
Efficient Collective Communication on
Heterogeneous Networks of Workstations

�

Mohammad Banikazemi Vijay Moorthy Dhabaleswar K. Panda

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210
Email:

�
banikaze,moorthy,panda � @cis.ohio-state.edu

Abstract
Networks of Workstations (NOW) have become an attrac-

tive alternative platform for high performance computing. Due
to the commodity nature of workstations and interconnects and
due to the multiplicity of vendors and platforms, the NOW en-
vironments are being gradually redefined as Heterogeneous
Networks of Workstations (HNOW) environments. This paper
presents a new framework for implementing collective com-
munication operations (as defined by the Message Passing In-
terface (MPI) standard) efficiently for the emerging HNOW
environments. We first classify different types of heterogene-
ity in HNOW and then focus on one important characteris-
tic: communication capabilities of workstations. Taking this
characteristic into account, we propose two new approaches
(Speed-Partitioned Ordered Chain (SPOC) and Fastest-Node
First (FNF)) to implement collective communication opera-
tions with reduced latency. We also investigate methods for
deriving optimal trees for broadcast and multicast operations.
Generating such trees is shown to be computationally inten-
sive. It is shown that the FNF approach, in spite of its sim-
plicity, can deliver performance within 1% of the performance
of the optimal trees. Finally, these new approaches are com-
pared with the approach used in the MPICH implementation
on experimental as well as on simulated testbeds. On a ��� -
node existing HNOW environment with SGI workstations and
ATM interconnection, our approaches reduce the latency of
broadcast and multicast operations by a factor of up to ��� 	
compared to the approach used in the existing MPICH imple-
mentation. On a
�� -node simulated testbed, our approaches
can reduce the latency of broadcast and multicast operations
by a factor of up to ��� 	 . Thus, these results demonstrate that
there is significant potential for our approaches to be applied
towards designing scalable collective communication libraries
for current and future generation HNOW environments.

1 Introduction
Networks of Workstations (NOW) are becoming increas-

ingly popular for providing cost-effective and affordable par-
allel computing for day-to-day computational needs [1]. Such
environments consist of clusters of workstations connected by
Local Area Networks (LANs). Hardware and software LAN
technology was not initially developed for parallel processing,
and thus the communication overhead between workstations
can be quite high. In order to achieve performance compara-
ble to Massively Parallel Processor (MPP) systems, many re-
search projects are currently being undertaken in academia and
industry to provide fast communication and synchronization in
NOW systems. However, most of these research projects focus

This research is supported in part by NSF Career Award MIP-

9502294, NSF Grants CCR-9704512 and CDA-9514898, and an
OCARNet grant from the Ohio Board of Regents.

on homogeneous NOW systems where similar kinds of work-
stations (nodes) are connected over a single network architec-
ture. Some popular network architectures used in the current
NOW environments are Ethernet, ATM, FDDI, Fiber-Channel,
and cut-through routed networks such as SP-2 and Myrinet.

Due to the commodity nature of workstations and network-
ing equipment, LAN environments are gradually becoming
heterogeneous. The capability of a LAN environment to incre-
mentally expand by incorporating new generations of worksta-
tions and network architectures over a period of time is also
forcing this trend. Such heterogeneity may get reflected in
terms of varying speed and communication capability of work-
stations, coexistence of multiple network architectures, avail-
ability of alternative communication protocols, and availability
of specialized support for communication and synchronization
over a set of workstations. Thus, in today’s networked high
performance computing environment, heterogeneity is com-
mon and its extent will continue to grow over the years. This
is forcing the NOW environments to be gradually redefined
as Heterogeneous Networks of Workstations (HNOW) environ-
ments.

A portable parallel programming environment is key to
the success of the NOW/HNOW paradigm. Over the last
few years, researchers have developed software packages
like PVM [14] and Message Passing Interface standards like
MPI [3, 10] to provide such portability. Even though these
softwares and standards do not force an application developer
to understand the intricate details of the hardware, software,
and network characteristics, the performance of an application
in a NOW/HNOW environment heavily depends on these char-
acteristics.

The need for collective communication operations such as
broadcast, multicast, global reduction, scatter, gather, com-
plete exchange, and barrier synchronization arises frequently
in parallel applications [9]. Thus, it is critical that the col-
lective communication operations be implemented in the best
possible manner (scalable as well as high performance) in a
HNOW system. Recently, some projects have emphasized
issues related to collective communication in NOW systems.
These projects have been centered around the following inter-
connects: ATM, Ethernet, and Myrinet. Performance of col-
lective communication operations in NOW environments have
been evaluated in [7, 11]. However, all these studies focus on
only one type of interconnect in a NOW system. They also
do not consider heterogeneity in workstation speeds, commu-
nication protocols, etc. Thus, the solutions derived in these re-
search projects cannot be directly applied to HNOW systems
to obtain maximum performance.

To the best of our knowledge, the ECO [8] package has
been the only effort made to consider the heterogeneity of
workstations in NOW environments. ECO is built on top of
PVM. It proposes heuristics to partition the participating work-
stations of a collective communication operation into subnet-
works based on pair-wise round-trip latencies. Next, it di-
vides the required communication steps into two major phases:
inter-subnetwork and intra-subnetwork. Different trees are
used for performing collective communication operations in
each of these phases. However, the proposed partitioning ap-
proach based on pair-wise round-trip latencies may result in
incorrect partitioning in the presence of many factors such as
background traffic and workstations with different communi-
cation capabilities. This may cause inefficient implementation
of collective communication operations. This framework also
does not consider other types of heterogeneity. This leads to
the following challenges: �) how to characterize the hetero-
geneity of a HNOW environment and �) how to implement ef-
ficient collective communication on HNOW environments by
exploiting one or more of the heterogeneous characteristics.

