A Framework for Parallel Tree-Based Scientific Simulations

Pangfeng Liu

Department of Computer Science
National Chung Cheng University
Chia-yi, Taiwan 62107

Abstract
Abstract

This paper describes an implementation of a
platform-independent parallel C++ N-body framework
that can support various scientific simulations that in-
volve tree structures, such as astrophysics, semicon-
ductor device simulation, molecular dynamics, plasma
physics, and fluid mechanics. Within the framework
the users will be able to concentrate on the computa-
tion kernels that differentiate different N-body prob-
lems, and let the framework take care of the tedious
and error-prone details that are common among N -
body applications. This framework was developed based
on the techniques we learned from previous CM-5 C
implementations, which have been rigorously justified
both experimentally and mathematically. This gives
us confidence that our framework will allow fast pro-
totyping of different N-body applications, to run on
different parallel platforms, and to deliver good per-
formance as well.

1 Introduction
1.1 N-body problem and tree codes
Computational methods to track the motions of
bodies which interact with one another have been the
subject of extensive research for centuries. So-called
“N-body” methods have been applied to problems in
astrophysics, semiconductor device simulation, molec-
ular dynamics, plasma physics, and fluid mechanics.
The problem can be simply stated as follows. Given
the initial states of N bodies, compute their interac-
tions according to the underlining physic laws, usually
described by a partial differential equation, and derive
their final states at time T'. The common and simplest
approach is to iterate over a sequence of small time
steps. Within each time step the change of state on
a single body can be directly computed by summing
the effects induced by each of the other NV — 1 bodies.
While this method is conceptually simple, vectorizes
well, and is the algorithm of choice for small prob-

Jan-Jan Wu

Institute of Information Science
Academia Sinica
Taipei, Taiwan 11529

lems, its O(N?) arithmetic complexity rules it out for
large-scale simulations involving millions of particles.

Beginning with Appel [1] and Barnes and Hut [2],
there has been a flurry of interest in faster algorithms.
Greengard and Rokhlin [5] developed the fast multi-
pole method with O(V) arithmetic complexity under
uniform particle distribution. Sundaram [15] subse-
quently extended this method to allow different bodies
to be updated at different rates. Thus far, however,
because of the complexity and overheads in the fully
adaptive three dimensional multipole method, the al-
gorithm of Barnes and Hut continues to enjoy appli-
cation in astrophysical simulations. Parallel imple-
mentations of Barnes-Hut’s algorithms are described
in [12, 13, 14, 16, 17], and parallel fast multipole im-
plementations include [6, 7, 11, 13].

All these N-body algorithms explore the idea that
the effect of a cluster of particles at a distant point can
be approximated by a small number of initial terms of
an appropriate power-series. The Barnes-Hut algo-
rithm uses a single-term, center-of-mass approxima-
tion. To apply the approximation effectively, these so
called “tree codes” organize the bodies into a hierarchy
tree in which a particle can easily find the appropriate
clusters for approximation purpose. We will describe
this tree structure in details later in the discussion of
Barnes and Hut’s algorithm, which our implementa-
tion is based upon.

1.2 N-body framework

Most of the N-body tree codes use similar tree
structures and exhibit similar computation patterns.
There are two levels of similarity. First, a fluid me-
chanics code and a molecular dynamics code may
differ only in the interaction rules. The tree struc-
tures are basically the same except for the data stored
in tree nodes and the implementation-dependent tree
representation. Secondly, different N-body tree algo-
rithms may use the same data structure. For example,
fast multipole method and Barnes-Hut’s algorithm use
the same oct-tree structure — they differ only in how

they manipulate the trees. Therefore, a general N-
body framework helps in developing tree codes for dif-
ferent N-body domains, and in implementing different
N-body algorithms as well.

