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Abstract

Heterogeneous network-based systems are emerging as
attractive computing platforms for HPC applications. This
paper discusses fundamental research issues that must be
addressed to enable network-aware communication at the
application level. We present a uniform framework for de-
veloping adaptive communicationschedules for various col-
lective communication patterns. Schedules are developed
at run-time, based on network performance information ob-
tained from a directory service. We illustrate our framework
by developing communication schedules for total exchange.
Our first algorithm develops a schedule by computing a se-
ries of matchings in a bipartite graph. We also present a���
	���

heuristic algorithm, whose completion time is within
twice the optimal. This algorithm is based on the open shop
scheduling problem. Simulation results show performance
improvements of a factor of 5 over well known homogeneous
scheduling techniques.

1. Introduction

With recent advances in high-speed networks, metacom-
puting has emerged as a viable and attractive computational
paradigm. A metacomputing system [23] consists of ge-
ographically distributed supercomputers and visualization
devices. These are interconnected by a heterogeneous col-
lection of local and wide-area networks. High performance
applications can be executed over such a networked virtual
supercomputer, wherein the distributed computational re-
sources are used in a coordinated way, very much as though
they were part of a single computer system.

The potential of metacomputing has been demonstrated
by the Global Information Infrastructure (GII) testbed at
SC ’95 [16]. The testbed linked dozens of high performance
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Figure 1. A typical metacomputing system.

computers and visualization machines with existing high-
bandwidth networks and telephone systems. Some of the
leading metacomputing research projects are Globus, Le-
gion, VDCE, and MSHN, to name a few. These will be dis-
cussed further in Section 2.

Figure 1 shows an example of a small-scale metacomput-
ing system. The compute nodes in the system are located at
three different sites. Some of the nodes are high-end super-
computing systems, while others are workstations. The ex-
ample shown in this figure has three kinds of interconnec-
tion networks: (i) the multi-stage interconnection network
within the IBM SP-2, (ii) local networks at each site, and
(iii) high bandwidth long haul ATM or T3 links between the
sites.

Although network-based computing platforms offer sig-
nificant advantages for high performance computing, effec-
tive use of their resources is still a major challenge. Compu-
tational and communication resources are typically shared
among different applications. Computational tasks may be
preempted by higher priorityprocesses. Network conditions
change continuously, and run-time loads cannot be deter-
mined apriori. Applications must therefore be capable of



adapting to changing system conditions.
In this paper, we develop communication techniques that

enable applications to adapt to variations in network con-
ditions. We focus on collective communication patterns
among application processes executing over a heteroge-
neous network. Our goal is to develop efficient application-
level implementations of these communication routines. We
assume the availability of end-to-end send and receive com-
munication routines, which can be invoked between any pair
of nodes. The details of network topology, routing, and flow
control policies are therefore hidden from the application.

Efficient algorithms for various collective communica-
tion patterns have been developed for tightly coupled paral-
lel architectures with homogeneous networks [2, 19]. These
algorithms have been incorporated into communication li-
braries and implementations of MPI. However, these tech-
niques can perform poorly in metacomputing systems due
to the heterogeneity among network bandwidths. Further,
these are static algorithms, with no provision for adaptivity
to network conditions.

In Section 3, we introduce our approach for developing
network-aware communication techniques. The key com-
ponents of our approach are: (i) a directory service which
provides information on current network performance, (ii) a
communication model which estimates the time for individ-
ual communication events, (iii) timing diagrams which ab-
stractly represent both the communication pattern and the
network performance, and (iv) scheduling algorithms which
reduce overall communication time by appropriately posi-
tioning the communication events in the timing diagram.

Our approach is a general one, and can be used for
different collective communication patterns and a variety
of network-based architectures. In Section 4, we use our
scheduling framework for the all-to-all personalized com-
munication pattern in a typical metacomputing environ-
ment. We develop three different scheduling algorithms for
this problem. Our first algorithm is a matching-based algo-
rithm. It first constructs a bipartite graph, with edge weights
equal to communication costs between processor pairs. A
series of maximum weight complete matchings in this graph
are then computed. The communication schedule is derived
from these matchings. Our second algorithm is a greedy ap-
proximation to this matching-based algorithm. The third al-
gorithm is a heuristic that has been used for the open shop
scheduling problem. We evaluate the performance of our al-
gorithms by simulation, and compare it with a well-known
scheduling technique used in homogeneous scenarios. Our
results show excellent improvements in performance.

