
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming
in C with MPI and OpenMP

Michael J. QuinnMichael J. Quinn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 17

SharedShared--memory Programmingmemory Programming

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline

 OpenMPOpenMP
 SharedShared--memory modelmemory model
 ParallelParallel forfor loopsloops
 Declaring private variablesDeclaring private variables
 Critical sectionsCritical sections
 ReductionsReductions
 Performance improvementsPerformance improvements
 More general data parallelismMore general data parallelism
 Functional parallelismFunctional parallelism

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

OpenMP

OpenMP: An application programmingOpenMP: An application programming
interface (API) for parallel programming oninterface (API) for parallel programming on
multiprocessorsmultiprocessors
Compiler directivesCompiler directives
Library of support functionsLibrary of support functions

OpenMP works in conjunction with Fortran,OpenMP works in conjunction with Fortran,
C, or C++C, or C++

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What’s OpenMP Good For?

C + OpenMP sufficient to programC + OpenMP sufficient to program
multiprocessorsmultiprocessors

C + MPI + OpenMP a good way to programC + MPI + OpenMP a good way to program
multicomputers built out of multiprocessorsmulticomputers built out of multiprocessors
 IBM RS/6000 SPIBM RS/6000 SP
Fujitsu AP3000Fujitsu AP3000
Dell High Performance ComputingDell High Performance Computing

ClusterCluster

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model

Processor Processor Processor Processor

Memory

Processors interact and synchronize with each
other through shared variables.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fork/Join Parallelism

 Initially only master thread is activeInitially only master thread is active
Master thread executes sequential codeMaster thread executes sequential code
Fork: Master thread creates or awakensFork: Master thread creates or awakens

additional threads to execute parallel codeadditional threads to execute parallel code
 Join: At end of parallel code created threadsJoin: At end of parallel code created threads

die or are suspendeddie or are suspended

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fork/Join Parallelism

Tim
e

fork

join

Master Thread

fork

join

Other threads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model vs.
Message-passing Model (#1)

SharedShared--memory modelmemory model
Number active threads 1 at start andNumber active threads 1 at start and

finish of program, changes dynamicallyfinish of program, changes dynamically
during executionduring execution

MessageMessage--passing modelpassing model
All processes active throughout executionAll processes active throughout execution

of programof program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Incremental Parallelization

Sequential program a special case of aSequential program a special case of a
sharedshared--memory parallel programmemory parallel program

Parallel sharedParallel shared--memory programs may onlymemory programs may only
have a single parallel loophave a single parallel loop

 Incremental parallelization: process ofIncremental parallelization: process of
converting a sequential program to aconverting a sequential program to a
parallel program a little bit at a timeparallel program a little bit at a time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model vs.
Message-passing Model (#2)
 SharedShared--memory modelmemory model

 Execute and profile sequential programExecute and profile sequential program
 Incrementally make it parallelIncrementally make it parallel
 Stop when further effort not warrantedStop when further effort not warranted

 MessageMessage--passing modelpassing model
 SequentialSequential--toto--parallel transformation requiresparallel transformation requires

major effortmajor effort
 Transformation done in one giant step ratherTransformation done in one giant step rather

than many tiny stepsthan many tiny steps

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Loops

 C programs often express dataC programs often express data--parallel operationsparallel operations
asas forfor loopsloops
for (i = first; i < size; i += prime)for (i = first; i < size; i += prime)

marked[i] = 1;marked[i] = 1;
 OpenMP makes it easy to indicate when theOpenMP makes it easy to indicate when the

iterations of a loop may execute in paralleliterations of a loop may execute in parallel
 Compiler takes care of generating code thatCompiler takes care of generating code that

forks/joins threads and allocates the iterations toforks/joins threads and allocates the iterations to
threadsthreads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pragmas

Pragma: a compiler directive in C or C++Pragma: a compiler directive in C or C++
Stands forStands for ““pragmatic informationpragmatic information””
A way for the programmer to communicateA way for the programmer to communicate

with the compilerwith the compiler
Compiler free to ignore pragmasCompiler free to ignore pragmas
Syntax:Syntax:
#pragma#pragma ompomp <rest of pragma><rest of pragma>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Pragma

