
I/O Processor Allocation for Mesh Cluster Computers

Pangfeng Liu
Department of Computer Science

and Information Engineering
National Taiwan University
pangfeng@csie.ntu.edu.tw

Chun-Chen Hsu Jan-Jan Wu
Institute of Information Science

Academia Sinica
wuj@iis.sinica.edu.tw

Abstract

As cluster systems become increasingly popular, more
and more parallel applications require need not only com-
puting power but also significant I/O performance. How-
ever, the I/O subsystem has become the bottleneck of the
overall system performance for years due to slower im-
provement of the second storage devices. In recent years
parallel I/O has drawn an increasing attention as a promis-
ing approach to eliminate this bottleneck. To improve I/O
efficiency of a cluster system computation tasks must be
carefully assigned to processors, so that the communica-
tion overheads within the group the processors of the task,
and those I/O traffics that connect processors of the task
to I/O system are both optimized. Earlier processor allo-
cation strategies considered the optimization of communi-
cation traffic or I/O traffic only. Since both the communi-
cation and I/O traffic can cause network contention, we de-
velop a set of binary tree based algorithms to address the is-
sues of both communication and I/O traffics simultaneously.
The experimental results indicate that for tasks that have
different mixture of communication and I/O traffics, our al-
gorithms have very good performance in terms of overall
parallel I/O efficiency. We also developed two mathemati-
cal evaluating criteria – “compactness” and “spatial com-
pactness”, to determine the fitness of allocation algorithms
in terms of geometrical adjacency of processors.

1. Introduction

Parallel I/O subsystems in a distributed-memory paral-
lel system are typically configured as follows. The compute
nodes and I/O nodes are connected by an internal network.
Only the I/O nodes have links to disks. For a read request,
the I/O nodes reads the data from disks and then send them
over the network to the clients (compute nodes). For a write
request, the compute nodes send the data over the network
to the I/O nodes, and then the I/O nodes write them to the

disks. As the data and I/O demands of applications in many
fields increase, vast amount of data must be moved – both
between compute nodes and I/O nodes, and among com-
pute nodes, hence inducing two kinds of network traffic:
the communication-based traffic induced by data exchange
among compute nodes, and the I/O-based traffic induced by
data exchange between compute nodes and I/O nodes. As
the traffic on the links in the network increases, network
contention becomes a critical problem, causing significant
delay in communication and I/O.

We define the processor allocation problem as selection
of available processors in the system for incoming paral-
lel jobs, with the goal of minimizing certain cost measure-
ments. A number of research works have demonstrated that
the spatial layout of jobs can significantly affect network
contention and ultimately overall performance. Spatial lay-
out refers to the location of a job’s compute nodes relative
to each other and relative to the location of the I/O nodes.
There are two types of allocation algorithm in the litera-
ture – contiguous and non-contiguous allocations. Proces-
sors allocated by a contiguous allocation method are phys-
ically adjacent in the layout of cluster topology, and non-
contiguous method does not have to following this con-
straint.

The performance of traditional contiguous allocations is
affected significantly by internal and external fragmenta-
tion. Internal fragmentation occurs when more processors
are allocated than a task requested. External fragmenta-
tion occurs when there are sufficient processors but they
could not be allocated to a task because they are not all
physically adjacent. Fragmentation lowers system utiliza-
tion. Non-contiguous allocation could eliminate both inter-
nal and external fragmentation and improve the system uti-
lization. The non-contiguous allocation, however, also in-
troduces the potential problem due to network contention
caused by inter-task communication interference, i.e., com-
munications from several tasks may want to use the same
network link at the same time. Obviously there is a trade-
off between system utilization due to fragmentation and job

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

response time due to network contention. Many researchers
have studied various efficient contention-free processor al-
location strategies. In these works, the only cause of net-
work contention is communication between compute nodes.

The Multiple Buddy Strategy (MBS) is an allocation al-
gorithm that takes advantages both of contiguous and non-
contiguous allocations. MBS exploits the advantage of non-
contiguous allocation by dividing the request into a small
number of sub-requests. The sub-requests are not neces-
sarily allocated adjacently, so that the flexibility of non-
contiguous allocation is maintained. On the other hand,
each sub-request is allocated contiguously so that commu-
nication overhead is reduced.

