Copyright © The McGraw-Hill Companies, Inc. Permis

Parallel Programming
In C with MPI and OpenMP

Michael J. Quinn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 17

Shared-memory Programming

BB

EE E B

Copyright © The McGraw-Hill Companies, Inc. Permis

Outline

m OpenMP

m Shared-memory model

m Parallel f or loops
Declaring private variables
Critical sections
Reductions
Performance Improvements
More general data parallelism
Functional parallelism

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

OpenMP

= OpenMP: An application programming
interface (API) for parallel programming on
multiprocessors

¢+ Compiler directives
¢ Library of support functions

= OpenM P works in conjunction with Fortran,
C, or C++

What’s OpenM P Good For?

= C + OpenMP sufficient to program
multiprocessors

= C+ MPI + OpenM P a good way to program
multicomputers built out of multiprocessors

+ |IBM RS/6000 SP

+ Fujitsu AP3000

+ Dell High Performance Computing
Cluster

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Modé

Processor Processor Processor Processor

Processors interact and synchronize with each
other through shared variables.

Fork/Join Parallelism

= [nitially only master thread is active
= Master thread executes seguential code

m Fork: Master thread creates or awakens
additional threads to execute parallel code

= Join: At end of parallel code created threads
die or are suspended

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fork/Join Parallelism

Master Thread

Other threads

[T

TEHEDE B

Shared memory Model VS.
Message-passing Model (#1)

= Shared-memory model
+ Number active threads 1 at start and

finish of program, changes dynamically
during execution

m M essage-passing model

¢ All processes active throughout execution
of program

|ncremental Parallelization

m Seguential program a special case of a
shared-memory parallel program

m Parallel shared-memory programs may only
have asingle parallel loop

m [ncremental parallelization: process of
converting a seguential program to a
parallel program alittle bit at atime

Copyright © The McGraw-Hill Compan required for reproduc r dis

Shared-memory Model VS.
Message-passing Model (#2)

splay

® Shared-memory model

¢ Execute and profile seguential program
¢ Incrementally make it parallel

+ Stop when further effort not warranted
m Message-passing model

¢ Sequential-to-parallel transformation requires
major effort

¢ [ransformation done in one giant step rather
than many tiny steps

Copyright © The McGraw-Hill Companies, Inc. Permis

Parallel for Loops

m C programs often express data-parallel operations
asf or loops

for (I =first; I < size; I += prine)
marked[1] = 1;
= OpenM P makes it easy to indicate when the
Iterations of aloop may execute in parallel

= Compiler takes care of generating code that
forks/joins threads and allocates the iterations to
threads

BB

BE EE B

Copyright © The McGraw-Hill Companies, Inc. Permis

Pragmas

= Pragma: a compiler directive in C or C++
m Stands for “pragmatic information’

= A way for the programmer to communicate
with the compiler

= Compiler free to ignore pragmas
B Syntax:
#pragna onp <rest of pragma>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Pragma

m Format:

#pragnma onp paral l el for

for (1 =0; I <N, I++)
al[i] = Db[1I] + c[I];

= Compiler must be able to verify the run-
time system will have information it needs

to schedule loop Iterations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Canonical Shape of for Loop
Control Clause

Index + +

+ +1ndex
Index — —

— —Index

for(index = start;index > < Index+ =Inc
Index—=Inc

Index =i1ndex +inc

Index = 1nc+Hndex

Index =Index —inc|

Copyright © The McGraw-Hill Companies, Inc. Permis

Execution Context

m Every thread has its own execution context

= Execution context: address space containing all of
the variables a thread may access

m Contents of execution context:
¢ static variables
+ dynamically allocated data structures in the
heap
¢ variables on the run-time stack

¢ additiona run-time stack for functions invoked
by the thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

m Shared variable: has same address in
execution context of every thread

= Private variable: has different address in
execution context of every thread

m A thread cannot access the private variables
of another thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

int main (int argc, char *argv[])
{

int b[3];

char *cptr;

Int i;

cptr = malloc(2);
#pragma omp parald for
for (I=0;1<3; i++)
b[i] =i;

Master Thread
(Thread 0)

Thread 1

Function omp_get_num_procs

m Returns number of physical processors
avallable for use by the parallel program

Il nt onp_get num procs (Vvol d)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_set num_threads

m Uses the parameter value to set the number
of threads to be active in parallel sections of
code

= May be called at multiple pointsin a
program

vol d onp_set numthreads (int t)

Copyright © The McGraw-Hill Companies, Inc. Permis

Pop Quiz:

Write a C program segment that sets the
number of threads equal to the number of
processors that are available.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Declaring Private Variables

for (I =0; 1 < BLOCK SIZE(i1d, p,n); 1++)
for (] =0;] <n;]+t
a[i1][J] = MNCa[1][]],a[1][k]+tnp);