Unfortunately, all the previous N-body implemen-
tations did not consider reusability and portability —
they do not separate the generic data structure from
the application-dependent computation kernel, and
they are built for one N-body problem on one par-
ticular machine. Therefore, it will take considerable
efforts to convert an astrophysics simulation code run-
ning on one machine into a fluid dynamic code running
on another, even though many aspects of the codes
are similar. One must reorganize the code to sal-
vage any reusable parts manually, and piece together
these fragments to form a new program which the new
computation kernel will hopefully fit into. This “cut-
and-paste” human intervention is time consuming and
error-prone.

In addition, parallel machines are notoriously diffi-
cult to program. One must “think in parallel” to write
programs that not only compute the results correctly,
but also schedule all the processors properly to avoid
racing, even deadlock conditions. As a result, par-
allel programming often involves many intricate and
error-prone details. Therefore, users should reuse ex-
isting working codes whenever possible. In the con-
text of N-body computation, we should abstract out
the common ingredients of tree codes so that they can
be reused in different N-body problems.

The goal of this project is to develop a general N-
body framework that eases the difficult task of writing
efficient parallel N-body codes. The framework was
developed based on our previous CM-5 implementa-
tions [3, 4, 10], in which we developed sound tech-
niques that have been carefully studied both experi-
mentally [9] and mathematically [8]. We expect that
these proven techniques will guide us towards the ul-
timate goal of writing efficient parallel N-body pro-
grams with ease.

The remainder of this paper is organized as follows.
Section 2 explains the Barnes and Hut’s algorithm.
Section 3 briefly describes our previous parallel N-
body astrophysics code implemented on Connection
Machine CM-5 using Barnes and Hut’s algorithm, Sec-
tion 4 describes the class hierarchy in our C++ N-
body framework, and Section 6 concludes.

2 The Barnes-Hut algorithm

We will focus on the Barnes-Hut algorithm as an
example of N-body tree code. The Barnes-Hut al-
gorithm proceeds by first computing an oct-tree par-
tition of the three-dimensional box (region of space)

enclosing the set of particles. The partition is com-
puted recursively by dividing the original box into
eight octants of equal volume until each undivided box
contains exactly one particle!. An example of such a
recursive partition in two dimensions and the corre-
sponding BH-tree are shown in Figure 1. Note that
each internal node of the BH-tree represents a cluster.
Once the BH-tree has been built, the mass and the
location of the centers-of-mass of the internal nodes
are computed in one phase up the tree, starting at the
leaves.

T %
S %5:@; L SLRIR

jﬂf

Figure 1: BH tree decomposition

To compute accelerations, we loop over the set of
particles observing the following rules. Each parti-
cle starts at the root of the BH-tree, and traverses
down the tree trying to find clusters that it can apply
center-of-mass approximation. If the distance between
the particle and the cluster is far enough, with respect
to the radius of the cluster, then the acceleration due
to that cluster is approximated by a single interaction
between the particle and a point mass located at the
center-of-mass of the cluster. Otherwise the particle
visits each of the children of the cluster. Formally, if
the distance between a particle and a cluster is more
than RADIUS(cluster)/6, then we will approximate the
effect of that cluster as a point mass. We can ad-
just the value of # to balance the approximation error
and the execution time. Note that nodes visited in the
traversal form a sub-tree of the entire BH-tree and dif-
ferent particles will, in general, traverse different sub-
trees. The leaves of the subtree traversed by a particle
will be called essential data for the particle because it
needs these nodes for interaction computation.

Once the accelerations on all the particles are
known, the new positions and velocities can be com-
puted. The entire process, starting with the construc-
tion of the BH-tree, is now repeated for the desired
number of time steps.

1Tn practice it is more efficient to truncate each branch when
the number of particles in its subtree decreases below a certain
fixed bound

3 Parallel Implementation

In the following subsections, we point out the differ-
ences between our parallel implementations [3, 4, 9, 10]
and the generic sequential Barnes-Hut algorithm.
3.1 Data partitioning

The default strategy that we use to distribute bod-
ies among processors is orthogonal recursive bisection
(ORB). The space bounding all the bodies is recur-
sively partitioned into as many boxes as there are pro-
cessors, and all bodies within a box are assigned to
one processor. Each separator divides the workload
within the region equally. The ORB decomposition
can be represented by a binary tree, which is stored
in every processor. The ORB tree is used as a map
which locates points in space to processors.

