
Optimal Replica Placement Strategy for Hierarchical Data Grid Systems

Pangfeng Liu
Department of Computer Science

National Taiwan University

Taipei, Taiwan, R.O.C.

pangfeng@csie.ntu.edu.tw

Jan-Jan Wu
Institute of Information Science

Academia Sincia

Taipei, Taiwan, R.O.C.

wuj@iis.sinica.edu.tw

Abstract

Grid computing is an important mechanism for utilizing
distributed computing resources. These resources are dis-
tributed in different geographical locations, but are orga-
nized to provide an integrated service. In order to speed up
data access efficiency data grid systems replicate essential
data in multiple locations, so that a user can access the data
from a site in his vicinity. This paper studies replica place-
ment in Data Grid systems, taking into account several im-
portant issues described below. First, the replicas should
be placed in proper server locations so that the workload
on each server is balanced. Second, we choose the optimal
number of replicas to balance the data access efficiency,
and the expensive maintenance costs for multiple copies of
data. Clearly, optimizing access cost of data requests and
reducing the cost of replication are two conflicting goals.
Finding a good balance between them is a challenging task.
We propose efficient algorithms for selecting optimal loca-
tions for placing the replicas so that the workload among
these replica is balanced. Also when given the data usage
from each user site and the maximum workload allowed for
each replica server, our algorithm efficiently determines the
minimum number of replicas required, as well as their lo-
cations.

1 Introduction

Grid computing is an important mechanism for utiliz-
ing distributed computing resources. These resources are
distributed in different geographical locations, but are orga-
nized to provide an integrated service. A grid system can
provide computing resources so that users at different loca-
tions can utilize the CPU cycles of remote sites. In addition,
users can access important data that are available only in
several locations, without the overheads of replicating them
locally. These services are provided by an integrated grid
service platform so that user can access the resource trans-

parently and effectively.
One class of grid computing and the focus of this paper is

Data Grids that provide geographically distributed storage
resources to large computational problems that require eval-
uating and managing large amount of data [3, 8, 11]. For ex-
ample, the scientists working on bioinformatics may need
to access human gnome databases on different remote lo-
cations. These databases have tremendous amount of data,
so the cost of maintaining a local copy on each site that
needs the data is extremely expensive. In addition, these
databases are mostly read-only, since they are the input data
to the applications for various purposes, such as benchmark-
ing, identification, and classification. With the high latency
of wide-area network that underlies most Grid systems, and
the need to access/manage several petabytes of data in Grid
environments, data availability and access optimization be-
comes key challenges to be addressed.

An important technique to speed up data access for Data
Grid systems is to replicate the data in multiple locations,
so that a user can access the data from a site in his vicin-
ity. It has been shown that data replication not only re-
duces access costs, but also increase data availability in
many applications [8, 12, 10]. There is a fair amount of
work on data replication in Grid environments. However,
most of the existing work focused on infrastructures for
replication and mechanisms for creating/deleting replicas
[4, 6, 5, 7, 8, 10, 13, 12, 14]. We believe that, in order to
obtain maximum gains of replication, a strategic placement
of the replicas is necessary.

A number of early works address placement of data
replicas in parallel and distributed systems with regular net-
work topologies such as hypercubes , torus, rings, and trees.
These networks posses many attractive mathematical prop-
erties that enable the design of simple and robust place-
ment algorithms [2, 9, 15]. These algorithms, however, can-
not be directly applied to Data Grid systems due to hierar-
chical network structures and special data access patterns
in Data Grid systems that are not common in traditional
parallel systems. An initial work on replica placement

for Data Grids was reported in [1]. The author proposed
a heuristic algorithm, named Proportional Share
Replication, for the placement problem. However, the
algorithm does not guarantee to find the optimal solution.

In this paper, we study replica placement in Data Grid
systems, taking into account several important issues de-
scribed below. First, the replicas should be placed in proper
server locations so that the workload on each server is bal-
anced. Another important issue is choosing the optimal
number of replicas. The denser the distribution of replicas
is, the shorter the distance a client site needs to travel to ac-
cess a data copy. However, maintaining multiple copies of
data in Grid systems is expensive, and therefore, the number
of replicas should be bounded. Clearly, optimizing access
cost of data requests and reducing the cost of replication
are two conflicting goals. Finding a good balance between
them is a challenging task.