Lo. et al. introduced non-contiguous with the goal of
maximizing system throughput over a stream of many
tasks [4]. They proposed several non-contiguous alloca-
tion algorithms which yield high system utilization and
better performance comparing with contiguous alloca-
tion algorithms [4].

Leung uses a one dimensional non-contiguous allocation
strategy to achieve general processor locality, so that [3].
First, a linear ordering on the processors is established via a
space-filling curve. If processors are close to each other in
the space-filling curve order, the processors that are close to
each other in the cluster topology. A Hilbert curves is used
when the cluster topology is 2-D or 3-D mesh [3]. The al-
gorithm tries to find a contiguous interval of free proces-
sors large enough for the task. If several contiguous inter-
vals can be allocated to the task, the algorithm chose an
interval according to First-Fit Allocation, Best-Fit Alloca-
tion and Sun-of-Squares Allocation. If a contiguous inter-
val cannot be found, the task is allocated across multiple
intervals. The algorithm chooses the allocation that min-
imizes the span of the task – namely the distance in the
one-dimensional ordering of processors, which servers as
a measurement of the locality of the allocated processors.
Experimental results indicate that space-filling curves with
one-dimensional allocation strategy improve processor lo-
cality. These allocation strategies were later implemented
in the release of the Cplant System Software at Sandia Na-
tional Laboratory.

Allocations algorithms described above have good per-
formance when we consider only communication traffic.
However, the efficiency of parallel I/O is also a critical prob-
lem for parallel computing. As a result it may not be suffi-
cient to consider only communication traffic in the treat-
ment of communication optimization.

There are several research issues in the improvement of
parallel I/O efficiency, including computer architecture, sys-
tem software, parallel file systems, parallel I/O scheduling
and so forth. One of the research direction on parallel I/O
is to study how parallel I/O performance is affected by the
spatial layout of tasks on a mesh cluster [5, 6, 1, 2], much

like the processor allocation problem described earlier in
the context of optimizing communication traffic.

Mache et. al. [6] showed that on a mesh-connected clus-
ter the spatial layout of a task directly affects network con-
tention due to I/O traffic and thus has significant impact on
parallel I/O performance. There is serious contention for
write traffic when the I/O nodes lie vertically on the left
or right side of the mesh, and serious read traffic when the
I/O nodes lie horizontally, due to the use of XY-routing
in the mesh cluster topology. As a result allocation al-
gorithms should take into account the relative percentage
of read/write operations to improve parallel I/O efficiency.
Considering I/O traffic only, Mache et. al proposed a Par-
allel Layout Allocation Strategy (PLAS) to assign compute
nodes so that they lie parallel to the I/O nodes. It is con-
cluded in [6] that the parallel spatial layout is superior to
block-based and orthogonal layouts, and it is desirable that
one half of the compute nodes are placed above the link in
the middle of the I/O nodes and one half are placed below.

From the discussion above we conclude that it is vital to
“spread out” the compute nodes allocated to a task so that
messages going I/O nodes do not interfere with each other,
and on the other hand, it is equally important to “compact”
the compute nodes so that the communication traffic among
processors allocated to a task is limited within themselves.
However, those algorithms described in the literature either
consider either only communication traffic or I/O traffic. In
this paper we consider both communication-based and I/O-
based contention, and propose allocation strategies that aim
to finding a good balance between these two types of com-
munication overhead. We develop a group of binary tree
based allocation algorithms and a Hilbert curve based al-
gorithm to deal with both kinds of contention at the same
time. We also introduce the concept of the compact alloca-
tion and spatially compact allocation, which serve as formal
criteria for evaluating the “compactness” of allocation algo-
rithms..

The rest paper is organized as follows. Section 2 de-
scribes our communication model for a mesh cluster. Sec-
tion 3 presents the algorithms that we developed. Section 4
theoretical results about compact and spatially compact al-
gorithms. Section 5 presents our experiments results. Sec-
tion 6 concludes the paper.

2. Communication Model

We consider a parallel system where the compute nodes
are interconnected with bi-directional network links and are
configured as a mesh. We assume that all I/O nodes are lo-
cated at one side of the mesh. Compute nodes are responsi-
ble for computing and they may read/write data from/to I/O
nodes. I/O nodes have disks attached to them and are re-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

sponsible for writing data from computer nodes into disks
and sending requested data to compute nodes.