We chose ORB decomposition for several reasons.
First, it provides a simple way to decompose space
among processors, and a way to quickly map points
in space to processors. Secondly, ORB preserves
data locality reasonably well and permits simple load-
balancing. Thus, while it is expensive to recompute
the ORB at each time step [13], the cost of incremental
load-balancing is negligible from our experience [9].
3.2 Building the BH-tree in parallel

We chose to construct a representation of a dis-
tributed global BH-tree because we wanted to in-
vestigate abstractions that allow the programmer to
use a global data structure without having to worry
about the details of distributed-memory implementa-
tion. For this reason we separated the construction of
the tree from the details of later stages of the algo-
rithm. This has proven to be extremely helpful in our
framework implementation.

We construct the BH tree as follows. Each proces-
sor first builds a local BH-tree for the bodies within its
domain. At the end of this stage, the local trees will
not, in general, be structurally coherent. The next
step is to make the local trees structurally coherent
with the global BH-tree by adjusting the levels of all
leaves which are split by ORB bisectors. A similar
process was developed independently in [13].

Once level-adjustment is complete, each processor
computes the centers-of-mass on its local tree without
any communication. Next, each processor sends its
contribution to an internal node to the owner of the
node, defined as the processor whose domain contains
the center of the internal node. Once the transmitted
data have been combined by the receiving processors,
the construction of the global BH-tree is complete.
3.3 Collecting essential data

Once the global BH-tree has been constructed it is
possible to start calculating accelerations. The naive

strategy of traversing the tree, and transmitting data-
on-demand, has several drawbacks: (1) it involves two-
way communication, (2) the messages are fine-grain so
that either the communication overhead is prohibitive
or the programming complexity goes up, and (3) pro-
cessors can spend substantial time requesting data for
BH-nodes that do not exist.

It is significantly easier and faster for a processor
to first collect all the essential data for its local par-
ticles, then compute the interactions the same way as
in the sequential Barnes-Hut method since all the es-
sential data are now available. In other words, the
owner of a data must determine where its data might
be essential, and send the data there. Formally, for ev-
ery BH-node «, the owner of a computes an annular
region called influence ring for o such that those par-
ticles « is essential to must reside within a’s influence
ring. Those particles that are not within the influence
ring are either too close to u to apply center-of-mass
approximation, or far away enough to use u’s parent’s
information. With the ORB map it is straightforward
to locate the destination processors to which o might
be essential. Once all processors have received and
inserted the essential data into the local trees, all the
essential data are available.

3.4 Communication

The communication phases can all be abstracted
as an “all-to-some” problem, in which each proces-
sor sends a set of personalized messages to dynam-
ically determined destination processors. Therefore,
the communication pattern is irregular and dynami-
cally changing.

We used a randomized protocol to solve the all-
to-some communication problem. The protocol alter-
nates sends with receives to avoid exhausting commu-
nication channels reserved for messages that are sent
but not yet received, and randomly permutes the des-
tination so that any processor will not be flooded by
incoming messages at any given time. In an earlier
paper [8] we developed the atomic message model to
investigate message passing efficiency. Consistent with
the theory, we find that sending messages in random
order worked best.

Figure 2 gives a high-level description of the parallel
implementation structure. Note that the local trees
are built only at the start of the first time step.

4 N-body Framework

We divide the C++ N-body framework into three
layers: generic tree layer, Barnes-Hut tree layer, and
application layer. FEach latter layer is built on top
of the former layer. The generic tree layer supports

Build local BH trees.
For every time step do:
1. Construct the BH-tree representation
(a) Adjust node levels
(b) Compute partial node values on local trees
(¢) Combine partial node values at owning processors
Owners send essential data
Calculate accelerations
Update velocities and positions of bodies

Update local BH-trees incrementally

o o W N

If the workload is not balanced update the ORB
incrementally

Figure 2: Outline of code structure

simple tree construction and manipulation methods.
System programmers can build special libraries using
classes in the generic tree layer. For example, we have
built a Barnes-Hut Tree layer using the generic tree
layer (Sec 4.2). The application programmer can write
application programs using classes in the Barnes-Hut
tree layer, or any other special library developed from
the generic tree layer. We will demonstrate these us-
age by writing a gravitational N-body code (Sec 4.3).
Figure 3 illustrates the class hierarchy in these three
layers.

