
Scheduling Multiple Multicast for Heterogeneous Network of Workstations With
Non-blocking Message-Passing

Jan-Jan Wu
Shih-Hsien Yeh

Institute of Information Science
Academia Sinica

Taipei 11529 Taiwan R.O.C.�
tristan,wuj � @iis.sinica.edu.tw

Pangfeng Liu
Dept. CSIE

National Chung Cheng Univ.
Chiayi, Taiwan, R.O.C.

pangfeng@cs.ccu.edu.tw

Abstract

This paper proposes efficient algorithms for implement-
ing multicast in heterogeneous workstation/PC clusters.
Multicast is an important operation in many scientific and
industrial applications. Its efficient implementation on
distributed-memory machines plays a critical role in the
performance of distributed-memory parallel computing ap-
plications.

Our work distinguishs itself between others in two as-
pects: (1) In contrast to the blocking communication model
used by existing works, we model communication on hetero-
geneous clusters more accurately by a non-blocking model,
and design multicast algorithms that can fully exploit the
advantage of non-blocking communication, (2) While exist-
ing works only solve single-node multicast problem, we pro-
pose efficient algorithms for implementing general multi-
node multicast (in which single-node multicast is a special
case). Our simulation results demonstrate performance im-
provement of multicast by 20% to 160% compared to exist-
ing algorithms.

1 Introduction

Due to the commodity nature of workstations and net-
working equipments, cluster environments are gradually be-
coming heterogeneous. This trend is forcing network of
workstations/PCs to be redefined as Heterogeneous Net-
work of Workstations (HNOW).

Many research projects are currently in progress to pro-
vide efficient communication for workstation/PC cluster
systems [1, 4, 7, 9, 8, 5, 16, 6, 11, 10, 15, 17]. How-
ever, most of these research projects focus on homogeneous
clusters. Communication algorithms designed for homoge-
neous clusters have been shown to be very inefficient for
heterogeneous clusters [2].

In this paper we study the multicast problem in HNOW
systems. Multicast is an important operation in many sci-
entific, industrial and commercial applications. In a single-
node multicast, a source node sends the same message to
a subset of nodes in the system. Multi-node multicast is a
general case in that multiple source nodes issue multicast
communication simultaneously. Multi-node multicast op-
erations are frequently used in sparse matrix computation,
scientific simulation and Internet applications.

Multicast can be implemented at different levels:
hardware-supported, network interface firmware-supported,
and software implementation based on point-to-point mes-
sages. We focus on software implementation of mul-
ticast because it does not require modification of hard-
ware/firmware and thus is portable to different cluster en-
vironments.

Software-based multicast in heterogeneous systems has
not been investigated until very recently. In software-based
approach, a multicast is implemented as � sequences of
send/receive tasks, where � is the number of processors in-
volved in the multicast. The fact that finding optimal se-
quences of tasks for multicast on heterogeneus systems is
NP-complete has led to a number of research works on de-

vising heuristic algorithms [12, 2, 13].
The Efficient Collective Operation (ECO) package [12]

was developed for networks of heterogeneous worksta-
tions. ECO uses heuristic algorithms to partition the work-
stations participating in a collective communication into
subnetworks based on pair-wise round-trip latencies be-
tween workstations. It then decomposes the collective com-
munication into two phases: inter-subnetwork and intra-
subnetwork. ECO automatically chooses a suitable tree al-
gorithm for each of these phases.

Banikazemi et al. [2] proposed a Fastest-Node-First
(FNF) algorithm employs a heuristic that in each iteration
of the algorithm, the fastest node which has not received the
message is added to the tree. The simulation results show
that the FNF algorithm achieves near optimal solution for
multicast communication on HNOW systems of up to 10
nodes [2].

Bhat et al. [13] proposed a communication framework
that characterizes heterogeneity of both processing nodes
and networks. A cost function is constructed for each pair
of nodes, which represents the communication cost between
the two nodes. Based on the communication framework, the
authors designed a number of heuristic algorithms (Fastest
Edge First (FEF), Earliest Completing Edge First (ECF))
for multicast and broadcast on distributed networks. The
experimental results show that FEF and ECF outperform the
FNF approach significantly on distributed heterogeneous
networks. The ECF heuristic also represents the best known
result in this area.