This paper represents one of the early efforts to formalize
research problems related to network-based computing. In
Section 6, we discuss other fundamental research issues that
are motivated by the need for network-aware applications.
We consider enhancements to our communication model

and techniques to reduce the complexity of the scheduling
algorithm. We also discuss communication scheduling in
the presence of QoS constraints.

The rest of the paper is organized as follows: Section 2
discusses related research projects in metacomputing. Sec-
tion 3 introduces our approach for derivingefficient commu-
nication techniques, and describes each of the components
in detail. Section 4 formulates the all-to-all heterogeneous
data communication problem, and presents our schedul-
ing algorithms for this communication pattern. Section 5
presents simulation results of our algorithms. Section 6 dis-
cusses future research directions for network-aware com-
munication scheduling. Section 7 concludes the paper.

2. Related Work

Several research projects are developing software infras-
tructure and defining API functionality for network-based
computing systems. We believe that our work will com-
plement these software development efforts. Our schedul-
ing techniques from Section 4 can be incorporated into these
software systems and tool-kits. A few projects are also in-
vestigating performance related issues.

The Globus project [9, 10] at ANL and USC-ISI is de-
veloping a set of low level core services, called the Globus
tool-kit. This includes modules for resource location and al-
location, communications, authentication, process creation,
and data access. Higher level systems software and appli-
cations then build upon the functionality provided by the
tool-kit. Nexus is the communications library component of
the Globus tool-kit. Globus incorporates a directory service,
called the Metacomputing Directory Service (MDS). Appli-
cations can query MDS for information on current loads on
the processing nodes, as well as end-to-end network perfor-
mance between node pairs.

The Legion project at the University of Virginia uses
an object oriented approach to metacomputing system de-
sign [12, 18]. The philosophy is to hide the complexity of
resource scheduling, load balancing, etc. from the applica-
tion developer. The object oriented properties of encapsula-
tion and inheritance, as well as software reuse, fault contain-
ment, and reduction in complexity are used to achieve this
goal.

The Virtual Distributed Computing Environment
(VDCE) at Syracuse University [25, 26] aims to develop a
complete framework for application development, configu-
ration, and execution. A GUI allows library routines or user
developed routines to be combined into an application task
graph. The task graph is then interpreted and configured to
execute on currently available resources.

At Carnegie Mellon, the ReMoS (Resource Monitoring
System) project [7] is developing a portable and system-
independent API that allows applications to obtain informa-



tion about network status and capabilities. Most architec-
tures generate information about the network hardware and
software in a system-specific format. ReMoS provides a
standard interface format that is independent of the details of
any particular type of network. ReMoS explicitly accounts
for resource sharing between applications.

The Management System for Heterogeneous Networks
(MSHN) [21] project at Naval Postgraduate School, USC,
and Purdue University is designing and implementing a Re-
source Management System (RMS) for distributed hetero-
geneous and shared environments. MSHN assumes hetero-
geneity in resources, processes, and QoS requirements. Pro-
cesses may have different priorities, deadlines, and compute
characteristics. The goal is to assign resources to individ-
ual applications so that their QoS requirements are satis-
fied. MSHN also addresses uncertainty due to unpredictable
loads in the operating environment. Various task mapping
and scheduling algorithms are being developed [1, 20]. Our
research is a part of the MSHN effort.

Communication performance in the presence of multi-
ple heterogeneous networks has been investigated in [14,
15]. Experiments are performed on a local cluster of work-
stations, interconnected with ATM, Ethernet, and Fibre-
Channel networks. The performance characteristics of each
of the networks are first evaluated by measuring the time
for sending messages of various sizes over the particular
network. These characteristics are used to choose a suit-
able technique for data communication. The Performance
Based Path Selection (PBPS) technique selects one of the
networks to be used for a communication event, depending
on the size of the message. The Aggregation technique uses
multiple networks at the same time, by breaking up the mes-
sage into multiple parts and sending these parts over differ-
ent networks. However, this research only considered point-
to-point communication between a pair of nodes in the sys-
tem. Collective communication patterns such as all-to-all or
all-to-some were not studied. Such collective communica-
tion patterns typically occur in most parallel applications.

Distributed heterogeneous computing has important mil-
itary applications as well. The BADD (Battlefield Aware-
ness and Data Dissemination) [6] program at DARPA aims
to develop an operational distributed data communication
system. The goal is to deliver to warfighters an accurate,
timely, and consistent picture of the battlefield, as well as to
provide access to key transmission mechanisms and world-
wide data repositories. [24] considers an important data
staging problem that arises in such heterogeneous network-
ing environments, where data items must be moved from
their initial locations to requester nodes. Each data re-
quest also has a time-deadline and priority associated with
it. In [24], a heuristic based on the multiple-source shortest-
path algorithm is used to find a communication schedule for
this data staging problem. In Section 6, we mention some
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Figure 2. Our communication scheduling ap-
proach.

related problems.