Format:Format:
#pragma#pragma ompomp parallel forparallel for
for (i = 0; i < N; i++)for (i = 0; i < N; i++)

a[i] = b[i] + c[i];a[i] = b[i] + c[i];

Compiler must be able to verify the runCompiler must be able to verify the run--
time system will have information it needstime system will have information it needs
to schedule loop iterationsto schedule loop iterations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Canonical Shape of for Loop
Control Clause

)

indexindex
indexindex

indexindex
index
index

index
index

index
index

;index;index(for













































































inc
inc

inc
inc
incendstart

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution Context

 Every thread has its own execution contextEvery thread has its own execution context
 Execution context: address space containing all ofExecution context: address space containing all of

the variables a thread may accessthe variables a thread may access
 Contents of execution context:Contents of execution context:

 static variablesstatic variables
 dynamically allocated data structures in thedynamically allocated data structures in the

heapheap
 variables on the runvariables on the run--time stacktime stack
 additional runadditional run--time stack for functions invokedtime stack for functions invoked

by the threadby the thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

Shared variable: has same address inShared variable: has same address in
execution context of every threadexecution context of every thread

Private variable: has different address inPrivate variable: has different address in
execution context of every threadexecution context of every thread

A thread cannot access the private variablesA thread cannot access the private variables
of another threadof another thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

int main (int argc, char *argv[])
{

int b[3];
char *cptr;
int i;

cptr = malloc(1);
#pragma omp parallel for

for (i = 0; i < 3; i++)
b[i] = i;

Heap

Stack

cptrb i

ii

Master Thread
(Thread 0)

Thread 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_num_procs

Returns number of physical processorsReturns number of physical processors
available for use by the parallel programavailable for use by the parallel program

int ompint omp_get_num__get_num_procsprocs (void)(void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_set_num_threads

Uses the parameter value to set the numberUses the parameter value to set the number
of threads to be active in parallel sections ofof threads to be active in parallel sections of
codecode

May be called at multiple points in aMay be called at multiple points in a
programprogram

voidvoid ompomp_set_num_threads (_set_num_threads (intint t)t)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pop Quiz:

Write a C program segment that sets theWrite a C program segment that sets the
number of threads equal to the number ofnumber of threads equal to the number of
processors that are available.processors that are available.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Declaring Private Variables

for (i = 0; i < BLOCK_SIZE(id,p,n); i++)for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
for (j = 0; j < n; j++)for (j = 0; j < n; j++)

a[i][j] = MIN(a[i][j],a[i][k]+a[i][j] = MIN(a[i][j],a[i][k]+tmptmp););

 Either loop could be executed in parallelEither loop could be executed in parallel
 We prefer to make outer loop parallel, to reduceWe prefer to make outer loop parallel, to reduce

number of forks/joinsnumber of forks/joins
 We then must give each thread its own privateWe then must give each thread its own private

copy of variablecopy of variable jj

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

private Clause

Clause: an optional, additional componentClause: an optional, additional component
to a pragmato a pragma

Private clause: directs compiler to make onePrivate clause: directs compiler to make one
or more variables privateor more variables private

private (private (<variable list><variable list>))

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of private Clause

#pragma#pragma ompomp parallel for private(j)parallel for private(j)
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)for (i = 0; i < BLOCK_SIZE(id,p,n); i++)

for (j = 0; j < n; j++)for (j = 0; j < n; j++)
a[i][j] = MIN(a[i][j],a[i][k]+a[i][j] = MIN(a[i][j],a[i][k]+tmptmp););

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

firstprivate Clause

 Used to create private variables having initialUsed to create private variables having initial
values identical to the variable controlled by thevalues identical to the variable controlled by the
master thread as the loop is enteredmaster thread as the loop is entered

 Variables are initialized once per thread, not onceVariables are initialized once per thread, not once
per loop iterationper loop iteration