The above works have two restrictions however. First,
they all focus on single-node multicast and hence their al-
gorithms cannot handle general cases of multi-node multi-
cast. Second, they all assume a blocking communication
model; that is, a node cannot send a message until the pre-
viously sent message has been received by the destination.
In fact, many networks and operating systems support non-
blocking communication; that is, after an initial start-up
time, the sender can send the next message. The previously
sent messages can be completed by the network without in-
tervention of the sender. Thus, a node can send out several
messages before the first message is received by the destina-
tion. To optimize performance of multicast communication,
it is extremely important to take the factor of non-blocking
communication into concern, which is not possible under a
blocking communication model.

In this paper, we design two efficient algorithms, namely,
Work-Racing and Work-Racing-Preemptive, for the general
multi-node multicast communication on heterogeneous sys-
tems. The Work-Racing algorithm is a greedy algorithm
based on the notion of “virtual time” that measures the time
that a destination node of a multicast has spent in receiv-
ing messages. WR outperforms the best known result, the
Earliest-Completion-First algorithm by up to 20% in our

simulation result.
The Work-Racing algorithm does not fully exploit the

advantage of non-blocking send operation. The Work-
Racing-Preemptive algorithm further reduces the comple-
tion time of multicast by actively filling the receiving node’s
idle time frames with useful send operations. With this
optimization, the WRP algorithm outperforms the Earliest-
Completion-First algorithm by up to 160% in our simula-
tion result.

2 Communication Model for Heterogeneous
Clusters

Our model measures the cost of a point-to-point message
transfer between the sender ��� and the receiver ��� using
three parameters (1) the send overhead ���	��

��� , which rep-
resents the message initialization cost on sender ��� for send-
ing a message of length � , (2) the network link transmis-
sion rate ���	��
���� , which accounts for the unit transmission
time between � � and � � , and (3) receive overhead ������
���� ,
which represents the software overhead on receiver � � for
receiving and copying the message from the network buffer
to the user space. Based on these three parameters, the la-
tency for transmitting a message of length � between the
two nodes is given in Equation 1. Each parameter in the
equation can be measured using the ping-pong scheme de-
scribed in [3].

� ����
���

��� �!������

����"#������
�����$%�&"��'����

��� (1)

Note that in heterogeneous systems these parameters for
each pair of nodes may vary dramatically due to the hetero-
geneity in system architecture, operating system, network
protocol, network interface, etc. Furthermore, we make the
following assumptions.

(A send operation is non-blocking. In other words, after
an initial start-up time (i.e. the send overhead), the
sender can execute its next send operation.

(A receive operation is blocking. That is, after issuing
a receive operation the receiving node can continue to
execute its next operation only when the received mes-
sage arrives and is removed from the local network
buffer to the local memory of the receiving node. We
consider this assumption reasonable as in most appli-
cations, the computation following a receive operation
is very likely to require data in the received message
and hence the computation cannot start until the re-
quired data is ready in the local memory.

3 Multi-node Multicast Problem

A multi-node multicast has multiple source nodes mul-
ticasting their messages to their destination nodes simul-
taneously. Consider a heterogeneous cluster consisting of�

nodes and let � ��������
��
	
����
�
����
� be the set of all
nodes. Let � denote the set of the multicast source nodes,
and ����������������� be the set of destination nodes for
source node � ��� � . After the multicast communication,
each node in ��� has a copy of the message from source
node � � , denoted by ��� .

A multicast is accomplished by a series of communi-
cation tasks. A communication task �"! �
��
 ��
�# � is a send
or receive operation that � � is scheduled to execute. For! � �%$
&�')(, � � is scheduled to send �+* to � � , where
� � �,�.-�"/���0-1� and � � �,�.- . For ! � �32�&�465 , � �
is scheduled to receive �+* from � � where � � ���.- and
� � �7�.- ",���0-8� . The task schedule of � � , denoted
by 9;:=<�>)?A@B<
C � , is an ordered list of communication tasks
�B! �
���
���
�# � . The tasks in the task schedule are executed in
the order they appear.