3. Our Approach: A Uniform Framework for
Communication Scheduling

Figure 2 shows our approach for developing adaptive
communication techniques, which are essential for network-
aware applications. We use a communication scheduling
framework consisting of four key components: (i) A di-
rectory service, (ii) An analytical communication model,
(iii) Timing diagrams, and (iv) Scheduling algorithms. The
directory service provides information on current network
performance. Based on this information and the applica-
tion’s communication pattern, the communication model is
used to compute the time for each node-to-node commu-
nication event. This is then represented using a timing di-
agram. A scheduling algorithm uses a timing diagram as
input, and appropriately schedules the events to reduce the
overall communication time. We discuss each of these com-
ponents in further detail.

3.1. Directory Service

Since network load in shared environments varies with
time, a directory service which provides information on cur-
rent network performance is essential. A suitable directory
infrastructure is therefore a key component of our frame-
work for developing adaptive communication techniques.



AMES ANL IND USC-ISI NCSA
AMES 34.5 89.5 12 42

ANL 34.5 20 26.5 4.5
IND 89.5 20 42.5 21.5

USC-ISI 12 26.5 42.5 29.5
NCSA 42 4.5 21.5 29.5

Table 1. Latency (ms) between 5 GUSTO sites.

AMES ANL IND USC-ISI NCSA
AMES 512 246 2044 391

ANL 512 491 693 2402
IND 246 491 311 448

USC-ISI 2044 693 311 4976
NCSA 391 2402 448 4976

Table 2. Bandwidth (kbits/s) between 5
GUSTO sites.

The information provided by the directory makes it possi-
ble to develop communication schedules which are adaptive
to changes in network performance. At run-time, applica-
tions can query the directory service through an Application
Programming Interface. For example, the Metacomputing
Directory Service (MDS) in Globus [8] provides current in-
formation on start-up costs and end-to-end bandwidths be-
tween every pair of processors. The ReMoS API, developed
at CMU [7], is an example of an API that is independent of
the details of network hardware.

Table 1 and 2 are examples of information provided
by the directory service in GUSTO, which is a testbed of
Globus. The directory provides current values of end-to-end
network latency and bandwidth between any pair of comput-
ing sites. The tables show five of the GUSTO sites: NASA
AMES, Argonne National Lab, University of Indiana, USC-
ISI, and NCSA.

The directory service takes into account the current net-
work load, including the load imposed by the application. If
the paths between two distinct node pairs share a common
link, the bandwidth of the common link is divided among
these communicating pairs.

3.2. Communication Model

We use a communication model to analytically represent
the network performance. Using information about the ap-
plication’s communication pattern and the performance pa-
rameters provided by the directory service, the communica-

tion model can estimate the time for individualnode-to-node
communication events.

Consider a typical metacomputing system, such as shown
in Figure 1. A path between compute nodes typically
includes links from multiple networks of different band-
widths. For example, in Figure 1, a message from a node in
Site 1 to a node in Site 2 would pass through the local net-
work at both sites and the long haul link which interconnects
these geographically distributed sites.

Our communication model represents the network per-
formance between any processor pair (

	��
,
	��

) using two pa-
rameters: a start-up cost � ��� and a data transmission rate� ���

. The time for sending a � byte message between these
nodes is then given by � ���	��
�� � . The two parameters ab-
stractly represent the total time for traversing all the links on
the path between

	 �
and

	 �
. The model ignores the negligi-

ble delays incurred by contention at intermediate links and
nodes on the path between

	 �
and

	 �
.

Our model focuses on the effective network performance
at the application layer. We assume the availability of end-
to-end send and receive communication routines, which can
be invoked between any pair of processor nodes. Since the
details of network topology, routing, and flow control poli-
cies are not visible to the application, our model does not in-
corporate these parameters.

A similar communication model has been widely used for
tightly-coupled distributed memory systems with good re-
sults [27]. In metacomputing systems, typical values for the
start-up cost could be in the range of 10 to 50 ms, while typ-
ical values for the bandwidth could be in the range of kb/s
to hundreds of Mb/s.

