The Communicator is an abstract class that de�nes common
service interfaces for bu�er allocation, message delivery, and
data handling related to communication. These services are
encapsulated into three methods: extract, communicate,
and process. Communicating data elements between pro-
cessors are performed in three steps. First, the Communi-
cator extracts data elements for sending by traversing the
speci�ed region in the VGDS data object and packing data
elements into a Message object. Then the Communicator
delivers(communicates) theMessage object according to the
given communication scheduling algorithm. When a Mes-
sage object is received, the Communicator unpacks it and
stores the data elements to the appropriate locations in the
VGDS data object. The extraction and the restoring pro-
cess requires interaction with the VGDS data object. The
method communicate is implemented on top of MPI, to as-
sure portability.

Figure 2 depicts the interactions between major classes
in the VGDS framework. When a VGDS data object in-
vokes a method that requires remote data accesses, the data
object consults the Mapper object for the identi�ers of the
processors on which the global subscripts are mapped, and
inserts them into a list of sends and receives (called com-
munication schedule). The data object then requests the
Communicator to carry out the planned data movement.
During the course of computation, if the VGDS data object
decides that a remapping is necessary (e.g. for load balanc-
ing purpose), it invokes the remap method inMapper, which
in turn redistributes the data structure incrementally.

VG data object

Message
Communicator, Mapper

load balancing
remapping

schedule
communicationdata movement

Figure 2: Interaction of Classes in the VGDS Framework

3 Data Coherence and Synchronization

Since a virtual global data structure is distributed over
local memories of processors, in order to e�ect the same
computation as in the global view, the local computations
must be coordinated. We adopt the owner-computes rule,
which distributes computations according to the mapping of
data across processors. However, a local substructure may
require information from other processors to complete the
computation of data assigned to it. When communications
mostly occur between neighboring processors and the same
communication patterns may occur many times during pro-
gram execution, it is more e�cient to duplicate boundary

P0 P1P0 P1

P0

P0 P1

P1

P0 P1

P1P0

(a) duplication for regular array structures

(b) duplication for unstructured meshes (irregular data structures)

(c) duplication for adaptive tree structures

Figure 3: Duplication for distributed data structures. The
duplicated data are indicated by solid black.

data elements on adjacent processors. For example, in an
unstructured mesh computation where the new data value
of a mesh node is a function of its neighbors, by duplicating
boundary mesh nodes to the other side of partitioning lines,
computations on the local submeshes on individual proces-
sors can all be performed locally without communication.
In reality, data elements may be read or updated, which
raises the issues of data coherence and synchronization. We
describe our approach next.

We classify the data into two categories, master copy and
duplication. A master copy is a data region in the original
global structure that is mapped to a processor. A master
copy can make copies of itself, called duplication, on other
processors. That is, all the data elements that are essential
to the computations of the local master copies will be fetched
into the local substructure on the processor which owns the
master copies. As far as each master copy is concerned, there
is no distinction between global and local structures. Note
that we do not have the notion of global pointers because all
the pointers address a local memory address, be it a master
copy or a duplication. The computations read and update
the master copy only { the duplications only provide data
and are read-only. Therefore, data coherence is guaranteed
by allowing only the master copy to be updated, and only
one master copy exists for one data element.

Figure 3 shows the duplication mechanism for a regular
array, an unstructured mesh, and an adaptive Barnes-Hut
tree for N-body algorithms. We assume that the computa-
tion of each element in the regular array and the unstruc-
tured mesh requires its neighbors, and the per-particle force
computation of the Barnes-Hut algorithm requires a traver-
sal on the adaptive Barnes-Hut tree.

To assure synchronization, data elements are duplicated
before the actual computation is performed. After data are



partitioned, system objects in the parallel abstraction layer
duplicate the data to the processors where they are essen-
tial to the computation. A barrier synchronization separates
the duplication process from the computation, assuring that
all the data are available and the computation can proceed
without any further communication. This mechanism guar-
antees safety in a distributed environment.

4 Case Study: BH Tree

In this section, we use the Tree class (and a BH Tree class
derived from Tree) as an example to illustrate the VGDS
framework.