The multicast scheduling problem is to determine a task
schedule for each participating node so that the time to de-
liver all the messages is as short as possible. Finding the
optimal schedule is NP-complete. We have designed sev-
eral heuristic algorithms to solve this problem.

3.1. A Lower Bound

We first derive a lower bound on the time to solve a mul-
tiple multicast problem. Since it is too computationally
expensive to determine the optimal completion time of a
multiple multicast, we idealize our model and deduce an
idealized optimal completion time as a lower bound. In this
model we assume that a node is allowed to receive a mes-
sage and, meanwhile, send multiple messages in parallel.
That is, a receive operation will not be delayed by any send
operation, and the messages from one node to different des-
tinations can be processed in parallel.

Since the completion time of a multiple multicast is de-
termined by the maximum of the task completion time of all
the destination nodes, we can compute the lower bound on
the task completion time for each destination node, and se-
lect the maximum as the lower bound on the overall comple-
tion time. First we compute the shortest path for each pair of
source and destination in the idealized model. Let DFE � �
�� �BG
denote the cost of the shortest path from source � � to its
destination � � , i.e., DFE � �
 � �BG represents the earliest-reach-
time at which the message from � � can reach � � . Thus, the
lower bound on the task completion time of a destination
node can be defined as follows.

Definition 1 Assume that a node � � needs to receive mes-
sages from ' � source nodes. Let H ��# � denote the # th source

node from which � � receives the message. Suppose that
� � receives messages in the increasing order of the earli-
est reach times of the messages, i.e., DIE H ��# �
 � � GKJ DIE H �"#I�L �
�� � G for

L0M #.NO'�� , then we call this receiving order the
earliest-reach-first order.

Let P * be the message size of the # th source node H �"# � .
The earliest receiving time for ��� to complete receiving the
message from the # th source node H �"# � , denoted by

�RQ ���
S# � ,
can be derived recursively as follows. Note that Equation 2
uses the fact that the receive overhead from different source
nodes cannot overlap, and the earliest-reach-first order can
minimize

� Q �	��
S# � .
TVU�WYX�Z"[]\1^`_baKc d We[]\fZBXeg [;^ihjlk�m]n TVU�WeX�Z�[Ao�h�\qp�rsWeX"Zutwv�\fZ aKc d We[]\fZBXegexyhsz{[l|�}q~

(2)

The lower bound on the completion time of the multiple
multicast is the maximum of all

�KQ �	��
�'�� � , for all � .

4 Scheduling Algorithms for Multiple Multi-
cast

We first give several definitions in order to describe our
scheduling algorithms.

Available time. The available time of � � , denoted as� 5q� �fP � , is the earliest time at which � � can execute a new
task. Initially, the available time of the participating nodes
is zero.

Arrival time. Assume that � � is scheduled to send �+* to
� � . Let P�* be the size of �+* , then ��* will arrive at the
network buffer of � � at time

� 2�2 �f5q�qP � � ��& ����
���
�# � .
� 2�2 �f5q�qP � � ��& ����
���
�# � � � 5q� �fP � "�������

����"#������
�����$;P�*

(3)

Completion time. The completion time,� ! � ��PB&���& � � ��&����
 ��
�# � of a task �"$�&�')(

��
���
�# � is de-
fined as follows. If the destination node � � is not available
when � * arrives at its network buffer, it will not be
processed until � � becomes available.

�R�����6�e�f�B�u� � ����� �B� ��� *������s��� �Y� Q�Q �Y��� �Y� � ����� �B�	��� *6� � � ��� � � � ��¡)¢ � ��� �Y£ �
(4)

4.1. Fastest-Edge-First Algorithm

We extend the Fastest Edge First (FEF) heuristic algo-
rithm in [14] to solve the multi-node multicast problem.
Similar to the FEF algorithm, we keep a sender set

� * and
a receiver set ¤0* for each source node �s* of the multi-node

multicast. Initially
� * � � � * � and ¤0* contains all the des-

tination nodes of �s* .
In each iteration we select the smallest weight edge

�	��
���
1# � where node � � belongs to
� * and node � � belongs

to ¤0* , and then move � � from ¤0* to
� * . The same steps

repeat until all ¤0* become empty. The weight of an edge
is defined as the point-to-point latency between the sender
and the receiver.