We propose efficient algorithms for selecting optimal lo-
cations for placing the replicas so that the workload among
these replica is balanced. Also when given the data usage
from each user site and the maximum workload allowed for
each replica server, our algorithm efficiently determines the
minimum number of replicas required, as well as their loca-
tions.

The rest of the paper is organized as follows. Section 2
describes our data grid model, and formally define our
replica placement problem. Section 3 presents our replica
placement algorithms, and provides theoretical analysis for
them. Section 4 concludes and addresses several open ques-
tions and future works.

2 Model

We first describe our data grid model. We will consider
hierarchical Data Grid model in this paper, due to its sim-
plicity and close resemblance to the hierarchical manage-
ment, usually found in a grid system. We use a tree T to
represent a data grid system. The root of the tree, denoted
by r, is the hub of the data grid. A database replica can be
placed in any tree nodes except the hub r. All the tree leaves
are local sites where user can access databases stored in this
data grid system.

A user of a local site at the leaf access a database as fol-
lows. First he tries to locate the database replica locally.
If the database replica is not present, he goes to the parent
node up the tree to find if a replica is there. Namely the user
request goes up the tree and uses the first replica encoun-
tered along the path towards the root. If there is no replica
along the way, the hub will server this request.

Now we formally define the goals of our replica place-
ment strategy. Let l be a leaf node from the set of all leaves
L. Let w(l) be the amount of data requests from l. Note
that for ease of discussion we focus on the case where only

leaves can request data. All the results in this paper can be
generalized to the cases where all the tree nodes, including
the internal nodes, can request data. According to the data
grid access model above we define the workload on a par-
ticular tree node after the replicas are placed as follows. Let
T be a data grid system tree, N be the set of nodes in T ,
and R be a subset of N , with a replica placed in every node
of R. The workload for a node n of N , denoted as f(n), is
defined recursively as follows.

fR(n) =
{

w(n) if n is a leaf∑
c fR(c) c is a child of n, and c /∈ R.

The maximum workload of R is the maximum workload
from all nodes of R and the hub. The reason that we include
the hub is that all the data requests unanswered by replicas
will eventually be answered by the hub. Now we formally
define our problems.

• MinMaxLoad: given the number of replica k, find a R
so that the maximum workload is minimized.

• FindR: given the amount of data a replica or the hub
can serve (D), find the minimum cardinality R so that
the maximum workload is no more than D.

3 Algorithms

The problem FindR can be stated as follows. Given a
grid tree and the workload on its leaves, a constant k, and a
maximum workload D, find a subset R of tree nodes with
cardinality no more than k to place the replica so that the
workload on every r ∈ R and the hub is no more than D.
All these R sets are refereed to as “feasible”. A feasible R
is optimal if it minimizes the workload on the hub.

To make the discussion easier, we first classify tree nodes
into two categories. Suppose there is no replica in the tree,
the workload on a leaf n is just w(n), and the workload on
an internal node is the sum of workload of its children. If a
tree node has a workload greater than D, we call it a heavy
node, or it is a light node. If a light node has a heavy parent,
we call it a critical node.

Observation 1 There exists an optimal replica set that does
not contain any non-critical light nodes.

Lemma 1 Let T be a data grid tree, p be a heavy node
with only critical children, and e be the child of p that has
the maximum workload. There exists an optimal replica set
that contains e.

By Observation 1 and Lemma 1, we derive a baseline
algorithm Feasible for FindR. Given the tree T , the
replica capacity D, and the number of replicas allowed k,
Feasible determines whether there is a feasible replica

2

set with cardinality k or less, by repeatedly picking the crit-
ical leaf that has the maximum workload for at most k times.
If the hub becomes light, a solution is found.

Note that once we pinpoint a critical child e in which we
want to place a replica, we must deduct w(e) from the work-
load of all of its ancestors, including the hub. This might
turn some of the heavy ancestors into light nodes. These
ancestors now are non-critical and should be removed.

The time complexity analysis is as follows. Let n be the
number of tree nodes. It only takes O(n) to compute the
workload when no replica is placed, so that we can deter-
mine the category for every tree node. Also since a node
can be removed only once, the removal cost is bounded by
O(n). However, the cost of updating the workload of the
ancestors could be very expensive. For example, consider a
skewed tree of height Ω(n). We may need to update all the
ancestors for every maximum child we pick from the bot-
tom of the tree. The total cost could be as high as Ω(kn).