In this paper we take on these challenges. We first clas-
sify different types of heterogeneity that can exist in HNOW
environments and characterize them. Then, we focus on one
major characteristic, communication capabilities of worksta-
tions. We study the impact of this characteristic on the com-
munication overhead of MPI point-to-point communication in
a typical LAN environment consisting of heterogeneous work-
stations. The experimental results indicate that the communi-
cation overhead among workstations in a HNOW environment
may vary as much as 5:1. Using this observation, we pro-
pose a generalized framework to implement efficient collec-
tive communications on HNOW systems. We first introduce
a new Speed-Partitioned Ordered Chain (SPOC) approach to
order the participating nodes of a collective communication
based on their communication capabilities. Using this frame-
work, broadcast and multicast collective communication oper-
ations are implemented with reduced latency using binomial
trees. Then, we argue that using binomial trees might not
be the best approach for implementing these collective oper-
ations. We propose a method for finding optimal trees for
broadcast and multicast operations. We show that deriving an
optimal tree for a set of nodes with arbitrary communication
capabilities is however a computationally intensive operation.
Next, we introduce a more efficient approach called Fastest-
Node First (FNF) for implementing these operations. A per-
formance comparison of the FNF scheme with that of optimal
trees suggests that the FNF scheme (with its low complexity)
can deliver performance within 1% of the performance of op-
timal trees.

Finally, the SPOC and FNF approaches are evaluated on an
experimental testbed consisting of a cluster of 24 SGI work-
stations and compared with the existing approach used in the
MPICH implementation of the MPI standard. Furthermore,
these approaches are evaluated on a
�� -node simulated HNOW
environment with different architectural characteristics. It is
shown that latency of these collective communication opera-
tions can be reduced by a factor of up to ��� � using the proposed
algorithms. These results show that considerable benefits can
be obtained by using the proposed approaches for implement-
ing collective communication operations in HNOW environ-
ments.

The remaining part of the paper is organized as follows.
Different types of heterogeneity are characterized in section 2.
Experimental results on message initiation cost on a set of

workstations are also presented. The basic idea behind the de-
velopment of the proposed algorithms is presented in section 3.
The new SPOC framework for collective communication and
its corresponding algorithms are proposed in section 4, and
the method for finding optimal trees is introduced in section 5.
The FNF approach, its application for implementing efficient
broadcasts and multicasts, and its comparison with the SPOC
and optimal tree approaches are presented in section 6. Ex-
perimental and simulation results are presented in section 7.
Finally, we conclude the paper with conclusions and future re-
search directions.

2 Characterizing Heterogeneous Net-
works of Workstations

In this section we characterize factors leading to hetero-
geneity in HNOW systems. We show how overhead for
MPI point-to-point communication can vary significantly in a
HNOW system by considering only one factor - communica-
tion capabilities of the nodes.

2.1 Major Characteristics
A typical HNOW system can be characterized by the fol-

lowing four factors: 1) Communication Capabilities of Work-
stations (Nodes), 2) Network Architectures, 3) Communica-
tion Protocols, and 4) Dedicated Support for Communication
and Synchronization [2]. These factors are orthogonal to each
other. A typical HNOW environment can have one or more of
these characteristics.

All of the above factors have significant impact on the
implementation of collective communication operations on
HNOW systems. To illustrate this significance, in this paper,
we limit our scope to the first characteristic only. Similar ap-
proach can also be used for other characteristics and we are
currently working along these directions.

2.2 Overhead of Point-to-Point Communica-
tion under Heterogeneity

We present experimental results to show the effect of com-
munication capabilities of workstations on the latency of MPI
point-to-point communication. We measured round trip la-
tency between four different pairs of workstations in a hetero-
geneous environment. The workstations were connected via
Ethernet and used MPICH communication library [4] to com-
municate. Table 1 shows these results. Since the results are
symmetric, values are shown for only the upper triangle en-
tries. These values indicate how processor speed affects the
time taken to transmit a message from one workstation to an-
other. The fastest workstation we used was an HP 735 and the
slowest one was a Sun 4. It can be observed that the commu-
nication startup time for a Sun 4 is around 5 times that of an
HP 735.

Table 1. Roundtrip times in microseconds between
different types of workstations in a heterogeneous
network. (Entries with * indicate that the sender and
receiver were in different clusters.)

HP735 HP715/100 HP715/64 Sun4

HP735 871 973 2491 * 5806 *
HP715/100 1020 2538 * 5871 *
HP715/64 1869 6050 *
Sun4 4196

These experimental results demonstrate that workstation
speeds can have direct impact on the communication latency.

Since collective communication operations involve more than
one workstations the question arises whether we can use the
heterogeneity to our advantage to implement the operations
faster. We propose such a framework in the following section.

3 A New Framework for Collective Com-
munication

In this section we propose a framework to take advantage
of heterogeneity in communication capabilities to implement
a collective communication operation faster. First, we provide
the basic idea behind such a framework and then formalize
the problem. In the following sections, we provide alternative
approaches to solve the problem.

As we observed earlier, various factors such as processor
speed, memory speed, and network interface support affect the
communication capability of a node. The above parameters
can be combined together to a single parameter known as mes-
sage initiation cost, ������� . Let us consider a broadcast operation
on an example HNOW environment consisting of eight work-
stations (��� ���	�
���
�
�). Let node 1 be the source node. Let six
of these workstations (��� ��� ��� 	������ and �) be slow ones hav-
ing a message initiation cost, �
������ . Similarly, let the other two
(1 and 6) be fast ones and have lower message initiation cost,
�
�
����� . Based on our experimental data (shown in Table 1) , it

can be observed that the ���������� �
�
����� can be as large as 5. For an

example quantitative evaluation, let us consider �
�
����� = 100.0

microsec and � ������ = 300.0 microsec, leading to � ������ � �
�
������� � .

Because of the high value of ������� (which is typical of NOW
systems) let us ignore the time required for transmitting the
messages in our example.