Similar to [13], a sorted edge list and a sorted sender
list according to their edge weights is maintained, and the
complexity of this algorithm is

� � �������	��� � where
�

is
the number of nodes.

4.2. Earliest-Completion-First Algorithm

This algorithm is based on the Earliest-Completion-First
algorithm in [14] Similar to the FEF algorithm, for each
source node � * of the multi-node multicast we keep a
sender set

� * and a receiver set ¤ * . In each iteration, the al-
gorithm selects the earliest completing task for each source
node which has not yet completed its multicast operation.
Then, among these earliest-completing tasks, it selects the
task with the minimum completion time as the next task
to be scheduled. The receiver of the selected task is then
moved from the receiver set to the sender set. The same
steps repeat until all ¤�* become empty.

In each iteration, it requires
� � ��
 � steps to compute the

available times of the senders and receivers. The algorithm
iterates

��

times. Thus the total time for the ECF algorithm

is
� � �
� � .

4.3. Work Racing Algorithm

In our communication model, a receive operation is
blocking, that is, if multiple messages arrive at the receiving
node, they will be queued in the buffer until the receiving
node has finished receiving previous message. The key idea
in the Work Racing (WR) heuristic is that, if the chance of
message built-up at the destination nodes is reduced, then
the messages can be delivered as early as possible, result-
ing in earlier completion of the multicast. One way to im-
plement this strategy is to allow faster destination node to
receive messages more often than slower nodes. However,
the scheduling should also be fair so that slower nodes will
not be starved forever.

We define the concept of virtual time of a destination
node to be the time this node has spent in receiving mes-
sages. WR selects the destination node with the earliest vir-
tual time as the receiver of the next message. Then WR se-
lects a message and a sender for this message based on the
earliest-completion-first principle. The new send/recv task
is then appended to the task schedule of the sender/receiver.
After that, the virtual time of the receiver is increased by

the amount of work it has just accomplished. This mecha-
nism ensures that the faster destination node will be served
more often, and each destination will be served fairly ac-
cording to their communication capability. In the following
we elaborate on this algorithm.

(For each destination ��� , assuming � � has received
messages from # sources so far, the Work Racing al-
gorithm keeps the record of the virtual time, denoted
by � �B� * , which indicates the services � � has received
from sources. Initially, � �B� � is set to �V&�2]! .

(While scheduling a new task, the Work Racing algo-
rithm selects the destination which has the earliest vir-
tual time. If there are multiple possibilities, it chooses
the fastest one.

(Each destination node � � keeps a set of source nodes
� � � of the multiple multicast in which � � is a destina-
tion. Each source node � * keeps a set of sender nodes� * which contains the nodes that have received mes-
sage � * . Nodes in

� * may relay � * to other nodes.
When a destination ��� is selected, the Work Racing al-
gorithm chooses a source � � from � � � and a sender
� � from

� � such that the completion time of the task
�"$�&�')(
���

��

��� is the minimum.

(The destination � � will be scheduled a receive task
��2]&�4�& �f5 &
��
 ��
�# � . Assume that this is the # th receive
task that � � has been scheduled (and we will call the
source node of this message the # th source node of � �),
the virtual time � �B� * of � � is updated as follows:

� ��� * �
� � Q E #

� G "����	��
�P * � # � L����� ��� �B� *����
 � Q E #
�� G �%" �����
�P�* � #�� L

(5)

where P * is the message length of this receive task and� Q E #

� G is the time at which the message from the # th
source node arrives at � � . Let the source node of the
message be the ' th source in sender � � . Then,

� Q E #

� G
is calculated as follows:

����� * ��� ��� _ �"!$# % ¡'& �)(� �Y£ � ¡+* �,(� � �.- �Y£ if / ! is not the source node& �,(� � £ � ¡+* �,(� � �.- � £ otherwise
(6)

(Finally, the source node � � is removed from the source
set � � � of the destination ��� , and the destination ���
is added to the sender set

� * of the source �s* of the
multicast.

In general, the completed work of a faster node advances
more slowly than that of a slower node. Thus a faster des-
tination nodes can be scheduled earlier than a slower one.
Consequently, a faster node has more chances to relay mes-
sages for the sources to the slower nodes.