4.1 N-body problem and tree codes

Computational methods to track the motions of bodies which
interact with one another have been the subject of exten-
sive research for centuries. So-called \N -body" methods
have been applied to problems in astrophysics, semiconduc-
tor device simulation, molecular dynamics, plasma physics,
and uid mechanics.

The problem can be simply stated as follows. Given the
initial states of N bodies, compute their interactions ac-
cording to the underlining physic laws, usually described by
a partial di�erential equation, and derive their �nal states at
time T . Fast algorithms have been reported in [2, 5, 10, 19].
All these N -body algorithms explore the idea that the e�ect
of a cluster of particles at a distant point can be approxi-
mated by a small number of initial terms of an appropriate
power-series. To apply the approximation e�ectively, these
so called \tree codes" organize the bodies into a hierarchy
tree in which a particle can easily �nd the appropriate clus-
ters for approximation purpose.

4.2 The Barnes-Hut algorithm

We will focus on the Barnes-Hut algorithm as an exam-
ple of N -body tree code. The Barnes-Hut algorithm pro-
ceeds by �rst computing an oct-tree partition of the three-
dimensional box (region of space) enclosing the set of parti-
cles. The partition is computed recursively by dividing the
original box into eight octants of equal volume until each
undivided box contains exactly one particle. An example of
such a recursive partition in two dimensions and the corre-
sponding BH-tree are shown in Figure 4. Note that each
internal node of the BH-tree represents a cluster. Once the
BH-tree has been built, the mass and the location of the
centers-of-mass of the internal nodes are computed in one
phase up the tree, starting at the leaves.
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Figure 4: BH tree decomposition

To compute accelerations, we loop over the set of par-
ticles observing the following rules. Each particle starts at

the root of the BH-tree, and traverses down the tree trying
to �nd clusters that it can apply center-of-mass approxima-
tion. If the distance between the particle and the cluster is
far enough, with respect to the radius of the cluster, then
the acceleration due to that cluster is approximated by a
single interaction between the particle and a point mass lo-
cated at the center-of-mass of the cluster. Otherwise the
particle visits each of the children of the cluster. Note that
nodes visited in the traversal form a sub-tree of the entire
BH-tree and di�erent particles will, in general, traverse dif-
ferent subtrees. The leaves of the subtree traversed by a
particle will be called essential data for the particle because
it needs these nodes for interaction computation.

Once the accelerations on all the particles are known, the
new positions and velocities can be computed. The entire
process, starting with the construction of the BH-tree, is
now repeated for the desired number of time steps.

4.3 Parallel Implementation

To make the paper self-contained, we briey describe our
parallel implementation of the BH algorithm, upon which
the BH-Tree library is built.

4.3.1 Data partitioning

The default strategy that we use to distribute bodies among
processors is orthogonal recursive bisection (ORB). The space
bounding all the bodies is recursively partitioned into as
many boxes as there are processors, and all bodies within a
box are assigned to one processor. Each separator divides
the workload within the region equally. The ORB decom-
position can be represented by a binary tree and is used as
a map to locate points in space to processors.

4.3.2 Building the BH-tree in parallel

We construct the BH tree as follows. Each processor �rst
builds a local BH-tree for the bodies within its domain. At
the end of this stage, the local trees will not, in general,
be structurally coherent. The next step is to make the lo-
cal trees structurally coherent with the global BH-tree by
adjusting the levels of all leaves which are split by ORB
bisectors.

Once level-adjustment is complete, each processor com-
putes the centers-of-mass on its local tree without any com-
munication. Next, each processor sends its contribution to
an internal node to the owner of the node, de�ned as the
processor whose domain contains the center of the internal
node. Once the transmitted data have been combined by the
receiving processors, the construction of the global BH-tree
is complete.

4.3.3 Collecting essential data

Once the global BH-tree has been constructed it is possible
to start calculating accelerations. It is signi�cantly easier
and faster for a processor to �rst collect all the essential
data for its local particles, then compute the interactions
the same way as in the sequential Barnes-Hut method since
all the essential data are now available. In other words,
the owner of a data must determine the area (called inu-
ence area) where its data might be essential, and send the
data there. Formally, for every BH-node �, the owner of �
computes an annular region called inuence ring for � such
that those particles � is essential to must reside within �'s



inuence ring. Those particles that are not within the inu-
ence ring are either too close to u to apply center-of-mass
approximation, or far away enough to use u's parent's infor-
mation. With the ORB map it is straightforward to locate
the destination processors to which � might be essential.