Consider a naive and simple binomial-tree-based scheme,
based on node numbering. This leads to the broadcast tree
as shown in Fig. 1(a). Using this scheme the broadcast can
be completed in 700.0 microsec in this HNOW environment.
However, a more efficient scheme, as shown in Fig. 1(b), can
be designed by considering the differences in the commu-
nication capabilities of the workstations. Here although we
are still using a binomial tree, the fast workstations are used
as intermediate nodes to broadcast the message faster. This
scheme takes only 500.0 microsec to implement the broadcast
and demonstrates a 29% improvement in broadcast latency.
However, this is not the best way of implementing broadcast
in this system. Fig. 1(c) illustrates the optimal implementa-
tion with a latency of 400.0 microsec (43% improvement over
the naive implementation). This example shows that binomial
trees which are optimal trees for implementing broadcast on
homogeneous systems might not be optimal in heterogeneous
environments.

It can be observed from this example that several alterna-
tives exist to implement a broadcast communication faster by
considering the communication capabilities of the participat-
ing nodes and the tree used for implementing the collective op-
erations. In this example we assumed that there are only two
types of workstations. The problem becomes more complex
if we have multiple levels of communication capabilities. In
general, the communication capabilities of the nodes in an � -
node HNOW environment can be totally different. This leads
to the following problem:
Problem Statement: How to design efficient algorithms for
collective communication operations on an � -node HNOW
environment with each node having arbitrary communication
capability: � ������ ����� ���!�#" � .

In the following sections, we provide alternative solutions

1, f

2,s 3, s

4, s 7, s

8, s

6, f

5, s

(b) better scheme

100200300

200300500

500

300

1, f1, f

2,s 3, s 5, s

4, s 6, f 7, s

8, s

6, f

8, s

2, s

3, s

4, s

5, s

7,s

(a) naive scheme (c) optimal scheme

200300

700

700500 400

100 200 100400
300

200400

Figure 1. Different ways to implement broadcast in
an eight workstation HNOW environment: (a) simple
binomial tree-based scheme using node numbering,
(b) a better implementation by considering commu-
nication capabilities of the workstations, and (b) the
optimal implementation.

to solve this problem. We first present a generalized approach
to design efficient binomial broadcast trees by considering
multiple levels of communication capabilities across nodes,
and develop algorithms for broadcast and multicast collective
communication operations. Then, we propose a method to de-
rive optimal trees for performing broadcast and multicast oper-
ations. Since deriving such trees is computationally expensive,
we finally propose a simple approach which can deliver perfor-
mance close to those of the optimal trees.

4 Speed-Partitioned Ordered Chain
(SPOC) Approach

This approach uses information about the message initia-
tion cost (� �����) of nodes which are participating in a collective
communication operation. Using this information, an efficient
ordering of participating nodes is derived to implement the op-
eration faster.

Consider a collective communication operation, say broad-
cast, which can be implemented by using a binomial-tree. The
binomial-tree algorithm is well suited for homogeneous net-
works. However, nodes that are higher up in the binomial tree
send more messages and therefore incur more message startup
overhead. Thus, if faster nodes appear higher up in the bi-
nomial tree, then the overall startup overhead incurred during
the collective communication operation can be reduced. For
example, in Fig. 1(a) node 	 is a slow node and has � descen-
dents while node
 is a fast node and has no descendent. In
Fig. 1(b) node
 has � descendent and node 	 has none. Other
faster nodes have also been moved to tree nodes having more
children. As a result, the latency of the broadcast in Fig. 1(b)
is 200 microsec lower than the latency of the tree in Fig. 1(a).

The above observation leads to the following: The problem
of finding the fastest way to implement a binomial tree-based
algorithm for broadcast is just finding a way to assign faster
workstations to nodes in the binomial tree which have to send
more messages. Let us assume that the number of participating
workstations in this operation is � . We can always construct
a binomial-tree consisting of � tree nodes and having a depth
of $&%('�)+*,�.- . The source node of the broadcast operation re-
mains fixed as the root of the tree, but we have the flexibility of
assigning the rest of the participating nodes to any of the other
tree nodes as we please.

In order to find an efficient assignment we construct the bi-
nomial tree for the given number of participating nodes and
find the total number of descendents at each tree node. The
number of descendents of a tree node simply specifies the
number of nodes that should receive the message from that

node, directly or indirectly. We sort the tree nodes from the
node with the highest number of descendents to the node with
the lowest number of descendents. Obviously, the root of the
tree will have the highest number of descendents (� " �),
but the source node is already assigned to it. Thus, we have
flexibility of assigning other participating nodes to tree nodes.
We can sort participating nodes in ascending order of mes-
sage initiation cost and then assign faster participating nodes to
tree nodes with greater number of descendents from these two
sorted lists. We call this ordered chain of participating nodes a
Speed-Partitioned Ordered Chain (SPOC). The outline of this
algorithm is illustrated in Fig. 2.

The completion time of broadcast, where
���

is the source
and

� ��� � � * �
�
�
��� ���	�
� � is the list of other participating
nodes in a nondecreasing order with respect to their message
initiation cost, can be expressed as:

�
�������������������� �! �
"$# %�& �(')�*�+
�-, � .0/2143 � ������ � � *!5 �
������76 (1)

The same algorithm can be easily used for implementing
the multicast [12] operation. An algorithm similar to the al-
gorithm used for multicast can also be used to implement the
multiple multicast with the only difference being the fact that
different trees are used for each multicast.