= Either loop could be executed in parallel

= \We prefer to make outer loop parallel, to reduce
number of forks/joins

= \We then must give each thread its own private
copy of variable |

Copyright © The McGraw-Hill Companies, Inc. Permis

BB

private Clause

m Clause: an optional, additional component
to apragma

m Private clause: directs compiler to make one
or more variables private

private (<variable |[ist>)

EEEEEE

Copyright © The McGraw-Hill Companies, Inc. Permis

BE B B

Example Use of private Clause

#pragma onp parallel for private(])
for (I = 0; 1 < BLOCK SIZE(id, p,n); 1++)
for (j = 0; j < n; j++)
a[1][J] = MNCa[r][J],al1][k]+tnp);

 EEBE B

Copyright © The McGraw-Hill Companies, Inc. Permis

firstprivate Clause

m Used to create private variables having initial
values identical to the variable controlled by the
master thread as the loop is entered

m Variables are initialized once per thread, not once
per loop iteration

m |f athread modifies avariable’s valuein an
Iteration, subsequent Iterations will get the
modified value

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

lastprivate Clause

m Seqguentially last iteration: iteration that
occurs last when the loop Is executed
seguentially

m | ast pri vat e clause: used to copy back

to the master thread’s copy of avariable the
private copy of the variable from the thread
that executed the seguentially last iteration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Critical Sections

BE B B

doubl e area, pi, Xx;
Int 1, n;
area = 0.
for (I = | < n; 1I++) {
X += (1+0.5)/n;
area += 4.0/ (1.0 + x*X);

0;
0;

}

pi = area / n;

EEEEE

BB

BB I

Copyright © The McGraw-Hill Companies, Inc. Permis

Race Condition

m Consider this C program segment to
compute © using the rectangle rule:

doubl e area, pi, Xx;
Int 1, n;

area = 0. 0;

for (I O; 1T < n; 1++) {
X = (1+0.5)/n;
area += 4.0/ (1.0 + x*X);

= area / n;

BE EE B

Copyright © The McGraw-Hill Companies, Inc. Permis

Race Condition (cont.)

= |f we simply parallelize the loop...

doubl e area, pi, Xx;
Int 1, n;

area = 0. 0;
#pragma onp parallel for private(x)
for (1 =0; I <n; 1I++) {

X = (1+0.5)/n;

area += 4.0/ (1.0 + Xx*X);

= area / n;

Copyright © The McGraw-Hill Companies, Inc. Permis

Race Condition (cont.)

® ... We set up arace condition in which one

process may “‘race ahead” of another and
not see Its change to shared variable ar ea

al ea Answer should be 18.995

Thread A Thread B

area += 4.0/ (1.0 + x*Xx)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition Time Line

Vdue of area

11.667
+ 3.765
11.667

15432 4¢—mmMMm + 3.563

5230 ¢ """ "7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

critical Pragma

m Critical section: a portion of code that only
thread at a time may execute

= \We denote a critical section by putting the
pragma

#pragna onp critical

In front of ablock of C code

Copyright © The McGraw-Hill Companies, Inc. Permis

BB

Correct, But Inefficient, Code

doubl e area, pi, Xx;
Int 1, n;

area = 0. 0;
#pragma onp parallel for private(x)
for (1 =0; I <n; 1++) {
X = (1+0.5)/n;
#pragnma onp critical
area += 4.0/ (1.0 + x*X);

}

pi = area / n;

BE B B

Source of Inefficiency

m Updateto ar ea inside a critical section

= Only one thread at atime may execute the
statement; I.e., It IS sequential code

m Time to execute statement significant part
of loop

= By Amdahl’s |Law we know speedup will be
severely constrained

BB

EE E B

Copyright © The McGraw-Hill Companies, Inc. Permis

Reductions

®= Reductions are so common that OpenMP provides
support for them

= May add reduction clausetopar al | el for
pragma
m Specify reduction operation and reduction variable

= OpenM P takes care of storing partial resultsin
private variables and combining partial results
after the loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

reduction Clause

= Thereduction clause has this syntax:
reducti on (<op> :<vari abl e>)
m Operators
o+ Sum
Product
Bitwise and
Bitwise or
Bitwise exclusive or
_ogical and
Logical or

BE B B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

n-finding Code with Reduction Clause

doubl e area, pi, Xx;
Int 1, n;

area = 0. 0;

#pragma onp parallel for \
private(x) reduction(+:area)
for (1 =0; I <n; 1++) {
X = (1 + 0.5/n;
area += 4.0/ (1.0 + Xx*X);

= area / n;

Performance | mprovement #1

= Too many fork/joins can lower performance
® |nverting loops may help performance if
¢ Parallelism isin inner loop