 If a thread modifies a variableIf a thread modifies a variable’’s value in ans value in an
iteration, subsequent iterations will get theiteration, subsequent iterations will get the
modified valuemodified value

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

lastprivate Clause

Sequentially last iteration: iteration thatSequentially last iteration: iteration that
occurs last when the loop is executedoccurs last when the loop is executed
sequentiallysequentially

lastprivatelastprivate clause: used to copy backclause: used to copy back
to the master threadto the master thread’’s copy of a variable thes copy of a variable the
private copy of the variable from the threadprivate copy of the variable from the thread
that executed the sequentially last iterationthat executed the sequentially last iteration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Critical Sections

double area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {

x += (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition

Consider this C program segment toConsider this C program segment to
computecompute using the rectangle rule:using the rectangle rule:
double area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition (cont.)

 If we simply parallelize the loop...If we simply parallelize the loop...
double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition (cont.)

 ... we set up a race condition in which one... we set up a race condition in which one
process mayprocess may ““race aheadrace ahead””of another andof another and
not see its change to shared variablenot see its change to shared variable areaarea

11.667area

area += 4.0/(1.0 + x*x)

Thread A Thread B

15.432

11.66711.66715.432 15.230

15.230 Answer should be 18.995

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition Time Line
Thread A Thread BValue of area

11.667
+ 3.765

+ 3.563

11.667

15.432

15.230

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

critical Pragma

Critical section: a portion of code that onlyCritical section: a portion of code that only
thread at a time may executethread at a time may execute

We denote a critical section by putting theWe denote a critical section by putting the
pragmapragma

#pragma#pragma ompomp criticalcritical

in front of a block of C codein front of a block of C code

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Correct, But Inefficient, Code
double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
#pragma omp critical

area += 4.0/(1.0 + x*x);
}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source of Inefficiency

Update toUpdate to areaarea inside a critical sectioninside a critical section

Only one thread at a time may execute theOnly one thread at a time may execute the
statement; i.e., it is sequential codestatement; i.e., it is sequential code

Time to execute statement significant partTime to execute statement significant part
of loopof loop

By AmdahlBy Amdahl’’s Law we know speedup will bes Law we know speedup will be
severely constrainedseverely constrained

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Reductions

 Reductions are so common that OpenMP providesReductions are so common that OpenMP provides
support for themsupport for them

 May add reduction clause toMay add reduction clause to parallel forparallel for
pragmapragma

 Specify reduction operation and reduction variableSpecify reduction operation and reduction variable
 OpenMP takes care of storing partial results inOpenMP takes care of storing partial results in

private variables and combining partial resultsprivate variables and combining partial results
after the loopafter the loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

reduction Clause

 The reduction clause has this syntax:The reduction clause has this syntax:
reduction (reduction (<op><op> ::<variable><variable>))

 OperatorsOperators
 ++ SumSum
 ** ProductProduct
 && BitwiseBitwise andand
 || BitwiseBitwise oror
 ^̂ BitwiseBitwise exclusive orexclusive or
 &&&& Logical andLogical and
 |||| Logical orLogical or

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

-finding Code with Reduction Clause
double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for \

private(x) reduction(+:area)
for (i = 0; i < n; i++) {

x = (i + 0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #1

Too many fork/joins can lower performanceToo many fork/joins can lower performance
 Inverting loops may help performance ifInverting loops may help performance if

Parallelism is in inner loopParallelism is in inner loop
After inversion, the outer loop can beAfter inversion, the outer loop can be

made parallelmade parallel
 Inversion does not significantly lowerInversion does not significantly lower

cache hit ratecache hit rate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #2

 If loop has too few iterations, fork/joinIf loop has too few iterations, fork/join
overhead is greater than time savings fromoverhead is greater than time savings from
parallel executionparallel execution

TheThe ifif clause instructs compiler to insertclause instructs compiler to insert
code that determines at runcode that determines at run--time whethertime whether
loop should be executed in parallel; e.g.,loop should be executed in parallel; e.g.,

#pragma#pragma ompomp parallel for if(n > 5000)parallel for if(n > 5000)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #3