4.3.4 Communication

The communication phases can all be abstracted as an \all-
to-some" problem, in which each processor sends a set of
personalized messages to dynamically determined destina-
tion processors. Therefore, the communication pattern is
irregular and dynamically changing.

VGDS employs a randomized protocol for all-to-some
communication. The protocol alternates sends with receives
to avoid exhausting communication channels reserved for
messages that are sent but not yet received, and randomly
permutes the destination so that any processor will not be
ooded by incoming messages at any given time. In an
earlier paper [12] we developed the atomic message model
to investigate message passing e�ciency. Consistent with
the theory, we �nd that sending messages in random order
worked best.

Figure 5 gives a high-level description of the parallel im-
plementation structure. Note that the local trees are built
only at the start of the �rst time step.
Build local BH trees.

For every time step do:

1. Construct the BH-tree representation

(a) Adjust node levels

(b) Compute partial node values on local trees

(c) Combine partial node values at owning processors

2. Owners send essential data

3. Calculate accelerations

4. Update velocities and positions of bodies

5. Update local BH-trees incrementally

6. If the workload is not balanced update the ORB incrementally

Figure 5: Outline of code structure

4.4 The Tree Framework

To eliminate duplicated programming investments in devel-
oping similar tree-based scienti�c codes, we have developed
a VGDS tree frameowrk. The tree framework de�nes three
layers of classes: base tree layer, Barnes-Hut tree layer, and
application layer. Each latter layer is built on top of the for-
mer one. The base tree layer supports simple tree construc-
tion and manipulation methods. System programmers can
build domain-speci�c tree libraries (e.g. Barnes-Hut Tree)
using the classes in the base tree layer (Sec 4.4.2). Appli-
cation programmers can write programs using classes in the
Barnes-Hut tree layer, or any other special library developed
from the base tree layer. Figure 6 depicts the hierarchy of
tree classes and their associated methods.

4.4.1 Base tree layer

The base tree layer is the foundation of our framework from
which complex tree structures can be derived. We de�ne
basic tree manipulation methods in the base tree layer, in-
cluding inserting a new child from a leaf, deleting an existing
leaf, and performing parallel tree reduction and traversal.

Tree Tree_node Tree_reduction
Tree_traversal_with_traverser

Tree_traversal

Compute_cluster_data

Check_Particle_bh_box_consistency

Find_edata

Interaction

BH_id

Vector

BH_tree_node

BH_tree

Grav_BH_tree

Grav_BH_node Particle_cluster Grav_interaction

Particle

Cluster

Application

BH_tree

Tree

Figure 6: The class hierarchy in base tree, Barnes-Hut tree,
and application layers.

template <class Data, const int n_children>
class Tree_node {
protected:
Data *data;
Tree_node *children[n_children];

};
template <class Data, class Tree_node, class Tree,

const int n_children>
class Tree_reduction {
public:
virtual void init(Data*) = 0;
virtual void combine(Data *parent, Data* child) = 0;
void reduction(Tree* tree);

};
template <class Data, class Tree_node, class Tree,

const int n_children, class Node_id>
class Tree_traversal {
public:
virtual bool process(Data*) = 0;
void traverse(Tree *tree);

};
template <class Data, class Tree_node, class Tree,

class Traverser>
class Tree_traversal_with_traverser :
public Tree_traversal<Data,Tree_node,Tree,N_CHILD,BH_id>
{
protected:
Traverser *traverser; // who is traversing?

};

Figure 7: Base tree layer classes.

Tree reduction computes the data of a tree node ac-
cording to the data of its children, e.g. computing the center
of mass in Barnes-Hut's algorithm. Tree traversal walks
over the tree nodes and perform a user-de�ned operation
(denoted as per node function) on each tree node (Figure 7).