Work-Racing Scheduling Algorithm

Let � � � be the set of source nodes for a receiving node ��� .
Initially, � � � contains all the source nodes of the multiple
multicast which has � � in their destination sets. Similar to
the FEF and the ECF algorithms, we define a sender set

� *
for each source �s* of the multiple multicast.

Step 1: Let ��� be the node with the minimum completed
work whose source set � � � is not empty. If there are
multiple possibilities, choose the fastest one.

Step 2: Choose � * � � � � and ����� � * such that the com-
pletion time of the task ��$
&�')(
���

��
S# � is the minimum.
Assume the source of this task (i.e. � *) is the � th
source in � � .

� *�� � *�" � � � �
��� � � � � � � � � *q�� ! � ������& � �B� �� � ��&
')(� ��$�# �B9;:=<
>)?�@"<�C��
 �"<��	��

��
�@
�> �
�� 5 � �uP ��� � 5q� �fP �%" ��� ��
�P * �� � ��&
')(� ��$�# �B9;:=<
>)?�@"<�C��
 �����	���
�@

��
�> �
�� 5 � �uP ��� � ! � �1P"&���& � ����&�� ��

��
S# �

Step 3: Repeat Step 1 and Step 2 until all � � � become
empty.

For a selected receiver, it takes
� � � � steps to select the

source and the sender. The algorithm iterates at most
�

times for multiple multicast. Therefore, the overall com-
plexity of the WR algorithm is

� � ��� � .
4.4. Work-Racing-Preemptive Algorithm

Our communication model assumes that send operations
are non-blocking and receive operations are blocking. After
issueing a non-blocking send a sender only has to wait until
the message goes into the network before starting its next
communication. In contrast, a node performing a blocking
receive cannot issues another communication until the in-
coming message is received completely (Equation 1). We
illustrate this phenomenon by an example. In the Work-
Racing algorithm we always append the new task to the
end of the task schedule. This can incur much longer wait-
ing time than necessary. In Figure 1(a), a receive operation2�&�465 E # G is issued at time � L . However, the message will not
arrive until time ��� , making the receiver idle waiting from� L to ��� .

To overcome this problem, we propose an optimization
to preempt blocking receive with non-blocking send, under
the assumption that it will not invalid the original multicast
schedule. As illustrated in Figure 1(b), if we preempt the re-
ceive task, 2]&�465 E # G , with the send tasks $
&�')(�E � G and $
&�')(�E � G ,
and issue $�&�')(1E # G at ��� instead, the waiting time is reduced
from �B��� ��� L � to ������� ��� � . The idea is that if a new task can
preempt a prescheduled receive task safely, we can reduce
the waiting time by delaying the preempted receive task.

send[2]recv[k] send[3]send[1]

send[1] send[2] send[3] recv[k]

t1

t4

t5 t6 t7

t5t1 t2 t3

t4
(a)

(b)

send[2]recv[k] send[3]send[1]

send[1] send[2] send[3] recv[k]

t1

t4

t5 t6 t7

t5t1 t2 t3

t4
(a)

(b)

Figure 1. Preemptive Scheduling of Send
Tasks

To preempt a receiving task without interfering or de-
stroying the original schedule, we need to observe the fol-
lowing rules.

(The send tasks must be executed in the order as they
appear in their schedule list. As in Figure 2(a), the
task $�&�')(�E # G must appear before $
&�')(�E # " L G .

(If the sender of a task is not the source node of the
message, the new send task must be scheduled after
the sender has received the message. This is to ensure
that a sender will not rely a message that it has not
yet received. Figure 2(b) shows that only after the task2]&�465�E � "�� G in which the sender of $
&�')(�E # " L G receives
the message will it relay to the receiver of $
&�')(�E #%" L G .

(The preempting send tasks cannot delay the comple-
tion time of the preempted receiving task. To avoid
interfering the execution of the preempted receive����$�# E # G in Figure 2(c), the completion time of the pre-
empting send task must be earlier than the arrival time
of the message that ���q$�# E # G is waiting for.