 We can useWe can use scheduleschedule clause to specify howclause to specify how
iterations of a loop should be allocated to threadsiterations of a loop should be allocated to threads

 Static schedule: all iterations allocated to threadsStatic schedule: all iterations allocated to threads
before any iterations executedbefore any iterations executed

 Dynamic schedule: only some iterations allocatedDynamic schedule: only some iterations allocated
to threads at beginning of loopto threads at beginning of loop’’s execution.s execution.
Remaining iterations allocated to threads thatRemaining iterations allocated to threads that
complete their assigned iterations.complete their assigned iterations.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Static vs. Dynamic Scheduling

Static schedulingStatic scheduling
Low overheadLow overhead
May exhibit high workload imbalanceMay exhibit high workload imbalance

Dynamic schedulingDynamic scheduling
Higher overheadHigher overhead
Can reduce workload imbalanceCan reduce workload imbalance

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chunks

A chunk is a contiguous range of iterationsA chunk is a contiguous range of iterations
 Increasing chunk size reduces overhead andIncreasing chunk size reduces overhead and

may increase cache hit ratemay increase cache hit rate
Decreasing chunk size allows finerDecreasing chunk size allows finer

balancing of workloadsbalancing of workloads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

schedule Clause

 Syntax of schedule clauseSyntax of schedule clause
schedule (schedule (<type><type>[,[,<chunk><chunk>])])

 Schedule type required, chunk size optionalSchedule type required, chunk size optional
 Allowable schedule typesAllowable schedule types

 static: static allocationstatic: static allocation
 dynamic: dynamic allocationdynamic: dynamic allocation
 guided: guided selfguided: guided self--schedulingscheduling
 runtime: type chosen at runruntime: type chosen at run--time based on valuetime based on value

of environment variable OMP_SCHEDULEof environment variable OMP_SCHEDULE

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options

 schedule(static): block allocation of aboutschedule(static): block allocation of about
n/t contiguous iterations to each threadn/t contiguous iterations to each thread

 schedule(static,C): interleaved allocation ofschedule(static,C): interleaved allocation of
chunks of size C to threadschunks of size C to threads

 schedule(dynamic): dynamic oneschedule(dynamic): dynamic one--atat--aa--timetime
allocation of iterations to threadsallocation of iterations to threads

 schedule(dynamic,C): dynamic allocation ofschedule(dynamic,C): dynamic allocation of
C iterations at a time to threadsC iterations at a time to threads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options (cont.)

 schedule(guided, C): dynamic allocation of chunksschedule(guided, C): dynamic allocation of chunks
to tasks using guided selfto tasks using guided self--scheduling heuristic.scheduling heuristic.
Initial chunks are bigger, later chunks are smaller,Initial chunks are bigger, later chunks are smaller,
minimum chunk size is C.minimum chunk size is C.

 schedule(guided): guided selfschedule(guided): guided self--scheduling withscheduling with
minimum chunk size 1minimum chunk size 1

 schedule(runtime): schedule chosen at runschedule(runtime): schedule chosen at run--timetime
based on value of OMP_SCHEDULE; Unixbased on value of OMP_SCHEDULE; Unix
example:example:
setenvsetenv OMP_SCHEDULEOMP_SCHEDULE ““static,1static,1””

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More General Data Parallelism

Our focus has been on the parallelization ofOur focus has been on the parallelization of
forfor loopsloops

Other opportunities for data parallelismOther opportunities for data parallelism
 processing items on aprocessing items on a ““to doto do””listlist
forfor loop + additional code outside ofloop + additional code outside of

looploop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing a “To Do”List

Heap

job_ptr

Shared
Variables

Master Thread Thread 1

task_ptr task_ptr

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential Code (1/2)
int main (int argc, char *argv[])
{

struct job_struct *job_ptr;
struct task_struct *task_ptr;

...
task_ptr = get_next_task (&job_ptr);
while (task_ptr != NULL) {

complete_task (task_ptr);
task_ptr = get_next_task (&job_ptr);

}
...