The model assumes that a node is allowed to simultane-
ously participate in at most one send and one receive oper-
ation. When a node has multiple messages to send, it per-
forms these send operations one after another. Current hard-
ware and software do not easily enable multiple messages
to be transmitted simultaneously. Software support for non-
blocking and multithreaded communication sometimes al-
low applications to initiate multiple send and receive oper-
ations. However, all these operations are eventually serial-
ized by the single hardware port to the network. Our model
accurately represents this phenomenon.

If multiple nodes simultaneously send to any node
	��

, we
say that node contention occurs at

	��
. The model assumes

that these messages are received one after the other at
	 �

.
The validityof this assumption can be seen by examining the
events involved in a message transmission from

	 �
to
	 �

. A
control message is first transmitted by

	 �
. The actual data

is sent only after this control message is acknowledged by	��
. If

	��
is busy receiving from a different node, it sends the

acknowledgement to
	��

only after completing the previous
receive operation.



3.3. Timing Diagrams

We use timing diagrams to represent communication
schedules for given network characteristics and a commu-
nication pattern. Examples of timing diagrams for all-to-all
personalized communication with 5 processors are shown in
Figures 4 and 7. The diagram consists of

	
columns, one per

processor. The vertical axis represents time. The communi-
cation events in column � represent the messages sent from
processor

	 �
. The rectangle labeled � in column � represents

the message sent from
	��

to
	����

. The height of the rectan-
gle denotes the time for the communication event � . Once
the message sizes and the values of � � � and

� � �
between all

processor pairs are known, the heights of all the rectangles
can be determined. Thus, the timing diagram inherently ab-
sorbs the heterogeneity in network parameters and message
lengths.

3.4. Scheduling Algorithms

Our communication scheduling algorithms determine the
positions of the individual events in the timing diagram so
that the completion time is minimized. A valid communica-
tion schedule must satisfy the following conditions – since
a node cannot send multiple message simultaneously, none
of the rectangles in a column can overlap in time. Similarly,
since multiple simultaneous receive events are not permitted
at a processor, all the rectangles with the same label � must
have mutually disjoint time intervals.

We do not consider “indirect” schedules where messages
from different sources are combined at intermediate nodes
and then forwarded to common destinations. This is because
such combine-and-forward schemes increase the volume of
traffic to be communicated. Since data in metacomputing
applications is often extremely voluminous, this can lead to
large communication costs.

We also do not allow messages to be partitioned. Since
the start-up overhead is incurred for each message transmis-
sion, such a partitioning would increase the start-up over-
heads.

The next section presents our scheduling algorithms for
the all-to-all personalized communication pattern.

4. Scheduling Algorithms for Total Exchange

In this section, we develop communication scheduling al-
gorithms for total exchange, or all-to-all personalized com-
munication. We briefly describe a well known communica-
tion algorithm for this problem. Section 5 shows the perfor-
�
A receive schedule can be similarly constructed, where the communi-

cation events in column � represent messages received by processor �	� .

The width of the rectangle does not have any significance.

mance improvements achieved by our new algorithms over
this algorithm.

4.1. Communication Pattern and Scheduling Com-
plexity

All-to-all personalized communication occurs very fre-
quently in HPC applications. For example, consider a two-
dimensional matrix which is initially distributed by rows
among the processors. If the matrix must be transposed
so that the final distribution has columns on each proces-
sor, the resulting communication pattern is an all-to-all per-
sonalized communication. Here, each compute node has a
distinct message for every other node in the system. For
a
	

processor system, this communication pattern consists
of

���
	 �  communication events. The message sizes be-
tween all pairs of nodes are not necessarily the same. When
the network is heterogeneous, the individual communica-
tion events in the timing diagram will have different lengths.
These communication events in the timing diagram must be
efficiently scheduled. The goal is to reduce the completion
time � 
��� of the communication schedule, i.e. the time at
which the last communication event is completed. Observe
that the completion time of the schedule cannot be less than
the summation of send times or receive times at any proces-
sor, whichever is larger. This is therefore a lower bound �����
on the completion time. To analyze the complexity of this
communication scheduling problem, we first state it as a de-
cision problem.

TOT EXCH: Given a distributed heterogeneous system
with

	
processors (

	��
, ... ,

	���� � ), a deadline � , and a
	�� 	

communication matrix C, where � ��� � is the time for the
communication event from

	 �
to
	 �

,  "!#�%$&�"' 	
is there a

communication schedule with completion time less than or
equal to � ?
Theorem 1: TOT EXCH is NP-Complete for

	)(+*
.