To facilitate the design of the algorithm, we classify the
available time of a node as receive available time and send
available time. The receive available time of ��� is the ear-
liest time that � � can issue a receive, which is defined as
the maximum between the completion time of the last send
task and the last receive task. The send available time of

send[k+1]

send[k] recv[h] recv[h+1] recv[h+v]

send[k] recv[h] recv[h+u] recv[h+v]

send[k+1]

task[k]task[j]
recvrecvor send

time

recvoverheadsend overhead>=

new send

(a)

(b)

(c)

task schedule list

task schedule list

send[k+1]

send[k] recv[h] recv[h+1] recv[h+v]

send[k] recv[h] recv[h+u] recv[h+v]

send[k+1]

task[k]task[j]
recvrecvor send

time

recvoverheadsend overhead>=

new send

(a)

(b)

(c)

task schedule list

task schedule list

CompleteTime[k]CompleteTime[j]

Figure 2. Examples of Preemption Rules

� � for � * is defined as the earliest time that � � can send
out ��* that satisfies all three properties listed above. The
send available time should be later than both the comple-
tion time of the last send by � � and the completion time
of the receive in which � � receives ��* . In addition, based
on the new definitions of the available time, the completion
time of a communication task defined in Equation 4 should
adopt the new definitions of the available time.

We improve the work racing algorithm by preempting
the receive operations with send. By the preemptive prop-
erty, the new completed work definition reflects more ac-
curately the amount of work a node has performed as a re-
ceiver. For each iteration the node with the minimum com-
pleted work is selected as the destination of the new task.
Then we select a source node and a sender node so that the
task completion time is minimized, under the assumption
that a send can preempt a receive operation.

Work-Racing-Preemptive Algorithm

Step 1: Let ��� be the node with the minimum completed
work whose � � � is not empty. If there are multiple
possibilities, choose the fastest one.

Step 2: Chose �s*�� ��� � and � � � � * such that the com-
pletion time of the ��$�&
')(
���
��
S# � is the minimum. As-
sume � * is the � th source for node � � .
� * � � * " � � ���
� � � � � � � � � � * �� ! � ������& � �B� �� ��(V� ��& �0&�4�& �f5q&�2 �s���V��&����
 ��
�#
 � ! � ��PB&���& � � ��&�� ��
��
S# �
�� ��(V� ��& �s&�')(V&�2 � ��� ��&�� ��

��
S# � � 5 � �uP � � � 5 � �uP � "�������
�P�* �� 5q� �uP � � � ! � �1PB&���& � � ��& ����

��
�# �

Step 3: Repeat Step 1 and Step 2 until all � � � become
empty.

The procedure
� �1(�V��& �s&�')(&�2 �s���V��& deals with the pre-

empting process of a new send task in the send node. The
procedure

� ��(V� ��& �0&�4�& �f5q&�2 �s���V��& deals with the process of
appending the new receive task to the last task currently in
the task schedule of the receive node.

The complexity of the WRP algorithm is also
� � � � �

since it follows the same structure of the WR algorithm and
the preempting process requires constant steps.

5 Experimental Results

To evaluate the performance of the scheduling algo-
rithms we have developed a software simulator to calculate
the communication completion time and computation over-
heads. The simulator is modeled by the number of nodes,
the network capability, and the multicast patterns. We clas-
sify the nodes into several classes according to their send
and receive overheads. The constant parts are in the range of
80 �K$ to 400 �K$, and the length dependent parts are chosen in
the range of 0.0001 �K$������q��& to 0.01 �K$��	���q��& . As for the the
network capability, two link transmission rates,

L�
�
	
 � � $
and
L�� � � $, are considered in our simulations. We consider

three message length in our experiments – small messages
(N L #����q��&]$), large messages (1

 ���q��&]$ and 1.5

 ���q��&]$),

and a hybrid of small and large messages. We present and
discuss the results from three cases – a single broadcast, all-
to-all broadcast and general multiple multicast.

5.1. Single Broadcast

The broadcast time on a
�

-node system is measured as
follows. We repeat the broadcast for

�
times and each time

a different processor is chosen as the source. The time is
measured as the average of the completion time from the

�
broadcasts.

The completion time of the FEF algorithm is much
longer than those of the others. Since the ECF, WR and
WRP generate the same task schedules for a single broad-
cast, the completion time of these three heuristics are almost
identical.