+ After inversion, the outer loop can be
made paralléel

¢ Inversion does not significantly lower
cache hit rate

Performance | mprovement #2

= |f loop hastoo few iterations, fork/join
overhead Is greater than time savings from
parallel execution

m Thel f clause instructs compiler to insert

code that determines at run-time whether
loop should be executed in parallel; e.q.,

#pragna onp parallel for 1f(n > 5000)

'EE B B

Copyright © The McGraw-Hill Companies, Inc. Permis

Performance | mprovement #3

m Wecanuse schedul e clauseto specify how
Iterations of aloop should be allocated to threads

m Static schedule: al iterations allocated to threads
before any Iterations executed

= Dynamic schedule: only some iterations all ocated
to threads at beginning of loop’s execution.
Remaining iterations all ocated to threads that
complete their assigned iterations.

Static vs. Dynamic Scheduling

m Static scheduling

¢ Low overhead

+ May exhibit high workload imbalance
= Dynamic scheduling

+ Higher overhead

+ Can reduce workload imbalance

Copyright © The McGraw-Hill Companies, Inc. Permis

Chunks

BEER B

® A chunk Is a contiguous range of iterations

® |ncreasing chunk size reduces overhead and
may increase cache hit rate

m Decreasing chunk size allows finer
balancing of workloads

BE B B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

schedule Clause

m Syntax of schedule clause
schedul e (<type>[, <chunk>])

= Schedule type reguired, chunk size optional
= Allowable schedule types

¢ Static: static allocation

+ dynamic: dynamic allocation

¢ guided: guided self-scheduling

¢ runtime: type chosen at run-time based on value
of environment variable OMP_SCHEDULE

Scheduling Options

m schedule(static): block allocation of about
n/t contiguous iterations to each thread

m schedule(static,C): interleaved allocation of
chunks of size C to threads

= schedule(dynamic): dynamic one-at-a-time
allocation of Iterations to threads

= schedule(dynamic,C): dynamic allocation of
C Iterations at a time to threads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options (cont.)

= schedule(guided, C): dynamic allocation of chunks
to tasks using guided self-scheduling heuristic.

Initial chunks are bigger, later chunks are smaller,
minimum chunk sizeis C.

schedule(guided): guided self-scheduling with
minimum chunk size 1

schedule(runtime): schedule chosen at run-time
based on value of OMP_SCHEDULE; Unix

example:
set env OVP_SCHEDULE “static, 1”

More General Data Parallelism

= Our focus has been on the parallelization of
f or loops

= Other opportunities for data parallelism

¢ processing items on a ““‘to do™ list

+f or loop + additional code outside of
loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing a“To Do List

Master Thread

Copyright © The McGraw-Hill Companies, Inc. Permis

Sequential Code (1/2)

Int main (int argc, char *argv|[])

{

BB

struct job struct *job ptr;
struct task struct *task ptr;

task_ptr = get_next_task (& ob_ptr);
while (task ptr !'= NULL) {
conpl ete task (task ptr);
task ptr = get next task (& ob ptr);

BB

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential Code (2/2)

char *get next task(struct |ob_ struct
**1ob ptr) {
struct task struct *answer;

EEEEE

| f (*Job_ptr == NULL) answer = NULL;

el se {
answer = (*
*Job _ptr =

] ob_ptr)->task;
(*] ob_ptr)->next;
}

return answer,;

BE B B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallelization Strategy

= Every thread should repeatedly take next
task from list and complete it, until there are
NO More tasks

m \We must ensure no two threads take same
take from the list; 1.e., must declare a
critical section

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel Pragma

m Thepar al | el pragma precedes a block

of code that should be executed by all of the
threads

= Note: execution Is replicated among all
threads

Copyright © The McGraw-Hill Companies, Inc. Permis

B BER

Useof paral | el Pragma

#pragma onp parallel private(task ptr)
{
task_ptr = get_next_task (& ob_ptr);
while (task ptr !'= NULL) {
conpl ete _task (task ptr);
task_ptr = get_next _task (& ob_ptr);

BE B B

EE B B

BB

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduc

Critical Section for get _next t ask

char *get next task(struct |ob_ struct
**job_ptr) {
struct task struct *answer;
#pragma onp critical
{
1 f (*Job_ptr == NULL) answer = NULL;
el se {
answer = (*
*Job _ptr =

j ob_ptr)->task;
(*] ob_ptr)->next;
}

}

return answer,;

Functlonsfor SPI\/I DE style
Programming

m The parallel pragma allows us to write
SPMD-style programs

m |n these programs we often need to know
number of threads and thread | D number

= OpenM P provides functions to retrieve this
Information

Function omp_get_thread num

m Thisfunction returns the thread
Identification number

m |f there aret threads, the |D numbers range
from O tot-1

m [he master thread has |D number O

Int onp_get thread num (Vvoi d)