For tree reduction, users are required to provide two
functions: init(Data*) and combine(Data *parent, Data*
child), which tell reduction class how to initialize and
combine the data in tree nodes, respectively. The class Data
is the data type stored in each node of the tree on which
the reduction operation is to be performed. For tree traver-
sal, users are required to provide the per node function bool
process(Data*) that is to be performed on every tree node.

4.4.2 Barnes-Hut tree

The BH tree layer supports tree operations required in most
of the N -body tree algorithms { it supports tree opera-
tions common to both BH algorithm and fast multipole
method, and all the special operations used in the Barnes-
Hut method.

By extending the Tree class, each tree node in BH tree
contains a data cluster, and the data cluster of each leaf
node contains a list of bodies. The types of the particle and
cluster are given by the user of the BH tree class as template



parameters AppCluster and AppBody. This abstraction cap-
tures the structure of a BH tree without any application
speci�c details.

template<class AppBody>
class Cluster {
protected: Link_list<AppBody*> body_list;
public: void add(AppBody* b);
};
template<class AppCluster, class AppBody>
class BH_tree : public Tree<AppCluster, N_CHILD> {
public:
void insert_body(AppBody*);
void remove_body(AppBody*, Tree_node<AppCluster, N_CHILD>*);

};
template<class AppCluster, class AppBody, class Tree_node,

class Tree, const int n_children>
class Compute_cluster_data: public

Tree_reduction<AppCluster, Tree_node, Tree, n_children>{
public:
void init(AppCluster* cluster) {
cluster->reset_data();
if (cluster->get_type() == Leaf)

for (every body in cluster's body_list)
cluster->add_body(body); }

void combine(AppCluster* parent, AppCluster* child)
{parent->add_cluster(child);}

};

Figure 8: BH tree layer classes.

The BH tree class also supports several operations: com-
puting cluster data, �nding essential data, computing inter-
action, and checking particle and BH box for consistency.

Cluster data computation is implemented as a tree re-
duction (Figure 8). init(AppCluster* cluster) resets the
data in the cluster and if the cluster is a leaf, it combines
the data of the bodies from the body list into the data of the
cluster. The other function combine(AppCluster* parent,
AppCluster* child) adds children's data to parent's.

The essential data �nding class Find edata inherits
Tree traversal with traverser with two additional lists
for essential clusters and bodies (Figure 9). The traverser is
the particle that collects essential data. The per node func-
tion process(AppCluster*) inserts the clusters that can be
approximated into essential clusters list, and adds the
bodies from leaf clusters that cannot be approximated into
essential bodies list. The traversal continues only when
traverser cannot apply approximation on an internal cluster.

After collecting the essential clusters and bodies, a body
can start computing the interactions. The computation class
Interaction (Figure 9) goes through the essential data list1

and calls for functions to compute body-to-body and body-
to-cluster interactions de�ned by the user of Interaction.

4.4.3 Application Layer

Various N -body applications can be built upon the Bh tree
layer. We briey describe the implemenation of the grav-
itational N -body computation. First we construct a class
Particle for bodies that attract one another by gravity,
then we build the cluster type Particle cluster from Particle
(Figure 10). Next, in the Particle cluster class we de�ne
the methods for computing/combining center of mass and
the methods for testing essential data.

Then, in class Grav interaction, which is derived from
the class template Interaction, we de�ne methods to com-
pute gravitational interactions. We specify the gravitation
interaction rules in the de�nition of body body interaction
and body cluster interaction.

1
Lists obtained from the class Find Edata.

template<class AppCluster, class AppBody, class Tree_node,
class Tree>

class Find_edata: public Tree_traversal_with_traverser
<AppCluster,Tree_node,Tree,AppBody> {

Link_list<AppBody*> essential_bodies;
Link_list<AppCluster*> essential_clusters;

public:
bool process(AppCluster* c) {

if (c->is_edata_for(traverser)) {
essential_clusters.insert(c); return(0);

} else if (c->get_type() == Leaf) {
for (every body in c's body list)

if (body != traverser)
essential_bodies.insert(body);

return(0);
} return(1); }

};
template<class AppBody, class AppCluster, class Result>
class Interaction {
AppBody *subject;
Link_list<AppBody*>* body_list;
Link_list<AppCluster*>* cluster_list;
Result result;

public:
void compute() {

result.reset();
for (every body in body_list)
result += body_body_interaction(subject, body);

for (every cluster cluster_list)
result += body_cluster_interaction(subject,cluster);}

virtual Result body_body_interaction(AppBody*,AppBody*)=0;
virtual Result body_cluster_interaction(AppBody*,

AppCluster*)=0;
};

Figure 9: Class for �nding essential data and interaction
computation.