5.2. Multiple Multicast

For multiple multicast we consider a 64-node HNOW
system, with three different combinations of message length
and two classes of networks described earlier. Given the
set of source nodes, the simulator picks the message sizes
and randomly chooses the destination nodes for each source
node. The completion time is taken from the average of
1000 runs with random configuration of source and destina-
tion nodes.

Figure 3 and Figure 4 show the completion times in a
fast network and a slow network respectively. The WRP
algorithm performs best among all four algorithms, espe-
cially for large messages. It can be observed that the com-
pletion times of the WRP algorithm are within 2.5 times of
the lower bounds on large systems.

6 Conclusion and Future Work

In this paper we have presented four algorithms for mul-
tiple multicast in heterogeneous NOW systems. We ex-
tend the Fastest-Edge-First and the Earliest-Completion-
First heuristics in [14, 2] to solve the multiple multicast
problem in a non-blocking communication environment.
We have also designed two new algorithms, Work-Racing
and Work-Racing-Preemptive that were inspired by a flow
control mechanism for packet-switched networks.

These algorithms have been evaluated using a software
simulator. A lower bound for the completion time of multi-
ple multicast is also derived. The simulation results demon-
strate the performance advantage of the two new algorithms
on systems of up to 64 nodes.

One of the main challenges in designing multicast algo-
rithms is the handling of dynamic multicast patterns. For
dynamic patterns, the algorithm must computes the sched-
ule very quickly, without sacrificing the schedule qual-
ity. Although the Work-Racing and the Work-Racing-
Preemptive algorithms that we have proposed can determine
efficient schedules with negligible overhead for multicast
of long messages, there is room for improvement for short
messages. We are considering an incremental optimization
approach for dynamic multiple multicast. That is, given a
multiple multicast pattern � and a good schedule � for it,
our goal is to derive a good schedule for a similar pattern
��� from � instead of recompute the schedule from scratch.

We are also investigating the possibility of extending
this work to handling collective communication over Wide-
Area-Networks (WAN). The first step toward WAN com-
munication is to enhance our communication model with
the ability to predict the behavior of communication in
WAN. In order to do so, we need to statistically analyze
the effect of the cross-traffics from other sessions and the
traffic pattern of a communication in order to measure the
network transmission time more accurately.

References

[1] J. Bala, Bruck, R. Cypher, P. Elustando, A. Ho, C.-T. Ho,
S. Kipnis, and M. Snir. CCL: A portable and tunable collec-
tive communication library for scalable parallel computers.
Journal of Parallel and Distributed Computing, 6(2):154–
164, February 1995.

[2] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient col-
lective communication on heterogeneous networks of work-
stations. In Proceedings of International Conference on Par-
allel Processing, pages 460–467, 1998.

[3] M. Banilazemi, J. Sampathkumar, S. Prabhu, D. K. Panda, ,
and P. Sadayappan. Communication modeling of heteroge-
neous networks of workstations for performance character-
ization of collective operations. In Proceedings of the Het-
erogenenous Computing Workshop, 1999.

[4] J. Bruck, R. Cypher, P. Elustando, A. Ho, C.-T. Ho, V. Bala,
S. Kipnis, and M. Snir. Efficient message passing interface
(MPI) for parallel computing on clusters of workstations.
Journal of Parallel and Distributed Computing, pages 19–
34, January 1997.

[5] A. Chien, S. Pakin, M. Lauria, M. .Badanan, K. Hane, and
L. Giannini. High performance virtual machines (HPVM):
clusters with supercomputing and performance. In Proceed-
ings of 8th SIAM Conference on Parallel Processing for Sci-
entific Computing, 1996.

[6] D. C. et al. Parallel computing on the berkeley now. In 9th
Joint Symposium on Parallel Processing, 1997.

[7] K.-P. Fan and C.-T. King. Efficient multicast on wormhole
switch-based irregular networks of workstations and pro-
cessor clusters. In Proceedings of Parallel and Distributed
Computing Symposium (PDCS), 1997.

[8] W. Gropp and E. Lusk. User’s guide for mpich, a portable
implementation of mpi. Technical Report ANL/MCS-TM-
ANL-96/6, Mathematics and Computer Science Division,
Argonne National Laboratory, 1996.