The parallel processing in our model alternates between
computation and I/O phases. During the computation phase,
processors conduct inter-processor communication to send
and receives messages from each other. Processor then can
proceed to the actual computation with all the necessary
data. After a computation phase the processors perform
I/O operation so that the result created from the computa-
tion may be transferred to disk for permanent storage, or
new data may be transferred from the disks for process-
ing in the incoming computation stage. Note that the I/O
phase is essential to permanently safeguarding the compu-
tation results, and periodical transferring the computation
results, also known as checkpointing, is a safety measure
again unexpected computer malfunctioning and crashes.
We classify network contention into two categories. Com-
pute nodes may exchange data so that they compete with
each other for the communication links, and compute nodes
may compete with one another for I/O nodes during I/O
phases. We will refer to these two kinds of network con-
tention as communication-based contention and I/O-based
contention.

This paper proposes strategies in how to allocating pro-
cessors for incoming tasks in order to minimize both kinds
of network contentions. A sequence of tasks are given to
our cluster system and each one of them must be served in a
timely fashion. Each task requests a fixed number of proces-
sors for computation, and tasks do not share compute nodes.
The goal is an allocation strategy of assigning compute
nodes to a incoming task, which provides a spatial layout
of allocated compute nodes, so that both communication-
based and I/O-based network contention are reduced.

3. Tree-Based Allocation Algorithms

In this section, we propose a binary-tree-based alloca-
tion strategy. We first introduce a basic tree-based algorithm
which aims to finding a balance between optimizing com-
pactness for communication-based contention and balanc-
ing compute nodes relative to I/O nodes for I/O-based con-
tention. We then enhance the tree-based algorithm with non-
contiguous allocation capability for better system utiliza-
tion.

3.1. Basic Binary-Tree Allocation

We assume that the cluster has an M by N mesh topol-
ogy. We assume that both M and N are powers of 2, and
M ≥ N . Due to the nature of mesh topology we will al-
locate processors to tasks in “blocks”, with is a rectangle
in the processor mesh. From now on we will use the term
”rectangle” as a synonym of “processor block”.

We use a binary tree T to represent the current alloca-
tion status. Initially the tree T has only a root representing
the available processors as a M by N rectangle. When the
first task arrives, the binary tree allocation algorithm looks
into the binary tree T , which has only one rectangle of size
M by N at this moment, and decides MN processors is too
many for the incoming task. If this is the case, the algorithm
divides the root rectangle into two half equal sized halves.
When BT decides to divide a rectangle, it will ”cut” the rect-
angle in the middle of the longer side to maintain a better
aspect ratio, since a rectangle with high aspect ratio tends to
incur serious communication overheads. As a result BT di-
vides the root rectangle into two sub-rectangles that both
are of size M

2 by N , and sets two rectangles to be the chil-
dren of the root of tree T . This selection process recur-
sively traverses the left sub-rectangle until BT finds a rect-
angle large enough to accommodate the incoming request.
By the nature of recursive binary division the number of
processors in the rectangle (denoted by A) and the number
of processors request (denoted by R) satisfies the inequal-
ity log2(A) − 1 < log2(R) ≤ log2(A). BT also ”back-
tracks” in order to find the rectangle for a task. It is possible
that a task cannot fit into a rectangle not because the rect-
angle does not have enough processors for that task, but be-
cause the available processors are located in non-contiguous
areas. This is called external fragmentation. If BT cannot
allocate enough processor in one rectangle due to external
fragmentation, it backtracks to parent node in the binary tree
T and tries the sibling node. Backtracking allows BT to try
every possible rectangle in the mesh system in order to al-
locate processors for a task.

After BT finds the rectangle for a task, it allocate proces-
sors within the rectangle in a column-first fashion. The rea-
son is that by maintain a wider “front” facing the I/O nodes
on the left-hand side of the mesh, we can utilize all the hori-
zontal communication links to the I/O subsystem. This con-
form to the principle of good spatial layout in relation to
parallel I/O as reported in [6].