Proof: The theorem can be proved by transformation from
the open shop scheduling problem. The problem [5, 11] con-
sists of � machines and , jobs. Each machine � performs
task � �-� � of job � . The execution time of all tasks are given in
an , � � matrix. There are no dependences among the tasks
of a job. Hence there are no restrictions on the sequence in
which these tasks are to be executed. However, any machine
can work on only one job at a time and any job can be pro-
cessed by only one machine at a time. The goal is to sched-
ule the tasks on the machines so as to minimize the finish
time. The problem is known to be NP-Complete for � (#*
[11]. Details of our proof can be found in [3]. .
4.2. Baseline Algorithm

Since the total exchange communication scheduling
problem is NP-Complete, we have developed heuristic algo-
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Figure 3. Example problem.

rithms. As a baseline algorithm for performance compari-
son with our heuristic algorithms, we shall use the caterpillar
algorithm, which is widely used in tightly coupled homoge-
neous systems. This generates a schedule with

	
steps. In

step � , �  ! ��' 	 
, each compute node

	 � �  ! � ' 	 
sends a message to

	 � ��� ��� 
��	� � [13]. Such a schedule does
not incur any node contention in a homogeneous system,
when the message sizes and network bandwidths are uni-
form. This is because all the communication events have
the same duration, i.e. all the rectangles in the timing di-
agram have the same height. An important disadvantage
of the baseline algorithm is that it derives a fixed schedule,
which is not adaptive to variations in message lengths or net-
work performance.

We illustrate our scheduling techniques with a running
example. Figure 3 shows an example communication prob-
lem, represented in the timing diagram formalism. The un-
scheduled communication events originating from each pro-
cessor are shown in increasing order of destination proces-
sor number.

In our examples, we assume that the diagonal entries in C
are zeroes. This is valid, since the time for a local memory
copy operation is negligible in comparison with the time for
sending messages over the heterogeneous network.

Using the baseline algorithm, the schedule shown in Fig-
ure 4 is derived. Observe that the longer communication
events in the earlier steps cause the later communication
steps to be delayed.
Theorem 2: Performance Bound for the Baseline Algo-
rithm.

1. The completion time � 
��� of the baseline schedule is
always within

�
� times the lower bound �%��� .

2. The above bound is tight, i.e. there exist instances
where the baseline schedule takes

�
� times the lower

bound.
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Figure 4. Schedule generated by baseline al-
gorithm.

Proof: We first introduce the notion of a dependence
graph DG for a given schedule. This is a directed graph with	 � nodes, one for each communication event. A directed
edge is present from node � to node � if there exists a sequen-
tial dependency between the corresponding communication
events in the schedule.

Figure 5 shows the dependence graph for the baseline
schedule with 5 processors. Column � contains all the com-
munication events sent from Processor

	 �
, in the order that

they appear in the schedule. Observe that the edges in DG
are of two kinds: (i) vertical edges between adjacent nodes
in the same column, and (ii) diagonal edges between nodes
in adjacent columns. A correspondence exists between the
graph DG and the communication matrix C. Each node in
DG corresponds to an entry in C. If a vertical edge exists
between two nodes, then these correspond to entries in the
same column of C. If a diagonal edge is present, then the
nodes correspond to entries in the same row of C.

Each path in the DG for the baseline schedule contains
	

nodes and
	�
��

edges. The completion time is equal to the
weight of the longest path in the graph. Let � � $ � � $����$&�

�
be

the nodes in the longest path. Then,

� 
 ����� � � � � �
� �� � � � (1)

Since adjacent nodes in any path belong to the same row
or column of C, and from the definition of � ��� ,

� ����� ������� � � � � � �
 $ � � � � ���  $����$ � � ��� � � � � �� (2)

We can now rewrite Eq (1) as
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� 
 ����� � � � � � �
�� � � � � � � �� �� � � � ��� � � � � 

� 
��� !
	
* � ��� � � � � � � � �

 $����$ � � ��� � � � �  � (3)

From Eq (2) and Eq (3)

� 
 ��� !
	
* � � ��� (4)

To prove the tightness of the bound, consider the follow-
ing communication matrix:

� �
���
�
� ������ � ���� � ���� �����

�	��



Each dependence path consists of 4 elements. The first
element is always on the diagonal. Adjacent elements in the
path are either in the same row or the same column. In the
former case, the � ��� element in the path is to the immediate
left of the � 
 � ���

element. In the latter case, the � �
� element
is immediately below the � 
 � �
�

element. For this example,
the critical path contains all the unit-time entries, and takes
4 units of time. The lower bound is

* � * � � .
Therefore,

� 
 ���
� ��� � �* � * �� *

(5)

.���
is an arbitrarily small numer.