We improve our baseline algorithm Feasible so that
the updating cost is not prohibitive. We introduce a concept
called lazy update for this purpose. The idea of lazy update
is to use a deduction value on an internal node n (denoted by
d(n)) to keep track of the amount of workload that should
be removed from n, and all of its ancestors.

The lazy updating works as a depth first traversal on the
heavy nodes. When the traversal reaches a heavy node with
only critical children, it picks the child (denoted as c) with
the maximum workload to place a replica, as the baseline
algorithmFeasible does, and starts subtracting w(c) (the
workload of c) along the path from c back to the hub. See
Figure 1 for an illustration. If any of the ancestors along the
way becomes non-critical, it is removed as in the baseline
algorithmFeasible (node g and h in Figure 1). When the
lazy update reaches a heavy node (node e in Figure 1) that
now becomes critical after reducing its workload by w(c), it
will not try to deduct w(c) from all ancestors of e. Instead
the lazy update will increases the deduction on e’s parent
(denoted by f in Figure 1) by w(c), and starts the traversal
from f . Note that with the help of this “deduction”, we
eliminate the duplicated work of deducting workloads from
those tree nodes that are along the same path from a leaf to
the hub. As a result when lazy updating deducts workload
from e, it must add the deduction of f by w(c).

Now we analyze the time complexity of lazy update, es-
pecially on the deduction part. Each node can only be re-
moved once, so the cost of removal is bounded by O(n),
where n is the number of tree nodes. When a replica is
placed at a critical node c, there could be three kinds of
value updating on the ancestors of c. First, an ancestor
could be removed since after deducting w(c) it becomes
light nodes (node g and h in Figure 1). Second, an ancestor
could become critical (node e) after w(c) is deducted from
its workload. Third, an ancestor will add w(c) to its deduc-

e

f

c

g

h

Figure 1. An execution scenario of the lazy
update.

tion value. Since an ancestor can only be removed once,
considering all the replicas, the total costs of the fist kind
of updating is bounded by O(n). Also each replica placing
will incur the second and the third kinds of updating once,
so the total cost from them is bounded by O(k).

We now analyze the cost of picking the critical node with
the maximum workload among its siblings. It is easy to
see that there could be at most k such selections since we
can only pick at most k replicas. For every internal node,
we need to maintain the relative order among its children
according to their workload. It is easy to see that we only
need to keep the k largest children for every internal node,
since we only have at most k replicas. We achieve this goal
with a sorted list with at most k elements. The overall list
maintenance time is bounded by O(k log k).

The only remaining question is how to initialize the
sorted list for every internal node. If the value of k is small,
we simply choose the maximum k children repeatedly for
every parent, with a total time O(kn). If the value of k is
large, we sort all tree nodes with the parent as the primary
key, and the workload as the secondary key. This gives ev-
ery parent the k largest of its children, therefore the initial-
ization cost is O(min(kn, n logn)).

Now we add all the costs together. The time to initialize
the sorted list is O(min(nk, n log n)), the time to maintain
the sorted lists is O(k log k), and the time for tree traversal
and updating workload is O(n). The total time is bounded
by O(min(nk, n log n) + k log k + n) = O(n log n) since
k ≤ n.

Theorem 1 The algorithm LazyUpdate finds the optimal
replica set for FindR in time O(nlogn), where n is the
number of tree nodes in the data grid.

We now derive an algorithm BinSearch for the
MinMaxLoad problem. The algorithm BinSearch finds
the replica set by “guessing” the maximum workload with a
binary search. We assume that all the workload are integers
and there is an upper bound U on the workload for every

3

node, therefore the total amount of workload is bounded by
O(nU). It is easy to see that after O(logN + logU) calls of
LazyUpdate, we will be able to find the smallest value of
D by which only k replicas suffice.

Now we analyze the time complexity of BinSearch.
Note that in LazyUpdate, we need an initialization phase
that computes a sorted list of children for every parent. This
task is only done once in BinSearch, since the tree is
the same throughout the binary search. Each iteration of
LazyUpdate takes O(k log k + n), and the total cost of
BinSearch is bounded by O(min(nk, n log n)+(log n+
log U)(k log k+n)). In a grid system the number of replicas
k is usually bounded by a small constant, meaning that it is
very expensive to duplicate data, therefore we assume that
k is bounded by O(n

log n). In addition, the bound on the
workload, U , is usually represented by a 32 bit integer. To
summarize, the total execution time becomes O(n log n),
when k is bounded by O(n

log n).