SPOC-based tree construction for broadcast

Input:
root: the source node of broadcast;8 � : The list of participating nodes with their respective

initiation costs (9 �����).
Tree construction steps:

1. :<;>=@?�ACB�DFE G�H =@G�IJD�KML 8 �@N
2. O � ;>P�G)=QK�9RE�?SP�9 B!TU=VG�AWTRX2Y 9REMD)DJLR:WN
3. Z 8 ;[K�G)E)9!LUY\T]KF9!L$O � N!^!_`D�K�P�^�:a?SA _`D�KFPFN

// Z 8 �bdc O �
eWfhg Tjik:l^m=n?SA IJD)PFKML-O � N g=n?SA IJD)PFKML-Opo2N*HqG)ErT�itspN
4. Z 8 � ;uK�G)E)9!L 8 � ^�vmKFPFDF=VIMTU=nw�^RO Tx=@T]N

// Z 8 � byc�z �le{f|g T}i~:l^�9 TU=nT�L z � N g9 Tx=@T�L z o�N*HqG)E
T
i�spN5. Z 8 �l;>EMD�AWG)�2D2LUZ 8 ��^�EMG)G)9�N
6. X�K)K�TUwJ= =@G�IJD 9RE�D)D2L-TU9]DFA�LUZ 8 ^ f N�^�EMG�G�9�N
7. for T b�� to : doX�K)KFTxw2= =VG)I2D 9REMD�D2L-TU9]D�A0LRZ 8 ^�TRN�^�TU9]D�A0LUZ 8 ��^�TV� � N�N

Figure 2. Outline of the SPOC-based tree construc-
tion for broadcast.

5 Optimal Trees
In Section 3 we showed that binomial trees might not be

the best tree for implementing broadcast (or multicast) oper-
ations on a HNOW. Consider the construction of an optimal
tree for performing broadcast (or multicast) among � nodes,� ��� � ��� �
�
�
�
� ���	�
� � , where

���
is the source node. In the

first step
���

sends the message to
� � . Then,

���
and

� � will
be responsible for sending the message to the rest of the partic-
ipating nodes through two subtrees. First, the Node

� � must
be chosen such that the overall tree is optimal. Second, the
two subtrees must themselves be optimal. The same procedure
can be applied recursively to each of the multicast subtrees.
Therefore, this optimization problem which exhibits optimal
substructure and overlapping subproblems properties can be

solved by using the dynamic programming technique. This
technique can be used for the current problem as follows.

Let � �R� � be the minimum latency required to multicast the
message from node

� � to all nodes in the set � . If � is an
empty set, the latency will be equal to zero. Otherwise, in
the first step, message is sent to a node in � (say

� o), and the
latency would be the maximum of latencies associated with the
two obtained subtrees (where

� � and
� o are the roots of these

subtrees and descendents of these two nodes will be all nodes
in � " �F� �). Therefore, the overall latency can be obtained
through the following recurrence:

� �]� � �
� � if � �C� � �� �]� � � ������Q� ����� 3 � �R� � ��� o � � 6 ��� otherwise

where
��� � , and � ��� � � " ��� �

It is to be noted that the total running time for finding the
optimal tree for broadcasting a message among � nodes will
be � 3 � * � * � 6 . However, this method for finding the opti-
mal tree is too computationally intensive to be useful in any
practical system. In the following section, we propose a near-
optimal algorithm which runs in polynomial time. Before de-
scribing this near-optimal algorithm, let us look at two impor-
tant properties of optimal trees presented as the following two
lemmas (the proofs can be found in [2]).

Lemma 1 Let
���

be the source node of a broadcast (or mul-
ticast) operation and

� � � � � * �
�	�
�
� � ���*� � be the set of
other participating nodes in the order of the time they have
received the message. There exists an optimal tree for per-
forming the broadcast (or multicast) operation such that

���
(� ��� �!� " �) receives the message from one of the nodes
in the set

� � � � � � �
�
�
�
� ��� �*� � and the time at which it re-
ceives the message is the earliest possible time.

Lemma 2 Let
���

be the source node of a broadcast (or multi-
cast) operation and

� � � � � * �
�
���
� � �	�
� � be the set of other
participating nodes. Let � ������ be the message initiation cost
of node

� � . There exists an optimal tree for performing the
broadcast (or multicast) operation in which the message initi-
ation cost of any node other than the source node is less than
or equal to that of its children.

In the next section we use these two properties to propose
a near-optimal algorithm which runs in polynomial time with
respect to the number of participating nodes.

6 Fastest-Node First (FNF) Approach
Using the above properties of an optimal tree, we propose

a greedy algorithm called Fastest-Node First (FNF). In each
iteration of this algorithm, one node which has not received the
message is added to the tree. Obviously at each instance, we
need to make two decisions. First, we need to decide which
node is going to send the message to the new node. From
Lemma 1 we can easily find the node which should deliver the
message to the new node. The second decision to be made
is selecting the new node among the nodes which have not
been added to the tree yet. To make sure that the property
presented in Lemma 2 is preserved, we select the fastest node
among the nodes not in the tree. This way, we can generate
trees through which multicast and broadcast operations can be
implemented. Now, we describe how FNF can be specifically
applied for implementing broadcast and multicast operations.

FNF-based tree construction for broadcast
Input: O(TU=nT : the initiation costs of all nodes(9 �����);

root: the source node of broadcast;8 � : The list of other participating nodes.

Tree construction steps:
1. :<;>=@?�ACB�DFE G�H =@G�IJD�KML 8 � N�� �2. � � ; f
3. for T b�� to : � � do

� � ;��
4. Z4D�=@I2DFEJK ; c EMG�G)9��5. �(D)P�D�TU�2DFEJK ; 8 �
6. Z4G�Y\?S9RTUG)= ; c �7. for T b�� to : � � doKFD�=VIJDFEm;�� ,where �	�QZ�DF=VIJD�EMK and
 Y��VZ�DF=VIJD�EJK L�� � ��O(TU=@T � N g L���
��tO(TU=nT�
RNEMD�P�D�TU�2D�E ;�� ,where �����(D)P�D�Tx��DFEJK and
 Y���� D)P�DFTU�2D�EJKlO(TU=nT � g O Tx=@T
Z4G�Y\?S9RTUG)= ;>P�G)=@P�X29!LUZ�G)Y$?�9RTRG)=�^�LUK�DF=VIJD�E�^�EMD�P�D�TU�2D�EMN�N

� ��� � � � � ;�� ��� � � � � ��O Tx=@T ��� � � � �� � � � � ��� � � ;�� ��� � � � ��(D)P�D�TU�2DFEJK ; E�D�AWG)�2D2L�� D)P�DFTU�2D�EJKM^�EMD�P�D�TU�2D�EMNZ4D�=@I2DFEJK ;>P�G)=VP�XJ9!LRZ4D�=@I2DFEJKJ^�EMD�P�D�TU�2D�EMN
endfor

Figure 3. Outline of the FNF algorithm.