4.3. Matching-Based Scheduling Techniques

We present two matching-based scheduling techniques
for the total exchange problem. The first technique finds a
series of maximum weight matchings in a bipartite graph.
We also consider the variation wherein minimum matchings
are found.

Our algorithm partitions the
	 � 	

communication
events into

	
independent steps using graph matching al-

gorithms. For a
	

node system, we construct a bipartite
graph with

	
vertices on each side. The edge from � � on

the left side to � � on the right side is assigned a weight
equal to the time for the communication event from

	 �
to	��

. Thus, there are
����	 �  edges in the bipartite graph.

A complete matching in such a graph consists of
	

edges,
and corresponds to a permutation of

��	 � $����$ 	���� �  . Such
a matching can therefore represent a valid communication
step, without contention at any processor. Well known algo-
rithms exist for finding a maximum weight complete match-
ing [17]. This is identical to the linear assignment prob-
lem. The complexity of this algorithm is

���
	 � 
. Our algo-

rithm therefore consists of finding a maximum weight com-
plete matching in the graph, deleting the edges of the match-
ing from the graph, and then repeating the process until

	
such matchings have been found. Thus, the total complex-
ity is

���
	 �  . Although the schedule finds the communica-
tion events step by step, the communication phase does not
impose a synchronization among the processors after each
step. A communication event will begin whenever the send-
ing and receiving processors are both ready.

In theory, the completion time of the matching based
techniques can be

�
� times the lower bound. We can prove

a result similar to part (i) of Theorem 2. In practice, the per-
formance is significantly better, and the bound is therefore
not tight. Unlike the fixed schedule derived by the baseline
algorithm, our matching based schedule is adaptive. When
the lengths of the communication events change with vari-
ations in network performance, the algorithm finds a differ-
ent schedule with a low completion time. Section 5 presents
simulation results.

For the example of Figure 3, our adaptive maximum
matching algorithm derives the schedule shown in Figure 6.
The matching technique groups together communication
events with similar length, thereby reducing the idle cycles.
Figure 6 is an optimal schedule for this example, since there
exists a processor (

	 � or
	
� ) which is busy during the entire

schedule.

4.4. Greedy Technique

The greedy technique is an approximation to the match-
ing technique, with a lower computational complexity. Ini-
tially, the communication events within each processor are
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Figure 6. Schedule generated by a series of
maximum matchings.

rank ordered in decreasing order of communication time. A
series of communication steps is then composed. In com-
posing each step, we traverse the rank ordered list of every
processor, with the goal of finding a destination processor.
If a destination processor is found, it will be the first proces-
sor in its list that has not been selected by this processor in a
previous step, and that is not the destination of another pro-
cessor in the same step. If the end of the list is reached with-
out finding a destination, the processor idles during this step,
and we proceed to the next processor. Due to such incom-
plete steps, the total number of steps could be larger than

	
.

To ensure fairness, a processor which was idle in any step
will be the first to pick the destination processor in the next
step. If there was no idle processor in a step, the last proces-
sor in any step will be the first in the next step. The greedy
algorithm has a computational complexity of

����	 � 
. From

the description above, it is clear that the greedy algorithm is
adaptive to the lengths of the communication events. For the
previous example, the communication schedule derived by
the greedy algorithm is shown in Figure 7.

4.5. Open Shop Technique

Since our communication problem has similarities to
the open shop scheduling problem, we have developed a
scheduling algorithm based on a heuristic derived for the
open shop problem [22]. Other approximate algorithms for
the open shop problem are given in [4].

Each processor is considered as two independent entities,
a sender and a receiver. The following data structures are
maintained by the algorithm:

� For each sender �%$� #! � ' 	
, a set

� �
of receivers

is maintained. Initially, this consists of all receivers to
which � must send a message. When a communication
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Figure 7. Schedule generated by the greedy
algorithm.

event is scheduled, the appropriate receiver is deleted
from the receiver set.

� The
	

-element arrays sendavail and recvavail contain
information about the availability of the corresponding
senders and receivers. For example, the � ��� element of
sendavail specifies the earliest time at which sender �
can participate in future send operations. All elements
of both these arrays are initialized to 0.

The algorithm proceeds as follows:

� Whenever a sender � becomes available at time sen-
davail[i], its receiver set

� �
is scanned, and the ear-

liest available receiver � is selected. The communi-
cation event from � to � is scheduled to begin at time
t=max(sendavail[i], recvavail[j]). sendavail[i] and
recvavail[j] are assigned the value � � ��� � $ ��� , since the
sender � and receiver � will be busy until this time. Fur-
ther, � is deleted from

� �
.