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential Code (2/2)
char *get_next_task(struct job_struct

**job_ptr) {
struct task_struct *answer;

if (*job_ptr == NULL) answer = NULL;
else {

answer = (*job_ptr)->task;
*job_ptr = (*job_ptr)->next;

}
return answer;

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallelization Strategy

Every thread should repeatedly take nextEvery thread should repeatedly take next
task from list and complete it, until there aretask from list and complete it, until there are
no more tasksno more tasks

We must ensure no two threads take sameWe must ensure no two threads take same
take from the list; i.e., must declare atake from the list; i.e., must declare a
critical sectioncritical section

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel Pragma

TheThe parallelparallel pragma precedes a blockpragma precedes a block
of code that should be executed byof code that should be executed by allall of theof the
threadsthreads

Note: execution is replicated among allNote: execution is replicated among all
threadsthreads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of parallel Pragma
#pragma omp parallel private(task_ptr)
{

task_ptr = get_next_task (&job_ptr);
while (task_ptr != NULL) {

complete_task (task_ptr);
task_ptr = get_next_task (&job_ptr);

}
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Critical Section for get_next_task

char *get_next_task(struct job_struct
**job_ptr) {

struct task_struct *answer;
#pragma omp critical

{
if (*job_ptr == NULL) answer = NULL;
else {

answer = (*job_ptr)->task;
*job_ptr = (*job_ptr)->next;

}
}
return answer;

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions for SPMD-style
Programming

The parallel pragma allows us to writeThe parallel pragma allows us to write
SPMDSPMD--style programsstyle programs

 In these programs we often need to knowIn these programs we often need to know
number of threads and thread ID numbernumber of threads and thread ID number

OpenMP provides functions to retrieve thisOpenMP provides functions to retrieve this
informationinformation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_thread_num

This function returns the threadThis function returns the thread
identification numberidentification number

 If there areIf there are tt threads, the ID numbers rangethreads, the ID numbers range
from 0 tofrom 0 to tt--11

The master thread has ID number 0The master thread has ID number 0

int ompint omp_get_thread_num (void)_get_thread_num (void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_num_threads

FunctionFunction ompomp_get_num_threads returns the_get_num_threads returns the
number of active threadsnumber of active threads

 If call this function from sequential portionIf call this function from sequential portion
of program, it will return 1of program, it will return 1

int ompint omp_get_num_threads (void)_get_num_threads (void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

for Pragma

TheThe parallelparallel pragma instructs everypragma instructs every
thread to execute all of the code inside thethread to execute all of the code inside the
blockblock

 If we encounter aIf we encounter a forfor loop that we want toloop that we want to
divide among threads, we use thedivide among threads, we use the forfor
pragmapragma

#pragma#pragma ompomp forfor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of for Pragma

#pragma omp parallel private(i,j)
for (i = 0; i < m; i++) {

low = a[i];
high = b[i];
if (low > high) {

printf ("Exiting (%d)\n", i);
break;

}
#pragma omp for

for (j = low; j < high; j++)
c[j] = (c[j] - a[i])/b[i];

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

single Pragma

Suppose we only want to see the outputSuppose we only want to see the output
onceonce

TheThe singlesingle pragma directs compiler thatpragma directs compiler that
only a single thread should execute theonly a single thread should execute the
block of code the pragma precedesblock of code the pragma precedes

Syntax:Syntax:

#pragma#pragma ompomp singlesingle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of single Pragma
#pragma omp parallel private(i,j)
for (i = 0; i < m; i++) {

low = a[i];
high = b[i];
if (low > high) {

#pragma omp single
printf ("Exiting (%d)\n", i);
break;

}
#pragma omp for

for (j = low; j < high; j++)
c[j] = (c[j] - a[i])/b[i];

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

nowait Clause

Compiler puts a barrier synchronization atCompiler puts a barrier synchronization at
end of every parallel for statementend of every parallel for statement

 In our example, this is necessary: if a threadIn our example, this is necessary: if a thread
leaves loop and changesleaves loop and changes lowlow oror highhigh, it, it
may affect behavior of another threadmay affect behavior of another thread