6.1 Broadcast
Consider a HNOW system in which � workstations are

participating in a broadcast. Let the workstations be parti-
tioned into � workstation classes (� � � � � �
�
�
��� � � �*�), where

�.� � � � (note that when � � � we actually have a ho-
mogeneous NOW with respect to the message initiation cost).
The number of workstations in each class can also vary. Let
� ������ be the message initiation cost for the workstations in class� � . The FNF algorithm whose outline is presented in Fig-
ure 3, starts by creating a list of the nodes which have a copy
of the message (���M���������), and a list of the nodes which are
participating in broadcast but have not received the message
yet (!��"#�	�%$��&���). Obviously, at the beginning the first list con-
tains only the source node and the second list contains all other
nodes. A variable (�) is associated with each node indicating
the earliest time when the node can send out a message to an-
other node. Since at the beginning of the operations none of
the nodes except the source node has the message, infinity is
assigned to this variable of all nodes except that of the source
which is set to zero. The FNF tree which is presented as a
set of (parent, child) two-tuples (�('*),+ � �%'2�) is also initialized.
Then, in � " � successive iterations, the node from which the
message is supposed to be received at one of the participating
nodes (except the root) is found. In each iteration, the best can-
didate for sending the message to one of the nodes which have
not received the message is found by minimizing the time by
which this message can be delivered. On the other hand, the
fastest node among those which have not received the message
yet is chosen as the receiver. After both sender and receiver
are selected, the times at which these nodes can send out a
new message are each adjusted. During this step, the receiver
is taken out of the !��"#�	�%$������ list and is added to the ���M���������
list.

It should be noted that the order of the tuples in �('*),+ � �%'2�
is important. For any two-tuples whose first items (or sender
nodes) are the same, the sender node will send the message to
the receiver mentioned in the first two-tuples before sending

the message to the other receiver. In other words, the obtained
tree is an ordered tree. It should also be noted that for an ef-
ficient implementation of the algorithm, nodes can be sorted
based on their message initiation costs. This algorithm can be
easily implemented with � 3 � * 6 complexity where � is the
number of participating nodes.

6.2 Multicast (Single and Multiple)
Similar to the broadcast operation, multicast can be imple-

mented in a more efficient manner under this approach. The
FNF algorithm can be directly applied for implementing mul-
ticast operation by limiting the list of the participating nodes
to the nodes participating in the multicast operation. Similarly,
FNF can also be used for implementing multiple multicast by
constructing one tree for each multicast operation.

6.3 Comparison With Optimal Trees
To compare the performance of the FNF-based algorithms

with that of the optimal algorithms in a qualitative fashion,
we evaluated the latency of broadcast and multicast opera-
tions obtained from these algorithms. We considered a sys-
tem with � nodes. (We could not go further because of the
complexity of the optimal algorithm which is exponential with
respect to the number of participating nodes.) The message
initiation cost of each node was randomly chosen from the�

�	����� �����+� �����+�	�
�
�	������� � set. For each operation, the source
node and other participating nodes were chosen randomly. We
recorded the latency of the FNF-based algorithm (�.- � -) and
that of the optimal algorithm (� ��/) for �	������� cases for each
particular number of participating nodes. We then calculated
the average latency of the FNF-based and the optimal algo-
rithms. Table 2 shows these latencies. It can be observed that
the latency of FNF-based algorithms is equal to that of the op-
timal algorithms up to 5 participating nodes. Beyond that, the
FNF algorithm produces latencies which are within 1% of the
latency produced by the optimal algorithm. Furthermore, trees
generated by the FNF-based algorithm were found to be iden-
tical to those generated by the optimal algorithm for 90-100%
of the cases. Considering the very minor difference between
the latency of the FNF-based and the optimal algorithms, and
the very low complexity of the FNF-based algorithms, we con-
clude that FNF-based algorithms will be more practical to be
incorporated in future HNOW environments. Thus, for the re-
maining part of the paper, we does not consider the optimal
algorithm any further. We only consider the FNF-based algo-
rithms.

Table 2. Comparison between FNF-based and optimal
algorithms for implementing broadcast and multicast
on a system with 9 nodes.

Participating
8 - � - 8 ��/ 021�3�453 � 1�6%798;:1�6<7=8

Nodes

2 453.37 453.37 f�> fMf&?
3 705.60 705.60 f�> fMf&?
4 805.70 805.70 f�> fMf&?
5 871.01 871.01 f�> fMf&?
6 914.90 913.15 f�> �A@ ?
7 947.56 942.26 f�> B�C&?
8 976.90 967.27 f�> @�@ ?
9 984.29 977.12 f�> D#E&?

6.4 Comparisons between FNF-based and
SPOC-based Trees

Let us compare the trees produced by the FNF-based and
SPOC-based trees. In general, they will be different because
SPOC-based trees are always binomial in nature. It is to be
noted that when all nodes participating in broadcast or multi-
cast have the same message initiation startup (i.e. the partic-
ipating nodes are homogeneous), the tree obtained from the
FNF algorithm will be the same as that obtained from the
SPOC algorithm and the tree produced by the naive binomial
tree algorithm (such as the one used in the existing MPI im-
plementations). It is also to be noted that where 50% of the
participating nodes (including the source node) belong to the
fastest group of participating nodes, the trees obtained from
the SPOC and FNF algorithms will be identical.