� If multiple senders become available at the same time
(for example, at time 0), they are processed in an arbi-
trary order. However, all senders that become available
at time � are processed before any senders that become
available at a later time. The algorithm maintains a list
of senders in increasing order of their time of availabil-
ity.

� Whenever a sender is finished with all its operations, it
is deleted from this list. The algorithmterminates when
all the senders are thus deleted.

The total number of communication events to be sched-
uled is

���
	 �  . The scheduling of each event takes
���
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Figure 8. Schedule generated by the open
shop algorithm.

time, since the elements of the corresponding receiver set
must be scanned. The algorithm therefore runs in time���
	���

.
Observe that the algorithm is a greedy one. At any time a

sender is free, the heuristic assigns a communication event
to any of the elements in its receiver set. Idle cycles are in-
serted in a sender’s schedule only if none of its potential re-
ceivers are available. For our runningexample, the schedule
derived by this heuristic is shown in Figure 8.
Theorem 3: The open shop heuristic algorithm is guaran-
teed to find a communication schedule whose completion
time is within twice the lower bound.

Proof: Assume, without loss of generality, that the last
sender to finish all its transmissions is � . Let � be the receiver
that � sends its last message to. It can be deduced that during
the idle cycles in sender � ’s schedule, receiver � must have
been always busy. If this were not the case, the algorithm
would have scheduled the communication event from � to �
at this time. Thus, we can conclude that the sum of the idle
cycles in sender � ’s schedule is bounded by the total time for
communication events having � as the receiver, i.e., the sum
of elements in row � of C. The completion time is the sum
of the total time for send events from sender � , i.e., the sum
of elements in column � of C, and the idle cycles in sender � .
Thus, the completion time is at most the sum of a row and a
column in the communication matrix � , and is hence within
twice the lower bound. .
5. Experimental Results

We have developed a software simulator that executes
the scheduling algorithms discussed in Section 4, and cal-
culates the completion time for each of them. The simulator

accepts processor count and communication times as input,
and generates the schedules based on these techniques. We
have used this simulation tool to evaluate the baseline, max-
imum matching, minimum matching, greedy, and open shop
scheduling techniques.

The simulator generates random performance character-
istics for pairwise network performance, using information
from the GUSTO directory service as a guideline. The com-
munication matrix C can then be generated for any fixed
message size. We have selected message sizes of 1kB, 1MB,
and a random mix of these two sizes. In our experiments,
we assume that the diagonal entries in C are zeroes. This
is valid, since the time for a local memory copy operation is
negligible in comparison with the time for sending messages
over the heterogeneous network. The scheduling techniques
are then applied to this communication matrix. Results for
the different message sizes are shown in Figures 9, 10, and
11. Systems with up to 50 processors were considered.

Figure 12 considers a scenario when some of the proces-
sors are designated as servers. The message sizes from the
servers to the other (client) processors are assumed to be
large. The message sizes between the servers themselves
and also between the client processors are small. This is
typical in multimedia applications, where images and video
clips reside on servers, and are accessed by other proces-
sors. In our experiment, 20% of the processors are assumed
to be servers. Data is also assumed to be partitioned over
the servers, so that the load on the servers is balanced. It can
be seen that the baseline algorithm performs very poorly in
such scenarios. Our algorithms perform 2 to 5 times faster
than the baseline in these examples.

The graphs clearly show the performance improvements
that can be achieved by our communication scheduling tech-
niques. The open shop algorithm finds schedules that are
very close to the lower bound, often within 2%, and al-
ways within 10 %. The maximum and minimum matching
based techniques find schedules with comparable comple-
tion times. These are within 15% of the lower bound. The
schedules generated by the greedy algorithm are within 25%
of the lower bound. The schedules generated by the base-
line algorithm sometimes take upto 6 times longer than the
lower bound. Based on our results, the open shop algorithm
achieves the best performance.

6. Enhancements and Future Research

In the previous sections, we presented our approach for
developing communication scheduling techniques that are
adaptive to network performance variations. To the best of
our knowledge, this is one of the early efforts in formalizing
communication problems relevant to network-based com-
puting. Several exciting research issues remain to be ex-
plored. In this section, we discuss some future research di-
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rections that are motivated by the need for network-aware
communication scheduling.