Imbalance Tolerance The simple BT strategy has a po-
tential problem in causing serious external fragmentation,
therefore we introduce the concept of the imbalance toler-
ance value to overcome this difficulty. We define a threshold
value called imbalance tolerance, denoted as α, that serves
as a guideline for allocation within a rectangle. When BT
selects one sub-rectangle from two children for allocation,
it tries to allocate the task into the child that has heavier
load without causing an imbalance that exceeds the toler-
ance α. After the allocation, BT checks the imbalance by
comparing the difference of the number of available pro-
cessors of two children with the tolerance α. If the imbal-
ance does not exceed α, the allocation is valid. Otherwise
the task will be allocated to the child that has lighter load.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

3.2. Non-contiguous Binary-Tree Allocations

Although SBT and DBT solve the external fragmenta-
tion problem to some extents, there could be some problem
due to the contiguous allocation strategy they enforce [4].
It seems that contiguous allocation suffers from both exter-
nal and internal fragmentation, therefore we would like to
adapt our BT into non-contiguous allocations (NCBT). We
adopt a technique from MBS allocation [4] that breaks a
large task into small sub-tasks, and allocates a rectangle for
each of these smaller sub-tasks.

After we divide the task into subtasks we allocate proces-
sors for them independently or dependently. Those NCBTs
that use the first strategy are refereed to as independent
NCBTs, including ind-BT, ind-SBT and ind-DBT. Those
NCBTs that adopt the second strategy are refereed to as de-
pendent NCBTs, including d-BT, d-SBT and d-DBT. Fig-
ure 1 shows the binary allocation tree after the ind-BT allo-
cates two tasks of size 5 and 3 each.

��
��
��
��

��
��
��
��

allocated to task1

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

allocated to task2

Figure 1. The binary tree status after ind-BT
finished allocating the two tasks.

The goal of the dependent NCBTs is to place sub-tasks
as close as possible. When dependent NCBTs successfully
allocate processors for the biggest sub-task, they remem-
ber the location of the rectangle allocated (denoted by A).
When dependent NCBTs try to allocate the next sub-task,
they start from A’s parent, instead of from the root. The
sibling of A will be considered first in allocating the sec-
ond sub-task so that it will be placed as close as to the first
one. The subsequent sub-tasks are handled in a same man-
ner. Figure 2 shows the binary allocation tree after the d-BT
allocates the same two tasks from the previous example.

4. Compact Allocation

This section describes the concept of compact allocation
with a formal mathematical definition. Intuitively a com-
pact allocation method assigns adjacent processors to a task

��
��
��
��

��
��
��
��

allocated to task1

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

allocated to task2

BA

Figure 2. The binary tree status after d-BT fin-
ished allocating the two tasks.

so that the communication among the processors is mini-
mized. Geometrically speaking, an allocation algorithm is
compact if the processors assigned to a task are close to
each other, instead of being scattered all over the geometric
space. We assume that the network topology is a 2m × 2n

mesh and m ≥ n. The goal of a compact allocation is that
after we allocate processors to a task, the remaining free
processors can be divided into squares with side length 2i,
and the number of squares is minimized. That is, if we could
form a processor square of size 2i × 2i within the remain-
ing free processors, we won’t divide it into four 2i−1×2i−1

squares. Formally we represent the geometry configuration
of the remaining free processors a set of square blocks. Let
di be the number of squares of size 2i × 2i, for 0 ≤ i ≤ n.

Definition 1 An allocation algorithm is compact if it main-
tains the minimum number of squares after every alloca-
tion, i.e., the quantity D =

∑n
i=0 di is minimum throughout

the allocation process.

4.1. Spatially Compact Allocation

This section defines a compactness criteria called spa-
tially compact, which employs spatial information in judg-
ing the effectiveness of allocation algorithms. Before we
formally define the spatially compact property, we describe
a processor organizing mechanism by which the spatially
compact property can be defined.

We assume that the cluster is is a 2m × 2n mesh, and
m ≥ n. A rectangle processor block is divided into two
equal sized halves by cutting in the middle of the longer
side to maintain a better aspect ratio. For example in our
2m × 2n mesh the root rectangle is divided into two rectan-
gles that both are of size 2m−1 × 2n. The two newly gener-
ated rectangles will be the children of the original rectangle.
The cluster is recursively divided into smaller blocks until
each processors is put into its 1 × 1 block. Note that if we
are to divide a square processor block, the division could be

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

done in either direction. We call this partition method “or-
thogonal”, and by definition, an orthogonal division first di-
vides a 2m × 2n mesh into 2n × 2n squares, then within
each 2n × 2n square the division divides the block in alter-
nating directions.