7 Performance Evaluation
In this section, the performance of the algorithms devel-

oped in the previous sections are compared. First, we present
experimental results obtained from a cluster of SGI worksta-
tions connected by an ATM network. Due to the limitations
of our experimental testbed (limited number of nodes and only
two levels of speed), we also carried out simulation results for
larger number of nodes with greater variation in speed. We
present these simulation results next.

7.1 Experimental Results
We used an ATM network of ��� SGI workstations to im-

plement and evaluate the proposed algorithms. We compared
the performance of our algorithms with those of MPICH v � � � .
In the following subsections, the setup used in the experiments
is explained and then the results are presented.

7.1.1 Experimental Setup
The testbed used in our experiments consisted of � � SGI

workstations with two different speeds. There were 16 slow
and 8 fast nodes. This allowed us to take measurements on
three different 16-node configurations with � � � 	 % (�), ��	 %
(�), and 	 � % (�) fast nodes, respectively. Using the MPICH
point-to-point communication, the roundtrip latency for a short
message (� -byte long) was measured to be � ����� microsec be-
tween two fast nodes and � ��
�� microsec between two slow
nodes. The ratio of the communication capabilities of slow
and fast nodes is therefore � � ��	 .

7.1.2 Broadcast
For measuring the broadcast latency we followed a method

similar to the one used in [6]. A broadcast operation starts
when the source node initiates it. It is said to be complete
when all the other nodes have received the broadcast message.
The broadcast latency is defined as the time elapsed between
the source node initiating it and the last recipient receiving it.
Measurement of broadcast latency was done in the following
way. For an � node system, � " � broadcasts were performed.
Each time, after the broadcast, one of the � " � recipients sent
back an acknowledgment (instead of issuing another broadcast
as in [6]). At the source node the time between initiation of the
broadcast and receipt of the acknowledgment was measured.
The maximum of these � " � time readings corresponds to
the last broadcast recipient sending back the acknowledgment.
Therefore, this maximum is the sum of the broadcast latency
and half of the round trip latency between the source node and
the last recipient. Since the roundtrip time can be easily mea-
sured, the broadcast latency is obtained by subtracting half of
the roundtrip time from the maximum reading. Furthermore,

each experiment was repeated 100 times for a given source
node and the minimum broadcast latency was taken into ac-
count.

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0 200 400 600 800 1000 1200

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
.)

Message length (byte)

(a) 16 nodes, 8 fast nodes

MPI-DEF
MPI-SPOC

MPI-FNF

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0 200 400 600 800 1000 1200

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
.)

Message length (byte)

(b) 16 nodes, 4 fast nodes

MPI-DEF
MPI-SPOC

MPI-FNF

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0 200 400 600 800 1000 1200

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
.)

Message length (byte)

(c) 16 nodes, 2 fast nodes

MPI-DEF
MPI-SPOC

MPI-FNF

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200

F
ac

to
r

of
 im

pr
ov

em
en

t

Message length (byte)

(d) 16 nodes

MPI-FNF; 50% fast nodes
MPI-FNF; 25% fast nodes

MPI-FNF; 12.5% fast nodes
MPI-SPOC; 50% fast nodes
MPI-SPOC; 25% fast nodes

MPI-SPOC; 12.5% fast nodes

Figure 4. Broadcast latency and factor of improve-
ment on a HNOW system with 16 nodes and different
number of fast nodes.

Figure 4 shows the results. In the graphs, latencies of
the MPICH implementation are referred to as MPI-DEF (MPI
with default implementation) latencies. The modified ver-
sion of MPICH routines in which SPOC-based algorithms are
used, is called MPI-SPOC. We refer to the modified version
of MPICH in which FNF-based algorithms are employed to
perform MPI-Bcast as MPI-FNF. It can be observed that the
proposed algorithms always perform better than the naive or-
dering scheme used in MPICH. Factors of improvement over
MPI-DEF are shown in Figure 4(d). As the fraction of fast
nodes in the system increases, so does the factor of improve-
ment. A factor of improvement of 1.7 is achieved in a system
with 50% faster nodes by using the SPOC-based algorithm.
Factors of improvement up to 2.3 are achievable when FNF-
based algorithms are used. As predicted in section 6.4, when
50% of the nodes (including the source node) are fast nodes,
SPOC-based algorithms perform as good as FNF-based algo-
rithms. It can also be observed that for different fractions of
faster nodes, the factor of improvement curves almost coin-
cide beyond a certain message length due to the fact that with
increasing message length, the message transmission time be-
gins to dominate the latency. For shorter messages, where the
startup overhead dominates, we get higher factors of improve-
ment.

7.1.3 Multicast
In a multicast, the set of recipients is a subset of the set

of nodes. The same procedure was therefore used to measure
multicast latencies, that is, each experiment for multicast was
repeated �
����� 3 � " � 6 times, where � is the number of recip-
ients.

Figures 5 and 6 show results for multicast. Characteris-
tics similar to broadcast results are observed. The factor of
improvement increases with increasing system size. Again, as
the message length increases, transmission time dominates and
the factor of improvement decreases. For an 8 node multicast
with 50% fast participating nodes, factors of improvement of
up to 2.5 are observed.

7.2 Simulation Results
Several experiments were performed to measure the im-

pact of different workstation speeds, number of workstations

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 200 400 600 800 1000 1200

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
.)

Message length (byte)

(a) 8 nodes, 4 fast nodes

MPI-DEF
MPI-SPOC

MPI-FNF

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 200 400 600 800 1000 1200

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
.)

Message length (byte)

(b) 8 nodes, 2 fast nodes

MPI-DEF
MPI-SPOC

MPI-FNF

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200

F
ac

to
r

of
 im

pr
ov

em
en

t

Message length (byte)

(c) 8 nodes

MPI-FNF; 50% fast nodes
MPI-FNF; 25% fast nodes

MPI-SPOC; 50% fast nodes
MPI-SPOC; 25% fast nodes

Figure 5. Multicast latency and factor of improvement
on a HNOW system with 8 nodes and different number
of fast nodes.