Theorem 2 The algorithm BinSearch finds the optimal
replica set for MinMaxLoad in time O(n(log n + log U)),
where n is the number of tree nodes in the data grid, U is
the maximum workload on the leaves, and the number of
replica is O(n

log n). If there is a constant bound on U , the
cost is O(n log n).

4 Conclusion

This paper addresses the issues of placing database
replica in a data grid system. In particular, we give effi-
cient algorithms for selecting strategic locations for plac-
ing the replica so that the workload among these replica is
balanced. We formulate two problems: MinMaxLoad and
FindR, and derive efficient algorithmic solutions for them.
Based on the estimation of data usage from various sites,
our algorithm efficiently determines the locations of replica
if both the number of replica and the maximum workload
for each replica have been determined. Another algorithm
can determine the number of replica needed to ensure that
the maximum amount of workload on every replica is below
a certain threshold. Both algorithms run in time O(n log n),
where n is the number of sites in the data grid system.

One open question for the replica placement problem is
how to determine the replica location when the network is
a general graph, instead of a tree. It is possible that we
may need to consider other graphs, (e.g. planar graphs),
and derive efficient algorithms for them.

References

[1] J. H. Abawajy. Placement of file replicas in data grid envi-
ronments. In ICCS 2004, Lecture Notes in Computer Science
3038, pages 66–73, 2004.

[2] M. M. Bae and B. Bose. Resource placement in torus-based
networks. IEEE Transactions on Computers, 46(10):1083–
1092, October 1997.

[3] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The data grid: Towards an architecture for
the distributed management and analysis of large scientific
datasets. Journal of Network and Computer Applications,
(23):187–200, October 2000.

[4] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and
B. Moe. Wide area data replication for scientific collabora-
tions. In In Proceedings of the 6th International Workshop
on Grid Computing, November 2005.

[5] W. B. David. Evaluation of an economy-based file replica-
tion strategy for a data grid. In International Workshop on
Agent based Cluster and Grid Computing, pages 120–126,
2003.

[6] W. B. David, D. G. Cameron, L. Capozza, A. P. Millar,
K. Stocklinger, and F. Zini. Simulation of dynamic grid
rdeplication strategies in optorsim. In In Proceedings of 3rd
Intl IEEE Workshop on Grid Computing, pages 46–57, 2002.

[7] M. Deris, A. J.H., and H. Suzuri. An efficient replicated
data access approach for large-scale distributed systems. In
IEEE International Symposium on Cluster Computing and
the Grid, April 2004.

[8] W. Hoschek, F. J. Janez, A. Samar, H. Stockinger, and
K. Stockinger. Data management in an international data
grid project. In In Proceedings of GRID Workshop, pages
77–90, 2000.

[9] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal place-
ment of replicas in trees with read, write, and storage costs.
IEEE Transactions on Parallel and Distributed Systems,
12(6):628–637, June 2001.

[10] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman.
Data replication strategies in grid environments. In In Pro-
ceedings of 5th International Conference on Algorithms and
Architecture for Parallel Processing, pages 378–383, 2002.

[11] R. Moore, C. Baru, R. Marciano, A. Rajasekar, and M. Wan.
I. Foster and C. Kesselman edited, The Grid: Blueprint for
a Future Computing Infrastructure, chapter Data intensive
computing. Morgan Kaufmann PUblishers, 1999.

[12] K. Ranganathan, A. Iamnitchi, and I. Foste. Improving
data availability through dynamic model-driven replication
in large peer-to-peer communities. In In 2nd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid,
pages 376–381, 2002.

[13] K. Ranganathana and I. Foster. Identifying dynamic repli-
cation strategies for a high performance data grid. In In
Proceedings of the International Grid Computing Workshop,
pages 75–86, 2001.

[14] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman,
and B. Tierney. File and object replication in data grids.
In In 10th IEEE Symposium on High Performance and Dis-
tributed Computing, pages 305–314, 2001.

[15] N.-F. Tzeng and G.-L. Feng. Resource allocation in cube
network systems based on the covering radius. IEEE Trans-
actions on Parallel and Distributed Systems, 7(4):328–342,
April 1996.

4