Definition 2 Let C be a cluster of 2m × 2n mesh where
m ≥ n, and T be the result of an orthogonal division on
C. An allocation method A is spatially compact if A does
not allocate any processor from a subtree until all proces-
sors in its sibling subtree are allocated.

Lemma 1 An allocation algorithm is spatially compact if
and only if the after every allocation step the number free
processor blocks for each size is either 0 or 1, and if p and
q are two free processor blocks and p is bigger than q, the
parent of p is an ancestor of q.

4.1.1. Spatially Compact Binary Tree Allocation Ac-
cording to Definition 2, we give an example of spatial com-
pactness by modifying our BT allocation method so that it
satisfies the spatial compactness requirement. The resulting
allocation algorithm is called spatially compact BT alloca-
tion (SCBT).

We first introduce some notations. Let T be an orthogo-
nal division on the cluster C. Let S(p) be the number of the
currently available processors of in tree node n, and L(p),
R(p) and P (p) be the left child, the right child, and the par-
ent of p respectively. Note that S(p) is the current number
of free processors in p so it will decrease after processors in
p are allocated.

Initially there is only one available block of size 2m×2n

in T . Note that the tree T is a dynamic structure that re-
flects the current allocation status. We may need to divide a
rectangle into two halves by the direction mandated by or-
thogonal division. In that case the tree T “grows” two chil-
dren from the tree node that was partitioned.

We assume that the size of the incoming task is k and
0 < k ≤ 2m+n. We first represent k as a binary number,
i.e., k =

∑�log2k�
i=0 di ×2i. This is equivalent to dividing the

task into requests according to its binary representation. To
allocate processors for the entire task is equivalent to allo-
cating di blocks of size 2i for every i.

For each request of size 2i, the spatially compact BT
does the following. First p is set to the root and z, the size
of the request, is set to 2i. We will consider two cases –
whether the current node p is a leaf node or not. If p is
an internal node, we check whether we can allocate the re-
quest entirely within the left subtree of p, i.e., we compare
S(L(p)) with z. If S(L(p)) ≥ z, we set p to be the left sub-
tree L(p) and repeats the allocation process for next request.
If the request requires more processors than the left subtree
can offer, i.e., S(L(p)) < z, we allocate L(p) for the task,
subtract S(L(p)) from z, and starts all over from the right
subtree by setting p to R(p).

If we have reached a leaf node during the previous al-
locating process, we consider three sub-cases. In the first
sub-case we have S(p) = z, we then allocate p to the re-
quest and sets p to the root, and try to allocate processors
for the next request from there. In the second sub-case when
S(p) > z, we divide the current tree node p into two chil-
dren. We then set p to be the left child L(p) and repeats the
allocation process. In the third case when S(p) < z, we al-
locate p to the request, subtracts S(p) from z, sets p to the
right subtree R(P (p)) and repeats the allocation process.

Before we establish that the spatially compact BT allo-
cation is indeed spatially compact, we show that the num-
ber of remaining free processor for each size is 0 or 1.

Lemma 2 The number of free processor blocks for each
size from the spatially compact algorithm A is always 0 or
1. That is, if the number of free processors is f , then it can
be represented as f =

∑l
i=0 di × 2i, 0 ≤ di ≤ 1. In ad-

dition, the If p and q are two free processor blocks and p is
bigger than q, the parent of p is an ancestor of q.

From Lemma 1 and Lemma 2 we conclude that the BT
allocation described earlier is spatially compact. We can
also relate the concepts of compactness and spatially com-
pactness with the following theorem.

Theorem 1 A spatially compact allocation algorithm is
also a compact allocation algorithm.

5. Experiments

5.1. Experimental Environment

We model a mesh cluster system consisting of 16 × 16
compute nodes and an I/O subsystem of 16 I/O nodes lo-
cated at the left-hand side of the system. The bandwidth of
the network is set to be 11.65MB/sec – a measurement from
our fast ethernet that connects our cluster system. The writ-
ing speed of disks is set to be 4.545MB/sec – also an actual
measurement from our IDE disks. The allocation input con-
sists of 16 tasks and the size of each task is taken from an
exponential distribution of mean value 16. All tasks simul-
taneously enter the system at the beginning of the simula-
tion. The system utilization ranges from 60% to 75% from
our simulation.