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0 200 400 600 800 1000 1200

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
.)

Message length (byte)

(a) 16 nodes, 8 fast nodes

MPI-DEF
MPI-SPOC

MPI-FNF

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 200 400 600 800 1000 1200

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
.)

Message length (byte)

(a) 8 nodes, 4 fast nodes

MPI-DEF
MPI-SPOC

MPI-FNF

0.0035

0.004

0.0045

0.005

0.0055

0.006

0 200 400 600 800 1000 1200

B
ro

ad
ca

st
 la

te
nc

y
(s

ec
.)

Message length (byte)

(c) 4 nodes, 2 fast nodes

MPI-DEF
MPI-SPOC

MPI-FNF

0

0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200

F
ac

to
r

of
 im

pr
ov

em
en

t

Message length (byte)

(d) 50% fast nodes

MPI-FNF; 16 nodes
MPI-FNF; 8 nodes
MPI-FNF; 4 nodes

MPI-SPOC; 16 nodes
MPI-SPOC; 8 nodes
MPI-SPOC; 4 nodes

Figure 6. Multicast latency and factor of improvement
on configurations with half of the nodes being fast
nodes.

and fraction of faster nodes on the performance of our algo-
rithms. In the following subsections, first the simulation setup
is described in detail. Next, the results for broadcast, single
multicast, and multiple multicast are presented.

7.2.1 Simulation Setup

We modeled a representative HNOW system where work-
stations are interconnected with Myrinet switches. A detailed
flit-level simulator (built using CSIM [13]) was used to model
irregular topologies and the wormhole switching technique. A
64-node HNOW system was considered. Based on the exper-
imental results, presented in Section 2.2, we considered the
following communication startup times. Two classes of work-
stations were considered. The communication startup time for
faster class was kept constant at �

�
����� = 400.0 microsec. The

time for slower class (� ������) was varied (800, 1600 and 2400
microsec). These values lead to speed factors (ratio of com-
munication cost between the slow class to the fast class) of 2,
4, and 6, respectively. Such a variation helps to study a wide
range of HNOW systems.

With respect to the interconnection network, the follow-
ing parameters, representing current generation systems, were
used: � /���� (link propagation time per byte) = 12.5 nanosec-
onds, � ����� �� (routing delay at switch) = 500 nanoseconds, � � �
(switching time across the router crossbar for a flit) = 12.5
nanoseconds, ����� o (time to inject a flit into network) = 12.5

nanoseconds and � ��� � � (time to consume a flit from net-
work) = 12.5 nanoseconds. For all experiments we assumed
the following default system configuration: a 64 workstation
system interconnected by 16 eight-port switches and a network
having 50% connectivity1 .

We performed several experiments to study the impact of
message length, speed factor and fraction of faster nodes. We
evaluated our new algorithms (indicated as SPOC and FNF
in the graphs) with the default ordering algorithm (indicated
as DEF) which is used by the current MPI implementations.
Participating nodes for a given collective communication and
the network configurations were generated randomly. Latency
value for each data point in the graphs was averaged over 100
experiments (10 different sets of participating nodes for each
of 10 different network configurations). Due to the space lim-
itations, and since broadcast is a special case of multicast, we
only present the multicast results. The simulation results for
broadcast can be found in [2].

7.2.2 Multicast
Figures 7, 8, and 9 show the impact of speed factor, per-

centage of faster nodes, and message length on the latency of
single multicast with varying sizes of destination sets. The
factor of improvement of the SPOC and FNF approaches over
the DEF increases with increasing number of destinations, in-
creasing speed factor, and decrease in message length. For a
multicast involving 1 KBytes message on a system with 25%
faster nodes and a speed factor of 4, SPOC and FNF algorithms
give factors of improvement of 2.3 and 3.3, respectively.

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(a) 1KB message length, 25% fast nodes, Speed factor 2

DEF
SPOC

FNF

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(b) 1KB message length, 25% fast nodes, Speed factor 4

DEF
SPOC

FNF

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(c) 1KB message length, 25% fast nodes, Speed factor 6

DEF
SPOC

FNF

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70

F
ac

to
r

of
 Im

pr
ov

em
en

t

No. of destination nodes

(d) Factor of improvement

FNF; Speed Factor 6
FNF; Speed Factor 4
FNF; Speed Factor 2

SPOC; Speed Factor 6
SPOC; Speed Factor 4
SPOC; Speed Factor 2

Figure 7. Impact of speed factor on single multicast
latency with 25% fast nodes: (a) speed factor 2, (b)
speed factor 4, (c) speed factor 6, and (d) factor of
improvement for (a) - (c).

Results for multiple multicasts with varying number of
sources and destinations are presented in Figure 10. It can be
observed that the factor of improvement increases as more and
more sources are involved in the multiple multicast. It can be
observed that for a system with 50% faster nodes and a speed
factor of 4, multiple multicast latency can be reduced by a fac-
tor of 2.4 using our new algorithms.

8 Conclusions and Future Research
In this paper, we have presented three new approaches

to implement fast collective communication in the emerging
HNOW systems. Major factors in HNOW systems have been

1Connectivity is defined as the fraction of ports in a switch which
are used for interconnection with other switches [5].

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(a) 1KB message length, 10% fast nodes, Speed factor 4

DEF
SPOC

FNF

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(b) 1KB message length, 25% fast nodes, Speed factor 4

DEF
SPOC

FNF

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(c) 1KB message length, 50% fast nodes, Speed factor 4

DEF
SPOC

FNF

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70

F
ac

to
r

of
 Im

pr
ov

em
en

t

No. of destination nodes

(d) Factor of improvement

FNF; 50 % faster nodes
FNF; 25 % faster nodes
FNF; 10 % faster nodes

SPOC; 50 % faster nodes
SPOC; 25 % faster nodes
SPOC; 10 % faster nodes

Figure 8. Impact of percentage of faster nodes on
single multicast latency with speed factor 4: (a) 10%
fast nodes, (b) 25% fast nodes, (c) 50% fast nodes,
and (d) factor of improvement for (a) - (c).