6.1. Enhancing the Model

Our scheduling algorithms were developed using a sim-
ple yet effective communication model. In Section 3, we
mentioned the assumptions made by our model, and the va-
lidity of these assumptions. Enhanced versions of the model
can be formulated by relaxing some of these assumptions.
For example, one restriction is that a processor can send and
receive only one message at a time. This restriction can be
relaxed in two ways.

When multiple messages arrive at a node, we can assume
that the messages are received in an interleaved fashion. For
example, the use of multithreading allows multiple simulta-
neous communication events in Nexus. An additional pa-
rameter � can be introduced for the overhead incurred in
context switching between the multiple receiving threads.
Thus, if � � and � � are the times for individuallyreceiving two
messages, the total time for receiving them simultaneously
would be

��� �
�
 � � � � � �


.

It could also be assumed that a finite buffer space is avail-
able at nodes to receive messages. When multiple messages
arrive at a node, one of the messages is received by the appli-
cation, while the others are queued in the buffer. The send-
ing nodes do not wait until the receive operation is complete,
but only until the message is stored in the buffer. If the buffer
is full, the sender must wait until adequate free space is cre-
ated in the buffer.

6.2. Incremental Dynamic Scheduling

The communication schedules presented in Section 4 are
computed at run-time based on information obtained from
the directory service. In many sensor-based applications, a
series of continuously arriving data sets are processed in an
identical manner. In such cases, the overhead for repeat-
edly calculating the communication schedule at run-time
can be expensive, especially when the number of processors
is large. It is therefore necessary to develop scheduling tech-
niques which have significantly lower computational costs.

An incremental approach would be one way to reduce the
complexity of deriving dynamic communication schedules.
Here, a communication schedule is computed once, either
at compile time or during the first run-time occurrence. At
each subsequent invocation, the incremental algorithm must
refine this communication schedule to find a new commu-
nication schedule. The algorithm would query the directory
service regarding changes in the bandwidths. In this context,
the research problem is that of developing fast algorithms
for refining an existing communication schedule.

6.3. Enhancing Adaptivity of the Schedules

In some scenarios, the lengths of all communication
events may not be known even when the communication is
started. This could happen because variations in network
performance are so rapid that significant changes could oc-
cur within the duration of the communication schedule. In
such cases, an initial communication schedule can be de-
rived using estimates of the communication times. The
schedule can then be modified at intermediate checkpoints.
At these checkpoints, processors decide whether the differ-
ence between the estimated time and actual time is large
enough to require rescheduling. The checkpoints could be
defined in different ways: after each communication event
is complete (

���
	 
checkpoints), or after half the remain-

ing communication events are complete (
��������� 	 

check-
points), and so on.

6.4. Scheduling with Critical Resources or QoS
Constraints

We have discussed communication schedules where the
goal is to minimize the completion time. In many scenar-
ios, other cost measures are also important. For example,
one of the processors in the heterogeneous system could be
a critical resource (e.g., an expensive supercomputer). The
schedule should complete the communication events of this
processor as early as possible, even if it delays the other pro-
cessors.

Quality of Service (QoS) requirements in some applica-
tions can introduce other variations in the problem formula-
tion. For example, data forwarding and data staging prob-
lems arise in the BADD project [6]. The QoS parameters
associated with each message are deadlines and priorities.
The communication schedule must ensure that data items
reach their destinations by the specified real-time deadlines.
When multiple communication events contend for a com-
munication link, the scheduling algorithm must sequence
them based on their respective deadlines and priorities.

7. Conclusion

In this paper, we have developed a uniform framework
for communication scheduling in heterogeneous network-
based systems. The framework consists of a directory
service, a communication model, timing diagrams, and
scheduling algorithms. We discussed our approach for the
design of adaptive communication techniques, and applied
it to the problem of all-to-all personalized communication.
Although this problem has been thoroughly researched for
homogeneous systems, we showed that well known algo-
rithms perform poorly in the presence of network hetero-
geneity. We developed algorithms based on bipartite graph



matching, and a heuristic algorithms based on Open shop
scheduling. We showed that our algorithms performed sig-
nificantly better than a well known homogeneous commu-
nication scheduling algorithm. Our algorithms are adaptive
and execute at run-time, based on network performance in-
formation obtained from the directory service. To the best
of our knowledge, this is one of the early efforts in formaliz-
ing communication problems in a distributed heterogeneous
computing environment. Our paper also discusses several
new research problems related to communication schedul-
ing in network-based systems, that arise due to the unique
features of such environments. These include communica-
tion scheduling with QoS constraints and techniques to re-
duce the complexity of the scheduling algorithm.
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