Finally, we de�ne the BH-tree type Grav BH tree and
tree node type Grav BH node. These two data types serve
as template parameters to instantiate BH-tree related oper-
ations, like Compute cluster data, Find edata, and Check
particle bh box consistency.

4.4.4 Parallel Abstraction

Mapper class

The Mapper class de�nes a data partitioner (e.g. the ORB
partitioner), a remapping method, and two associated geom-
etry resolution functions: data to processor (that trans-
lates a data coordinate to a processor domain) and dataset
to processors (that translates multiple data coordinates
to a set of processor domains). In addition, it de�nes a
simple data structure MappingTable to store the mapping
information.

template <class Data, class DataSet, class ProcessorDomain,
class MappingTable>

class Mapper {
protected:

MappingTable table;
public:

virtual ProcessorDomain data_to_processor(Data*)=0;
virtual Link_list<ProcessorDomain>

dataset_to_processors(DataSet*)=0;
};

Communicator class

The Communicator class supports general purpose all-to-
some communications. A Communicator class de�nes three
methods: extract (that, when given a data pointer, con-
structs outgoing data and packs them into a Message ob-
ject), communicate (that sends outgoing messages and re-
ceives incoming messages according to a randomized schedul-



class Particle {
protected:
Real mass;
Vector position;
Vector velocity;

};
class Particle_cluster: public Cluster<Particle> {
protected:
Center_of_mass center_of_mass;

public:
void reset_data(); // center of mass computation
void add_body(Particle *p);
void add_cluster(Particle_cluster* child);
bool is_edata_for(Particle*); // find essential data

};
class Grav_interaction:
public Interaction<Particle, Particle_cluster, Vector> {
public:
Vector body_body_interaction(Particle*, Particle*);
Vector body_cluster_interact(Particle*,Particle_cluster*);

};
typedef Tree_node<Particle_cluster, N_CHILD> Grav_BH_node;
typedef BH_tree<Particle_cluster, Particle> Grav_BH_tree;

Figure 10: Classes for a gravitational N -body application.

ing algorithm), and process (that unpacks the received mes-
sages and performs appropriate action on the received data).

template <class Data, class DataPacket>
class Communicator {
protected:
Link_list<Data*> *data_list[MAX_NUM_PROCESSORS];
DataPacket send_buffer[MAX_BUFFER_SIZE];
DataPacket receive_buffer[MAX_BUFFER_SIZE];

public:
void communicate();
virtual DataPacket extract(Data*)=0;
virtual process(DataPacket*)=0;

};

5 Experimental Results

The experiments were conducted on a cluster of four Ultra-
Sparc2 workstations located in the Institute of Information
Science, Academia Sinica. The workstations are connected
by a fast Ethernet network capable of 100M bps per node.
Each workstation has 128 mega bytes of memory and runs
SUNOS 5.5.1.

In the following, we report our preliminary experiences
with a set of application programs, the Shallow Water code
developed using the Array class, a airfoil simulation code
developed using the preliminary Umesh class, and a gravi-
tational Nbody simulation code and a vortex CFD code de-
veloped using the BHTree class. The VGDS class libraries
signi�cantly reduced the code sizes and development time
of these applications (e.g. for each of the two tree codes,
from over ten thousand lines down to a few hundred lines in
code sizes and from over six months down to a few days in
development time), compared with their message-passing C
counterparts. Table 2 shows the performance of the VGDS
codes. The Shallow Water code developed using the Array
class achieved a speedup factor of 3.5. The Nbody code and
the CFD code achieved a speedup factor of 3.2 and 3.5 re-
spectively. In all these cases, speedup factor increases as
problem size is increased. This is because communication
overhead becomes less signi�cant, compared with computa-
tion time, for large problem sizes.