Grav_BH_tree Particle
Grav_BH_node Particle_cluster Grav_interaction Application
BH_tree Cluster Check_Particle_bh_box_consistency Interaction Vector
. . BH_tree
BH_tree node = Compute_cluster_data Find_edata BH_id
A ¢
‘ Tree_traversal_with_traverser
Tree Tree node Tree reduction Tree
Tree_traversa

Figure 3: The class hierarchy in generic tree, Barnes-
hut tree, and application layers.

4.1 Generic tree layer

The generic tree layer is the foundation of our
framework from which complex tree structures can be
derived. The class Tree serves as a container class in
which every tree node has a pointer to a data of the
given data type. The desired data type is given as a
template parameter, along with the maximum number
of children one tree node can have.

We define basic tree manipulation methods in the
generic tree layer, including inserting a new child from
a leaf, deleting an existing leaf, performing tree reduc-
tion and traversal. We keep the interface simple by
restricting all the deletion/insertion to the leaves and

let the Tree class user take care of more sophisticated
and specific tree structure updating.

template <class Data, const int n_children>
class Tree_node {
protected:
Data *data;
Tree_node *children[n_children];
};
template <class Data, class Tree_node, class Tree,
const int n_children>
class Tree_reduction {
public:
virtual void init(Datax) = O;
virtual void combine(Data *parent, Data* child) = 0;
void reduction(Tree* tree);
};
template <class Data, class Tree_node, class Tree,
const int n_children, class Node_id>
class Tree_traversal {
public:
virtual bool process(Data*) = 0;
void traverse(Tree *tree);
}
template <class Data, class Tree_node, class Tree,
class Traverser>
class Tree_traversal_with_traverser
public Tree_traversal<Data,Tree_node,Tree,N_CHILD,BH_id>
1{
protected:
Traverser *traverser;

}

// who is traversing?

Figure 4: Generic tree and reduction/traversal classes.

We have also implemented two tree operations —
reduction and traversal, as special classes. Objects in-
stantiated from the reduction class compute the data
of a tree node according to the data of its children,
e.g. computing the center of mass in Barnes-Hut’s
algorithm. Objects instantiated from the traversal
class walk over the tree nodes and perform a user-
defined operation (denoted as per node function) on
each tree node (Figure 4). We implement these two
tree operations as separate classes instead of meth-
ods in the Tree class mainly because they require
their own data (not shown in Figure 4 for clarity)
to function. For example, both operations maintain
their current locations in the tree for easy access
to tree nodes. In addition, we implement the class
Tree_traversal with traverser, a traversing class
in which we have to specify who is traversing the tree,
as a subclass of Tree_traversal. For example, a par-
ticle will use Tree_traversal with _traverser to col-
lect its essentail data because we need the position of
the particle to determine the distance, and we need
only Tree_traversal to reset the tree node data.

We implemented the tree reduction/traversal oper-
ations in an application-independent manner. Both
operations are implemented as class templates so that
users can supply tree and tree node types for cus-
tomized tree reduction/traversal operations. For tree
reduction, users are required to provide two func-

tions: init(Data*) and combine(Data *parent,
Data* child), which tell reduction class how to ini-
tialize and combine the data in tree nodes, respec-
tively. The class Data is the data type stored in each
node of the tree on which the reduction operation is to
be performed. For tree traversal, users are required to
provide the per node function bool process(Datax*)
that is to be performed on every tree node. The
boolean return value indicates whether the traversal
should continue further down the tree. By separating
the application code from the tree reduction/traversal
classes, these operations become application indepen-
dent.