[9] C. Huang, Y. Huang, and P. K. Mckinley. A thread-based
interface for collective communication on ATM networks.
In Proceedings of ICDCS, pages 254–261, 1995.

[10] Y. Hwang and P. K. Mckinley. Efficient collective operations
with atm network interface support. In Proceedings of ICPP,
1996.

[11] M. Lauria. High performance MPI implementation on a
network of workstations. Technical Report Master Thesis,
Department of Computer Science, University of Illinois at
Urbana-Champaign, 1996.

[12] B. Lowekamp and A. Beguelin. ECO: Efficient collective
operations for communication on heterogeneous networks.
In Proceedings of International Parallel Processing Sympo-
sium, pages 399–405, 1996.

[13] C. S. R. V. K. P. P. B. Bhat. Efficient collective communica-
tion in distributed heterogeneous systems. In Proceedings of
Intnl. Conf. Distributed Computing Systems (ICDCS), 1999.

[14] V. K. P. P. B. Bhat and C. S. Raghavendra. Adaptive commu-
nication algorithms for distributed heterogeneous systems.
In Proceedings of the 7th IEEE Intnl. Symposium on High
Performance Distributed Computing (HPDC), 1998.

[15] J. park, H. A. Choi, N. Nupairoj, and L. M. Ni. Construc-
tion of optimal multicast trees based on the parameterized
communication model. In Proceedings of the International
Conference on Parallel Processing, 1996.

[16] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM : An oper-
ating system coordinated high-performance communication
library. In Proceedings of High Performance Computing and
Networking (LNCS vol. 1225), 1997.

[17] K. Verstoep, K. Langendoen, and H. Bal. Efficient reliable
multicast on myrinet. In Proc. Intl. Conf. Parallel Process-
ing, volume III, pages 156–165, August 1996.

3.9

6 6.6

9.7

12

14.4

19.7 30.7

0
2
4
6
8

10
12
14
16
18
20

4 8 16 24 32 40 48 56
Number of source nodes

C
o

m
p

le
ti

o
n

ti
m

e
(m

s
)

Number of nodes: 64
Msg size: 64, 256, 1K
Network: 1Gbps

x1000

7.6
10

12.8

18

23 38.2 45.7 84

0
2
4
6
8

10
12
14
16
18
20
22

4 8 16 24 32 40 48 56
Number of source nodes

C
o
m

p
le

ti
o
n

ti
m

e
(m

s
)

Number of nodes: 64
Msg size: 1M, 1.5M
Network: 1Gbps

x100000

2.3

3.7

5

7.9 10.3 11.3 14.4 22

0

1

2

3
4

5

6

7

8

4 8 16 24 32 40 48 56
Number of source nodes

C
o

m
p

le
ti

o
n

ti
m

e
(m

s
)

Number of nodes: 64
Msg size: 1k, 1M
Network: 1Gbps

x100000

Figure 3. Completion time of multiple multicast in a fast network: from left to right: FEF, ECF, WR,
WRP and the lower bound.

3.8
5

7.6

10.2

13.8 16.1 20.6 26.9

0

2

4

6

8

10

12

14

4 8 16 24 32 40 48 56
Number of source nodes

C
o
m

p
le

ti
o

n
ti

m
e
(m

s
)

Number of nodes: 64
Msg size: 64, 256, 1K
Network: 155Mbps

x1000

12
15

30

56
74 97 107 137

0
6

12
18
24
30
36
42
48
54
60

4 8 16 24 32 40 48 56
Number of source nodes

C
o

m
p

le
ti

o
n

ti
m

e
(m

s
)

Number of nodes: 64
Msg size: 1M, 1.5M
Network: 155Mbps

x100000

6

8
9.3

19 26 30 36 48

0
2
4
6
8

10
12
14
16
18
20

4 8 16 24 32 40 48 56
Number of source nodes

C
o

m
p

le
ti

o
n

ti
m

e
(m

s
)

x100000
Number of nodes: 64
Msg size: 1k, 1M
Network: 155Mbps

Figure 4. Completion time of multiple multicast in a slow network: from left to right: FEF, ECF, WR,
WRP and the lower bound.