Furthermore, the codes developed using the VGDS classes
achieved more than 90% of the performance of their message-
passing C version implementing the same algoritm. The
main sources of overhead in the libraries include dynamic

memory allocation/deallocation for data object creation and
destruction, non-optimized computation kernel for long ex-
pressions, and additional overhead in support of portability
of the library. We expect that as the project grows more
mature, this overhead can be further reduced.

Shallow Water (10 iterations)
problem size 642 1282 2562 5122 1k2

seq time 0.28 1.22 4.96 21.32 88.59
parallel time 0.13 0.45 1.50 6.18 25.16

speedup 2.16 2.71 3.31 3.45 3.52
Gravitational N-body

problem size 48k 56k 64k 128k 256k
seq time 65.62 81.23 93.59 186.12 413.75

parallel time 21.03 26.17 29.17 58.78 125.78
speedup 3.12 3.12 3.17 3.12 3.23

Vortex CFD
problem size 48k 56k 64k 128k 256k

seq time 148.60 175.46 204.18 404.34 801.81
parallel time 43.00 51.37 59.05 117.20 231.07

speedup 3.42 3.42 3.46 3.45 3.47

Table 2: Execution time of the VGDS codes. Time units
are seconds

6 Related Work

The bene�t of data abstraction in object-oriented languages
on scienti�c code development has been demonstrated by
various e�orts [9, 15]. Particularly inuential and relevant
to our approach are the work reported by Angus [1] and
Shart and Otto[18] where class-speci�c compiler optimiza-
tions are introduced into a compiler written in an object-
oriented fashion. Our approach has taken their class-speci�c
philosophy further into the realm of runtime support for a
diverse set of parallel and distributed data structures (be-
yond simply array classes) on high performance platforms.

Another line of work uses objects to de�ne data struc-
tures with built-in data distribution capabilities. This again
relates directly to our approach. Examples of work along
this line include the Paragon package [8], which supports a
special class PARRAY for parallel programming, the P++
Array class library [14], PC++ proposed by Lee and Gannon
[11, 21], which consists of a set of distributed data struc-
tures (arrays, priority queues, lists, etc.) implemented as
library routines, where data are automatically distributed
based on directives. Interwork II Toolkit [4] described by
Bain supports user programs with a logical name space on
machines like iPSC. The user is responsible for supplying
procedures mapping the object name space to processors.
In a related work by ourselves [6], we report abstractions of
adaptive load balancing mechanisms and complex, many-to-
many communications as C++ classes for supporting HPC
challenging applications. Instead of tackling one particular
data structure such as arrays or matrics, we propose an in-
tegrated design framework for a diverse set of distributed
data structures, where data distribution, data sharing, data
coherence, and synchronization between data references are
mediated by the runtime system.

Our data structuring framework has similar goals and
approaches to the POOMA package [3] and the Chaos++
library [17]. POOMA supports a set of distributed data



structures (�elds, matrices, particles) for scienti�c simula-
tions. To our knowledge, POOMA has not supported adap-
tive data structures as we do. Chaos++ is a general-purpose
runtime library that supports pointer-based dynamic data
structures through an inspector-executor-based runtime pre-
processing technique. Our framework focuses on a more
speci�c class of data structures essential to scienti�c simu-
lations and engineering computation; therefore, we are able
to exploit optimizations that would be di�cult for a general
preprocessing technique.

A large body of work in the literature can be catego-
rized as \object-parallelism," where objects are mapped to
processes that are driven by messages. Our use of object-
orientation is for structuring the VGDS classes and their
specializations for optimizations, which is entirely distinct
in philosophy from that of object-parallelism.

7 Conclusion

In this paper, we have presented the VGDS framework for
scienti�c applications. We have implemented a prototype
of VGDS base libraries and a set of distributed data struc-
tures derived from this basis, including array, unstructured
mesh, and BH tree. We reported our experimental results
on a workstation cluster. We demonstrated that the VGDS
class libraries signi�cantly reduced application development
cost, at the expense of slight performance penalty due to
object orientation. We are currently investigating possible
approaches to reduing such overhead.

We hope that the basic scienti�c results and concrete
classes and templates libraries from our VGDS e�ort will
encourage value-added development of mapping and opti-
mizing methods for classes of parallel applications.
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