4.2 Barnes-Hut tree

On top of generic tree layer we build a layer called
BH_tree. This layer supports tree operations required
in most of the N-body tree algorithms — it supports
tree operations common to both BH algorithm and
fast multipole method, and all the special operations
used in the Barnes-Hut method.

By extending the Tree class, each tree node in
BH_tree contains a data cluster, and the data cluster
of each leaf node contains a list of bodies2. The types
of the particle and cluster are given by the user of the
BH_tree class as template parameters AppCluster and
AppBody. This abstraction captures the structure of a
BH tree without any application specific details.

template<class AppBody>
class Cluster {
protected: Link_list<AppBody#*> body_list;
public: void add(AppBody* b);
};
template<class AppCluster, class AppBody>
class BH_tree : public Tree<AppCluster, N_CHILD> {
public:
void insert_body (AppBody*) ;
void remove_body(AppBody*, Tree_node<AppCluster, N_CHILD>*);
}
template<class AppCluster, class AppBody, class Tree_node,
class Tree, const int n_children>
class Compute_cluster_data: public
Tree_reduction<AppCluster, Tree_node, Tree, n_children>{
public:
void init(AppCluster* cluster) {
cluster—>reset_data();
if (cluster->get_type() == Leaf)
for (every body in cluster’s body_list)
cluster->add_body (body); }
void combine (AppCluster* parent, AppCluster* child)
{parent->add_cluster(child);}
}

Figure 5: BH tree layer classes.

The BH_tree class also supports several operations:
computing cluster data, finding essential data, com-
puting interaction, and checking particle and BH box
for consistency. Most of these methods can be reused
in implementing the fast multipole method.

?Recall that each leaf may have more than one particle.

Cluster data computation is implemented as a tree

reduction (Figure 5). init(AppCluster* cluster)
resets the data in the cluster and if the cluster is a
leaf, it combines the data of the bodies from the body
list into the data of the cluster. The other function
combine (AppCluster* parent,
AppCluster* child) adds children’s data to parent’s.
By defining the actual computation as a method of the
cluster, the reduction class is independent of the way
how the data are combined in the application.

The essential data finding class Find edata inher-
its Tree_traversal with_traverser with two addi-
tional lists for essential clusters and bodies (Figure 6).
The traverser is the particle that collects essential
data. The per node function process(AppClusterx*)
inserts the clusters that can be approximated into
essential clusters list, and adds the bodies from
leaf clusters that cannot be approximated into
essential bodies list. The traversal continues only
when traverser cannot apply approximation on an in-
ternal cluster.

template<class AppCluster, class AppBody, class Tree_node,
class Tree>
class Find_edata: public Tree_traversal_with_traverser
<AppCluster,Tree_node,Tree, AppBody> {
Link_list<AppBody*> essential_bodies;
Link_list<AppCluster*> essential_clusters;
public:
bool process(AppCluster* c) {
if (c->is_edata_for(traverser)) {
essential_clusters.insert(c); return(0);
} else if (c->get_type() == Leaf) {
for (every body in c’s body list)

if (body != traverser)
essential_bodies.insert(body) ;
return(0);

} return(1); }
};
template<class AppBody, class AppCluster, class Result>
class Interaction {
AppBody #*subject;
Link_list<AppBody*>* body_list;
Link_list<AppCluster*>* cluster_list;
Result result;
public:
void compute() {
result.reset();
for (every body in body_list)
result += body_body_interaction(subject, body);
for (every cluster cluster_list)
result += body_cluster_interaction(subject,cluster);}
virtual Result body_body_interaction(AppBody*,AppBody*)=0;
virtual Result body_cluster_interaction(AppBody*,
AppCluster*)=0;
};

Figure 6: Class for finding essential data and interac-
tion computation.

After collecting the essential clusters and bod-
ies, a body can start computing the interactions.
We implemented the interaction computation in an
application-independent manner. The computation
class Interaction (Figure 6) goes through the es-

sential data list® and calls for functions to compute
body-to-body and body-to-cluster interactions defined
by the user of Interaction.