5.2. Simulation Guidelines

Our simulated parallel application alternates between
computation and I/O phases. During the computation phase,
processors conduct inter-processor communication to send
and receives messages from each other. After a computa-
tion phase the processors perform I/O operation so that the
result created from the computation is transferred to disk
for permanent storage, or new data may be transferred from

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

the disks for processing in the incoming computation stage.
We let all tasks communicate first and then do one I/O oper-
ation. We control the frequency of communication to con-
trol the ratio of I/O traffic to the communication traffic. For
each simulation case we measure the average values from
1000 independent runs.

We assume that the files are striped and distributed
among I/O nodes. Therefore tasks transfer data according
to a complete bipartite I/O pattern, i.e. each processor allo-
cated to the task sends a personalized message to every I/O
node.

5.3. Experimental Results

5.3.1. The Impacts of Configurable Parameters We
first describe the configuration parameters for all algo-
rithms. The SBT and DBT can tune their performance by
adjusting the global tolerance value and the tolerance ra-
tio.

 1600

 1800

 2000

 2200

 2400

 2600

25664164

T
ot

al
 T

im
e

Global Tolerance Value

5 a2a
4 a2a
3 a2a
2 a2a
1 a2a
0 a2a

Figure 3. Timing results of SBT. The x co-
ordinate is the global tolerance value: 4, 16,
64, and 256. Different lines represent differ-
ent number of communications between two
I/O phases.

First, the lines for 100% pure I/O are all flat, i.e., in I/O
only traffics the performance difference due to different tol-
erance values is small. We conjecture that the phenomenon
is due to system load. We start the simulation with a mesh
full of tasks. When the system load becomes very heavy, it
does not make much difference how the algorithm balances
the allocations.

Second in Figure 3 we observe that a large global tol-
erance value results in better performance when the com-
munication traffic increases, but there is no such perfor-
mance improvement when the traffic is I/O only. In Sec-
tion 3.1 we described that the tasks are allocated more com-
pactly when the global tolerance value becomes larger. Al-
locating tasks more compactly results in better system uti-

 1600

 1800

 2000

 2200

 2400

 2600

1/21/41/81/16

T
ot

al
 T

im
e

Tolerance Ratio

5 a2a
4 a2a
3 a2a
2 a2a
1 a2a
0 a2a

Figure 4. Timing results of DBT. The x coordi-
nate is the tolerance ratio: 1/16, 1/8, 1/4, and
1/2. Different lines represent different number
of communications between two I/O phases

lization, which reduces the total time because more proces-
sors can work simultaneously. Therefore we expect that in
Figure 3 a larger global tolerance should provide better per-
formance, i.e., less total simulating time. However, the last
line down below (for 100% I/O) in Figure 3 does not con-
form with our expectation. The reason is that the system has
more I/O-based contentions when tasks are allocated more
compactly [6], therefore the increased time due to more I/O-
based contention neutralizes the reduced time due to better
system utilization. As the communication traffic increases,
the effect resulted from better system utilization becomes
more obvious. We make the same conclusions for Figure 4
from experiments results of DBT – as the tolerance ratio be-
comes larger, the tasks are allocated more compactly.

 1600

 1800

 2000

 2200

 2400

 2600

1/21/41/81/16

T
ot

al
 T

im
e

Tolerance Ratio

5 a2a
4 a2a
3 a2a
2 a2a
1 a2a
0 a2a

Figure 5. Timing results of d-DBT. The x coor-
dinate is the tolerance ratio: 1/16, 1/8, 1/4, 1/2.
Different lines represent different number of
communications between two I/O phases

Figure 5, shows the results from d-DBT, and we observe
that a larger global tolerance ratio results in worse perfor-
mance, and unlike independent allocation strategy, this per-

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

formance penalty becomes more obvious when the commu-
nication traffic increases. Dependent allocation strategy has
already made tasks as compact as possible, hence a large
tolerance value does not help much with respect to the com-
pactness. A large tolerance value, however, makes tasks
close to each other, and this reduces the “space” around the
first allocated request from each task. Now since there is not
enough space around the first allocated request, the remain-
ing requests from the same task are not likely to be allo-
cated close nearby, which creates more communication in-
terference among tasks. As a result in figure 5 a larger toler-
ance ratio degrades performance when the communication
traffic dominates.