Function omp_get_ num_threads

= Function omp_get_num_threads returns the
number of active threads

m |f call this function from sequential portion
of program, it will return 1

Nt onp_get num.t hreads (voi d)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

for Pragma

m Thepar al | el pragmainstructs every
thread to execute all of the code inside the
block

® |[f we encounter af or loop that we want to
divide among threads, we use the f or

pragma

#pragna onp f or

Copyright © The McGraw-Hill Companies, Inc. Permis

BEER B

Example Use of for Pragma

#pragma onp parallel private(i,])
for (I =0; 1 <m 1I++) {
low = a[1];
high = b[i];
1 f (low > high) {
printf ("Exiting (%d)\n", 1);
br eak;
}
#pragma onp for
for (j = low, | < high; j++)
c[j] = (cly] - a[ir])/b[i];

BE B B

single Pragma

m Suppose we only want to see the output
once

m Thesi ngl e pragmadirects compiler that

only a single thread should execute the
block of code the pragma precedes

B Syntax:

#pragna onp Si ngl e

BB

BB I

Copyright © The McGraw-Hill Companies, Inc. Permis

Use of single Pragma

#pragma onp parallel private(i,])
for (1 =0; I <m |++) {

low = a[i];

high = b[1];

1 f (low > high) {

#pragnma onp single
printf ("Exiting (%d)\n", 1);
br eak;
}
#pragma onp for
for (j =1low j < high; j++)
c[j] = (cly] - a[it])/b[i];

nowait Clause

= Compiler puts a barrier synchronization at
end of every parallel for statement

® |n our example, thisis necessary: if athread
leaves loop and changes| owor hi gh, it
may affect behavior of another thread

= |f we make these private variables, then it
would be okay to let threads move ahead,
which could reduce execution time

Copyright © The McGraw-Hill Companies, Inc. Permis

BE B B

Use of nowalt Clause

#pragma onp parallel private(i,j, | ow, high)
for (i =0; I <m i++) {

low = a[i];

high = b[i];

1 f (low > high) {

#pragma onp single
printf ("Exiting (%d)\n", 1);
br eak;
}
#pragma onp for nowait
for (j = low, | < high; |++)
c[j] = (cly] - a[i])/b[i];

BE B B

Functional Parallelism

m Tothispoint all of our focus has been on
exploiting data parallelism
= OpenMP allows us to assign different

threads to different portions of code
(functional parallelism)

Copyright © The McGraw-Hill Companies, Inc. Permis

Functional Parallelism Example

al pha() ;

bet a() ;

gamma(v, W) ;

delta();

rintf ("9.2f\n", epsilon(x,y)):;

May execute alpha,
beta, and deltain
parallel

epsilon

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel sections Pragma

m Precedes a block of k blocks of code that
may be executed concurrently by k threads

B Syntax:

#pragna onp parall el sections

section Pragma

m Precedes each block of code within the
encompassing block preceded by the
parallel sections pragma

= May be omitted for first parallel section
after the parallel sections pragma

B Syntax:

#pragha onp secti on

Copyright © The McGraw-Hill Companies, Inc. Permis

BB

Exampleof paral | el secti ons

#pragma onp parallel sections
{
#pragma onp section /* Optional */
v = al pha();
#pragma onp section
w = beta(),;
#pragma onp section
y = delta();
}
X = gamma(v, W);
printf ("%.2f\n", epsilon(x,y));

EE E B

Execute alpha and
betain paralldl.

Execute gamma and
deltain parallel.

Copyright © The McGraw-Hill Companies, Inc. Permis

B B B

sections Pragma

m Appearsinside a parallel block of code

m Has same meaning as the par al | el
sect | ons pragma

m |f multiplesect | ons pragmas inside one
parallel block, may reduce fork/join costs

BB

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

BB

Use of sections Pragma

#pragma onp parall el
{

#pragna onp sections

{

v = al pha();
#pragha onp section
w = beta();
}
#pragma onp sections
{
X = gamma(v, W);
#pragma onp section
y = delta();

}

}
printf ("9%.2f\n", epsilon(x,y));

BB

Summary (1/3)

= OpenMP an API for shared-memory
parallel programming

m Shared-memory model based on fork/join
parallelism

= Data parallelism
¢ parallel for pragma
¢ reduction clause

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (2/3)

m Functional parallelism (parallel sections pragma)
m SPMD-style programming (parallel pragma)
m Critical sections (critical pragma)
m Enhancing performance of parallel for loops
¢ Inverting loops
+ Conditionally parallelizing loops
+ Changing loop scheduling

Copyright © The McGraw-Hill Companies, Inc. Permis

Summary (3/3)

Characteristic

Suitab

e for mu

tiprocessors

Suitab

e for mu

ticomputers

Supports incremental
parallelization

Minimal extra code

Explicit control of memory
hierarchy.