After bodies are moved to their new positions,
they may not be in their original BH boxes. There-
fore, the tree structure must be modified so that it
becomes consistent with the new particle positions
again. We implemented this as a tree traversal class
Check_particle bh_box_consistency, which collects
bodies that wandered off their BH boxes, followed be a
series of insertion/deletion tree operations. This func-
tion is universally useful for all tree code because the
dynamic tree structure is expensive to rebuild, and
relatively cheap to patch up.

4.3 Application Layer

The gravitational N-body application is built upon
the BH_tree layer. First we construct a class Particle
for bodies that attract one another by gravity, then
we build the cluster type Particle cluster from
Particle (Figure 7). Next, in the Particle _cluster
class we define the methods for computing/combining
center of mass and the methods for testing essential
data.

class Particle {
protected:
Real mass;
Vector position;
Vector velocity;
};
class Particle_cluster: public Cluster<Particle> {
protected:
Center_of_mass center_of_mass;
public:
void reset_data(); // center of mass computation
void add_body(Particle *p);
void add_cluster(Particle_cluster* child);
bool is_edata_for(Particlex); // find essential data
}
class Grav_interaction:
public Interaction<Particle, Particle_cluster, Vector> {
public:
Vector body_body_interaction(Particle*, Particlex);
Vector body_cluster_interact(Particlex,Particle_clusterx*);
};
typedef Tree_node<Particle_cluster, N_CHILD> Grav_BH_node;
typedef BH_tree<Particle_cluster, Particle> Grav_BH_tree;

Figure 7: Classes for a gravitational N-body applica-
tion.

Then, in class Grav_interaction, which is derived
from the class template Interaction, we define meth-
ods to compute gravitational interactions. We specify
the gravitation interaction rules in the definition of
body_body_interaction and body_
cluster_interaction.

Finally, we define the BH-tree type Grav_BH tree
and tree node type Grav BH node. These two data

3Lists obtained from the class Find_Edata.

types serve as template parameters to instantiate BH-
tree related operations, like Compute_cluster_data,
Find edata, and Check_particle bh box_
consistency.

4.4 Parallel implementation

Using only the class libraries provided in the three
layers described in previous subsections, we could
model N-body simulations on uniprocessors. For par-
allel execution of programs, we require additional ab-
stractions for parallelism.

In our current implementation, we assume SPMD
(single program multiple data) model for parallel com-
putation. Under this model, we would require ab-
stractions for data mapping and interprocessor com-
munication. We have designed two groups of classes
for this purpose — Mapper classes that are responsible
for defining the geometry of the tree structure, and
Communicator classes that provide all-to-some com-
munications that are common in N-body simulations.

Mapper classes

The Mapper classes define the geometry of data struc-
tures (e.g. BH trees in N-body simulations). Over
the course of a simulation, Mapper objects are created
during the construction of data structure objects (e.g.
BH tree objects). When created, a Mapper object in-
vokes the data partitioning function specified by the
user or performs default behavior when no partition-
ing strategy is specified, it then gathers and caches
geometry information from the partitioning function.
In later stage of a simulation, the Mappers mediate
object operations that require interprocessor commu-
nication.

In our previous parallel C implementation, we con-
structed a ORB partitioner and two associated geom-
etry resolution functions: data_to_processor (that
translates a data coordinate to a processor domain)
and dataset_to_processors (that translates a rect-
angular box, which contains multiple data, to a set of
processor domains). In addition, we defined a simple
data structure MappingTable to store the ORB map.
These data and methods have been integrated into the
Mapper classes in our parallel framework. As part of
this research effort, we are also extending the Mapper
class to incorporate a number of commonly used parti-
tioning strategies and user-defined mapping methods.
template <class Data, class DataSet, class ProcessorDomain,

class MappingTable>
class Mapper {
protected:
MappingTable table;
public:

virtual ProcessorDomain data_to_processor(Data*)=0;

virtual Link_list<ProcessorDomain>

dataset_to_processors(DataSet*)=0;