We now compare DBT, d-DBT, PLAS and MBS. Each
algorithm is represented by the best performing configura-
tion parameters. From Figure 6 we conclude that DBT pro-
vide best performance when communication traffic domi-
nates – it outperforms d-DBT, MBS, and PLAS. This ad-
vantage is more obvious when the number of communica-
tions between two consecutive I/O increases, as indicated in
Figure 6. That means when DBT has the best performance
when the inter-processor communication is heavy, despite
the potential fragmentation problems.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

PLASMBSSHd-DBTDBT

T
ot

al
 T

im
e

Algorithms

20 a2a
15 a2a
10 a2a
5 a2a
0 a2a

Figure 6. Timing results from DBT, d-DBT,
MBS and PLAS algorithms. Different lines
represent different number of communica-
tions between two I/O phases

6. Conclusions

In this paper we developed allocation algorithms to re-
duce both communication-based and I/O-based contentions.
We develop a group of binary tree based allocation methods
that follow the principle of keeping “good” spatial layout to
reduce the I/O-based contention and simultaneously main-
tain “compactness” to deduce the communication-based
contention. We also introduce the concepts of compact allo-
cation and spatially compact allocation. We prove that MBS

is a compact allocation algorithm, and every spatially com-
pact allocation algorithm is also compact.

We have developed 9 BT allocation algorithms. The ini-
tial BT algorithm suffer the external fragmentation. To deal
with fragment issues we developed the concept of tolerance
value and thus we made the distinction of static and dy-
namic BT methods. Later in order to remove both internal
and external fragmentation, we derived the non-contiguous
versions of BT. According to the way to allocate proces-
sor for subtasks we have independent and dependent strat-
egy.

We made the following conclusions from our experimen-
tal results. First, dynamic and static BT successfully re-
duce the external fragmentation problem and thus outper-
form BT. Second, when we derive a non-contiguous ver-
sion of BT allocations, the dependent strategy is more suit-
able for dynamic BT and the independent strategy is more
suitable for static BT. Third, among all NCBT algorithms,
d-DBT has the best performance in most cases. Among all
BT allocations, SBT and DBT has best performance only
when the communication among compute nodes dominates
the overall time. d-DBT has the best performance when the
I/O and communication traffic are well mixed. Therefore d-
DBT is the most robust allocation algorithm under all pos-
sible mixtures of communication and I/O traffics.

References

[1] Y. Cho, M. Winslett, S. Kuo, Y. Chen, J. Lee, and K. Motukuri.
Parallel I/O on networks of workstations: Performance im-
provement by careful placement of i/o servers. In Proceedings
of High Performance Computing on Hewlett-Packard Systems,
1998.

[2] S. Garg. Parallel I/O architecture of the first asci tflops ma-
chine. In Proceedings of Intel Supercomputer Users Group,
1997.

[3] V. J. Leung, E. M. Arkin, M. A. Bender, J. Johnston, A. Lal,
J. S. B. Mitchell, C. Phillips, and S. S. Seiden. Processor al-
location on cplant: Achieving general processor locality us-
ing one-dimensional allocation strategies. In Proceedings of
the 4th IEEE International Conference on Cluster Comput-
ing, pages 296–304, 2002.

[4] V. Lo, K. Windisch, W. Liu, and B. Nitzberg. Non-contiguous
processor allocation algorithms for mesh-connected multi-
computers. IEEE Transactions on Parallel and Distributed
Systems, 8(7):712–726, July 1997.

[5] J. Mache, V. Lo, and S. Garg. How to schedule parallel I/O in-
tensive jobs. In Proceedings of the 6th Conference on Parallel
and Real-Time Systems, 1999.

[6] J. Mache, V. Lo, M. Livingston, and S. Garg. The impact of
spatial layout of jobs on parallel I/O performance. In Proceed-
ings of the 6th Workshop on I/O in Parallel and Distributed
Systems, 1999.

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05)
0-7695-2281-5/05 $20.00 © 2005 IEEE