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(a) 64B message length, 25% fast nodes, Speed factor 4

DEF
SPOC

FNF

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(b) 1KB message length, 25% fast nodes, Speed factor 4

DEF
SPOC

FNF

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(c) 4KB message length, 25% fast nodes, Speed factor 4

DEF
SPOC

FNF

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 70

F
ac

to
r

of
 Im

pr
ov

em
en

t

No. of destination nodes

(d) Factor of improvement

FNF; 64B message
FNF; 1KB message
FNF; 4KB message

SPOC; 64B message
SPOC; 1KB message
SPOC; 4KB message

Figure 9. Impact of message length on single multi-
cast latency with 25% fast nodes and speed factor 4:
(a) 64 Bytes, (b) 1 KBytes, (c) 4 KBytes, and d) factor
of improvement for (a) - (c).

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(a) 128B message length, 25% fast nodes, Speed factor 4

16 src DEF
4 src DEF

16 src SPOC
4 src SPOC
16 src FNF

4 src FNF

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(b) 128B message length, 25% fast nodes, Speed factor 4

64 src DEF
32 src DEF

64 src SPOC
32 src SPOC

64 src FNF
32 src FNF

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(c) 128B message length, 50% fast nodes, Speed factor 4

16 src DEF
4 src DEF

16 src SPOC
4 src SPOC
16 src FNF

4 src FNF

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50 60 70

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of destination nodes

(d) 128B message length, 50% fast nodes, Speed factor 4

64 src DEF
32 src DEF

64 src SPOC
32 src SPOC

64 src FNF
32 src FNF

Figure 10. Impact of percentage of faster nodes on
latency for multiple multicast: (a) 25% fast nodes with
4 and 16 sources, (b) 25% fast nodes with 32 and 64
sources, (c) 50% fast nodes with 4 and 16 sources,
and (d) 50% fast nodes with 32 and 64 sources.

characterized. A new SPOC-based framework has been intro-
duced to order the participating nodes of a collective commu-
nication based on their communication capabilities. Using this
framework, algorithms for frequently used collective commu-
nication operations (broadcast, single multicast, and multiple
multicast) have been developed. An algorithm for generating
optimal trees for these problems have been proposed. Further-
more, a new approach (FNF) with a low complexity has been
introduced in which near-optimal trees are used for imple-
menting collective communications efficiently. Performance
evaluation of these new algorithms on a 24-node experimental
testbed and a 64-node simulated testbed indicates that latency
of collective communication operations can be reduced by a
factor up to 4.5 compared to the naive algorithms used in cur-
rent MPI implementations.

In this paper, we have used only the heterogeneous com-
munication capabilities of nodes to implement collective com-
munication efficiently. We are also developing schemes
to take advantage of heterogeneity in network architec-
tures, communication protocols, and dedicated communica-
tion/synchronization units to obtain further improvements. Fi-
nally, we plan to propose a combined framework which can
take advantage of all these factors and build a scalable collec-
tive communication library for HNOW systems.

Acknowledgment and Additional Information: We would
like to thank Ohio Supercomputing Center for access to their work-
station cluster. A number of related papers and technical reports can
be obtained from http://www.cis.ohio-state.edu/˜panda/pac.html.

References
[1] T. Anderson, D. Culler, and D. Patterson. A Case for Networks

of Workstations (NOW). IEEE Micro, pages 54–64, Feb 1995.
[2] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient Col-

lective Communication on Heterogeneous Networks of Work-
stations. Technical report OSU-CISRC-03/98-TR07, Dept. of
Computer and Information Science, The Ohio State University,
March 1998.

[3] J. Bruck et al. Efficient Message Passing Interface (MPI) for
Parallel Computing on Clusters of Workstations. JPDC, pages
19–34, Jan 1997.

[4] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI, Message
Passing Interface Standard. Technical report, Argonne National
Laboratory and Mississippi State University.

[5] R. Kesavan, K. Bondalapati, and D. K. Panda. Multicast on
Irregular Switch-based Networks with Wormhole Routing. In
HPCA-3, pages 48–57, February 1997.

[6] M. Lauria. High Performance MPI Implementation on a Net-
work of Workstations. Master’s thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign , Oct 1996.

[7] M. Lin, J. Hsieh, D. H. C. Du, J. P. Thomas, and J. A. Mac-
Donald. Distributed Network Computing over Local ATM Net-
works. IEEE JSAC, 13(4), May 1995.

[8] B. Lowekamp and A. Beguelin. ECO: Efficient Collective Op-
erations for Communication on Heterogeneous Networks. In
IPPS, pages 399–405, 1996.

[9] P. K. McKinley and D. F. Robinson. Collective Communica-
tion in Wormhole-Routed Massively Parallel Computers. IEEE
Computer, pages 39–50, Dec 1995.

[10] Message Passing Interface Forum. MPI: A Message-Passing In-
terface Standard, Mar 1994.

[11] N. Nupairoj and L. M. Ni. Performance Evaluation of Some
MPI Implementations on Workstation Clusters. In Proceedings
of the SPLC Conference, 1994.

[12] D. K. Panda. Issues in Designing Efficient and Practical Algo-
rithms for Collective Communication in Wormhole-Routed Sys-
tems. In ICPP Workshop on Challenges for Parallel Processing,
pages 8–15, 1995.

[13] D. K. Panda, D. Basak, D. Dai, R. Kesavan, R. Sivaram,
M. Banikazemi, and V. Moorthy. Simulation of Modern Par-
allel Systems: A CSIM-based approach. In Proceedings of
the 1997 Winter Simulation Conference (WSC’97), pages 1013–
1020, December 1997.

[14] V. S. Sunderam. PVM: A Framework for Parallel and Dis-
tributed Computing. Concurrency: Practice and Experience,
2(4):315–339, December 1990.