};

Communicator classes

The Communicator classes support general purpose
all-to-some communications for N-body tree codes. A
Communicator class defines two functions: extract
(that, when given a data pointer, constructs an outgo-
ing data) and process (that processes each incoming
data). When a communicator is constructed, it goes
over the list of data pointers, calls extract to build
outgoing data, packs many outgoing data into actual
messages, sends/receives all the messages according
to the communication protocol, and finally unpacks
messages and calls process to perform appropriate
actions.

template <class Data, class DataPacket>
class Communicator {
protected:
Link_list<Data*> *data_list[MAX_NUM_PROCESSORS];
DataPacket send_buffer[MAX_BUFFER_SIZE];
DataPacket receive_buffer[MAX_BUFFER_SIZE];
public:
void communication_protocol();
virtual DataPacket extract(Datax)=0;
virtual process(DataPacket*)=0;

};

The technique we developed for communicator has
proven to be both efficient and general enough to sup-
port all-to-some communication in N-body tree codes.
For instance, the essential data gathering was imple-
mented as a tree traversal followed by a communica-
tor phase. The tree traversal goes over the BH nodes,
computes the proper destination set where the tree
node might be essential, and appends its address to
a pointer list to that destination. Each destination
processor will have a separate pointer list that con-
tains the addresses of those tree nodes that might
be essential to the destination’s local particles. The
extract routine assures that only essential parts of
a tree node are transmitted. The process routine
inserts incoming data into the local tree. All the mes-
sage packing/unpacking/transmission are handled by
communicator.

5 Experimental Results

We demonstrate the flexibility of our library by
writing a gravitational N-body code on a network of
workstations. It took us only a few days to write all
the necessary data structures and control logics for
the gravitational simulation, since we inherited most
of the tree and cluster structures from the BH tree
layer. All we had to write are those segments spe-
cific to the gravitational simulation, including body-
to-body and body-to-cluster interactions, the rules to
combine center-of-mass, and data structures for par-
ticles and particle clusters.

N | sequential time | parallel time | speed up
8000 14.39 5.84 2.46
16000 20.40 6.28 3.25
24000 33.05 9.80 3.37
32000 45.91 13.25 3.46
40000 60.07 17.5 3.43
48000 73.82 21.03 3.50
56000 90.23 26.17 3.44
64000 103.59 29.17 3.55

Table 1: Timing comparison between the parallel
C++ code using the framework and a sequential C
implementation.

We conducted the experiments on four Ultra Sparc
workstations connected by a fast ethernet network, lo-
cated at Academia Sinica, Taiwan. The communica-
tion library functions were implemented in MPI ver-
sion 1.0.4. To get a fair speedup number we compare
our parallel execution time with the timing from a
highly optimized sequential C code written by Barnes
and Hut. Both the sequential and the parallel code
use exactly the same Barnes-Hut algorithm. The in-
put configuration is a set of uniformly distributed par-
ticles in three dimension. Table 1 summarizes the tim-
ing results from both codes.

Our parallel code developed from the tree frame-
work has overhead from both the communication and
extra function calls inevitable in object-oriented style
of programming. However, the timing data shows a
reasonably good speedup, even if compared with a
highly optimized sequential C code. As the problem
size increases, the speedup reaches a steady 3.5 with
four processors. We plan to conduct more experiments
on larger number of processors to evaluate the effects
of communication on the simulation efficiency.

The major overhead in the C++ version is in the
essential data collection process. Our implementation
collects all the essential data and put them in a linked
list, then compute the interactions one element at a
time from the list. We chose this method mainly to
separate the data collection process from the compu-
tation. However, we pay the overhead of allocating
linked list element through expensive dynamic mem-
ory allocation. We will improve the efficiency by a
customized dynamic memory management mechanism
in which we will have better control over the alloca-
tion/deallocation process. Another approach would be
to compute the interaction on-the-fly while traversing
the tree. Both methods will be implemented and in-

cluded into the final version of the library.