 If we make these private variables, then itIf we make these private variables, then it
would be okay to let threads move ahead,would be okay to let threads move ahead,
which could reduce execution timewhich could reduce execution time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of nowait Clause
#pragma omp parallel private(i,j,low,high)
for (i = 0; i < m; i++) {

low = a[i];
high = b[i];
if (low > high) {

#pragma omp single
printf ("Exiting (%d)\n", i);
break;

}
#pragma omp for nowait

for (j = low; j < high; j++)
c[j] = (c[j] - a[i])/b[i];

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Parallelism

To this point all of our focus has been onTo this point all of our focus has been on
exploiting data parallelismexploiting data parallelism

OpenMP allows us to assign differentOpenMP allows us to assign different
threads to different portions of codethreads to different portions of code
(functional parallelism)(functional parallelism)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Parallelism Example
v = alpha();
w = beta();
x = gamma(v, w);
y = delta();
printf ("%6.2f\n", epsilon(x,y));

alpha beta

gamma delta

epsilon

May execute alpha,
beta, and delta in
parallel

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel sections Pragma

Precedes a block ofPrecedes a block of kk blocks of code thatblocks of code that
may be executed concurrently bymay be executed concurrently by kk threadsthreads

Syntax:Syntax:

#pragma#pragma ompomp parallel sectionsparallel sections

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

section Pragma

Precedes each block of code within thePrecedes each block of code within the
encompassing block preceded by theencompassing block preceded by the
parallel sections pragmaparallel sections pragma

May be omitted for first parallel sectionMay be omitted for first parallel section
after the parallel sections pragmaafter the parallel sections pragma

Syntax:Syntax:

#pragma#pragma ompomp sectionsection

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example of parallel sections
#pragma omp parallel sections

{
#pragma omp section /* Optional */

v = alpha();
#pragma omp section

w = beta();
#pragma omp section

y = delta();
}
x = gamma(v, w);
printf ("%6.2f\n", epsilon(x,y));

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Another Approach

alpha beta

gamma delta

epsilon

Execute alpha and
beta in parallel.
Execute gamma and
delta in parallel.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

sections Pragma

Appears inside a parallel block of codeAppears inside a parallel block of code
Has same meaning as theHas same meaning as the parallelparallel
sectionssections pragmapragma

 If multipleIf multiple sectionssections pragmas inside onepragmas inside one
parallel block, may reduce fork/join costsparallel block, may reduce fork/join costs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of sections Pragma
#pragma omp parallel

{
#pragma omp sections

{
v = alpha();

#pragma omp section
w = beta();

}
#pragma omp sections

{
x = gamma(v, w);

#pragma omp section
y = delta();

}
}
printf ("%6.2f\n", epsilon(x,y));

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (1/3)

OpenMP an API for sharedOpenMP an API for shared--memorymemory
parallel programmingparallel programming

SharedShared--memory model based on fork/joinmemory model based on fork/join
parallelismparallelism

Data parallelismData parallelism
 parallel for pragmaparallel for pragma
 reduction clausereduction clause

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (2/3)

 Functional parallelism (parallel sections pragma)Functional parallelism (parallel sections pragma)
 SPMDSPMD--style programming (parallel pragma)style programming (parallel pragma)
 Critical sections (critical pragma)Critical sections (critical pragma)
 Enhancing performance of parallel for loopsEnhancing performance of parallel for loops

 Inverting loopsInverting loops
 Conditionally parallelizing loopsConditionally parallelizing loops
 Changing loop schedulingChanging loop scheduling

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (3/3)

YesYesNoNoExplicit control of memoryExplicit control of memory
hierarchyhierarchy

NoNoYesYesMinimal extra codeMinimal extra code

NoNoYesYesSupports incrementalSupports incremental
parallelizationparallelization

YesYesNoNoSuitable for multicomputersSuitable for multicomputers

YesYesYesYesSuitable for multiprocessorsSuitable for multiprocessors

MPIMPIOpenMPOpenMPCharacteristicCharacteristic