6 Conclusion

In this paper, we have presented the implemen-
tation of our framework for parallel and distributed
N-body simulations. We start from the generic tree
class and proceed to increasingly complex tree struc-
tures. By separating abstractions of data structures
from computation details, our N-body framework is
applicable to other tree-based scientific simulations as
well.

Our experience with developing fast methods for
gravitational simulations on the Connection Machine
CM-5, and preliminary experience with vortex dynam-
ics applications give us confidence that such a frame-
work will be invaluable to applications scientists and
engineers. For computer scientists, such a framework
will also allow design effort and heavy-duty optimiza-
tion to be expended exactly where it is most needed,
without restricting the generality or portability of re-
lated code.

We have implemented a gravitational N-body code
using the class libraries provided in this framework.
As expected, using the framework greatly shortened
the development time of this code. The performance
of this code is competitive to its C implementation as
well. To further evaluate our framework, we plan to
implement a number of application programs, includ-
ing a molecular dynamics code, a vortex simulation
code, and the 3-d fast multipole method, using the
class libraries we have developed.
Acknowledgments

This research is supported in part by National Sci-
ence Council of Taiwan under grant 86-2213-E-001-
010, the Institute for Mathematics and its Applica-
tions with funds provided by the National Science
Foundation of USA, and a special start-up grant from
National Chung Cheng University of Taiwan.

References

[1] A.W. Appel. An efficient program for many-body
simulation. SIAM Journal on Scientific and Sta-
tistical Computing, 6, 1985.

[2] J. Barnes and P. Hut. A hierarchical O(N log N)
force-calculation algorithm. Nature, 324, 1986.

[3] S. Bhatt, P. Liu, V. Fernadez, and N. Zabusky.
Tree codes for vortex dynamics. In International
Parallel Processing Symposium, 1995.

[4] V. Fernadez, N. Zabusky, S. Bhatt, P. Liu, and
A. Gerasoulis. Filament surgery and temporal
grid adaptivity extensions to a parallel tree code

for simulation and diagnostics in 3d vortex dy-
namics. In Second International Workshop in
Vortex Flow, 1995.

[5] L. Greengard and V. Rokhlin. A fast algorithm
for particle simulations. Journal of Computa-
tional Physics, 73, 1987.

[6] L. Johnsson and Y. Hu. personal communication.
1993.

[7] J. F. Leathrum Jr. and J. Board Jr. The paral-
lel fast multipole algorithm in three dimensions.
manuscript, 1992.

[8] P.Liu, W. Aiello, and S. Bhatt. An atomic model
for message passing. In 5th Annual ACM Sym-
posium on Parallel Algorithms and Architecture,
1993.

[9] P. Liu and S. Bhatt. Experiences with parallel n-
body simulation. In 6th Annual ACM Symposium
on Parallel Algorithms and Architecture, 1994.

[10] P. Liu and S. Bhatt. A framework for parallel
n-body simulations. In Third International Con-
ference on Computational Physics, 1995.

[11] L. Nyland, J. Prins, and J. Reif. A data-parallel
implementation of the adaptive fast multipole al-
gorithm. In DAGS/PC Symposium, 1993.

[12] J. Salmon. Parallel Hierarchical N-body Methods.
PhD thesis, Caltech, 1990.

[13] J. Singh. Parallel Hierarchical N-body Methods
and their Implications for Multiprocessors. PhD
thesis, Stanford University, 1993.

[14] J. Singh, C. Holt, T. Totsuka, A. Gupta, and
J. Hennessy. Load balancing and data locality in
hierarchical N-body methods. Technical Report
CSL-TR-92-505, Stanford University, 1992.

[15] S. Sundaram. Fast Algorithms for N-body Simu-
lations. PhD thesis, Cornell University, 1993.

[16] M. Warren and J. Salmon. Astrophysical N-body
simulations using hierarchical tree data struc-
tures. In Proceedings of Supercomputing, 1992.

[17] M. Warren and J. Salmon. A parallel hashed oct-
tree N-body algorithm. In Proceedings of Super-
computing, 1993.

