Appears in the Proceedings of the 7" I1EEE Intnl. Symposium on High Performance Distributed Computing (HPDC 1998)1

Adaptive Communication Algorithmsfor Distributed Heter ogeneous Systems

Prashanth B. Bhat * and Viktor K. Prasanna*
Department of EE-Systems, EEB 200C
University of Southern California

Los Angeles, CA 90089-2562

{prabhat, prasanna} @hal cyon.usc.edu

Abstract

Heterogeneous network-based systems are emerging as
attractive computing platformsfor HPC applications. This
paper discusses fundamental research issues that must be
addressed to enable network-aware communication at the
application level. We present a uniform framework for de-
vel oping adapti vecommuni cati on schedul esfor variouscol -
lective communication patterns. Schedules are developed
at run-time, based on network performance i nfor mation ob-
tained froma directory service. Weillustrateour framework
by devel oping communication schedules for total exchange.
Our first algorithm devel ops a schedul e by computing a se-
ries of matchingsin a bipartite graph. We also present a
O(P3) heuristic algorithm, whose compl etiontimeiswithin
twicethe optimal. Thisalgorithmis based on the open shop
scheduling problem. Simulation results show performance
improvements of a factor of 5 over well known homogeneous
scheduling techniques.

1. Introduction

With recent advances in high-speed networks, metacom-
puting has emerged as aviable and attractive computational
paradigm. A metacomputing system [23] consists of ge-
ographically distributed supercomputers and visualization
devices. These are interconnected by a heterogeneous col-
lection of local and wide-area networks. High performance
applications can be executed over such a networked virtual
supercomputer, wherein the distributed computational re-
sources are used in a coordinated way, very much as though
they were part of asingle computer system.

The potentia of metacomputing has been demonstrated
by the Globa Information Infrastructure (Gll) testbed at
SC’95[16]. Thetestbed linked dozens of high performance

*Supported by the DARPA/ITO Quorum Program through the Naval
Postgraduate School under subcontract number N62271-97-M-0931.

C.S. Raghavendra
The Aerospace Corporation
P. O. Box 29257
Los Angeles, CA 90009
raghu@aero.org

Multistage Interconnection
Site2 Network (40 MB/s)

e ——— — A —

\
|
|
|
sp-2)

High Bandwidth Long Haul

Links (T1/T3/0C-3)
(155 Mbls)

Local Network

\
(10 Mbrs) !

4+ Workstations
N Site 3 /

Figure 1. A typical metacomputing system.

computers and visualization machines with existing high-
bandwidth networks and telephone systems. Some of the
leading metacomputing research projects are Globus, Le-
gion, VDCE, and MSHN, to name afew. These will bedis-
cussed further in Section 2.

Figure 1 showsan example of asmall-scal e metacomput-
ing system. The compute nodesin the system are located at
three different sites. Some of the nodes are high-end super-
computing systems, while others are workstations. The ex-
ample shown in this figure has three kinds of interconnec-
tion networks: (i) the multi-stage interconnection network
within the IBM SP-2, (ii) local networks at each site, and
(iii) high bandwidth long haul ATM or T3 linksbetween the
sSites.

Although network-based computing platforms offer sig-
nificant advantages for high performance computing, effec-
tiveuse of their resourcesis till amajor challenge. Compu-
tational and communication resources are typicaly shared
among different applications. Computational tasks may be
preempted by higher priority processes. Network conditions
change continuoudly, and run-time loads cannot be deter-
mined apriori. Applications must therefore be capable of

adapting to changing system conditions.

In this paper, we devel op communi cation techniquesthat
enable applications to adapt to variations in network con-
ditions. We focus on collective communication patterns
among application processes executing over a heteroge-
neous network. Our goal isto develop efficient application-
level implementati onsof these communi cation routines. We
assumethe availability of end-to-end send and receive com-
muni cation routines, which can beinvoked between any pair
of nodes. The detailsof network topol ogy, routing, and flow
control policiesare therefore hidden from the application.

Efficient algorithms for various collective communica
tion patterns have been devel oped for tightly coupled paral -
lel architectureswith homogeneous networks[2, 19]. These
algorithms have been incorporated into communication li-
braries and implementations of MPI. However, these tech-
niques can perform poorly in metacomputing systems due
to the heterogeneity among network bandwidths. Further,
these are static algorithms, with no provision for adaptivity
to network conditions.

In Section 3, we introduce our approach for devel oping
network-aware communication techniques. The key com-
ponents of our approach are: (i) a directory service which
providesinformation on current network performance, (ii) a
communication model which estimatesthe timefor individ-
ual communication events, (iii) timing diagrams which ab-
stractly represent both the communication pattern and the
network performance, and (iv) scheduling a gorithmswhich
reduce overall communication time by appropriately posi-
tioning the communi cation events in the timing diagram.

Our approach is a genera one, and can be used for
different collective communication patterns and a variety
of network-based architectures. In Section 4, we use our
scheduling framework for the all-to-all personalized com-
munication pattern in a typical metacomputing environ-
ment. We devel op three different scheduling algorithmsfor
this problem. Our first algorithmis a matching-based algo-
rithm. It first constructsabipartitegraph, with edge weights
equa to communication costs between processor pairs. A
series of maximum wel ght compl ete matchingsin thisgraph
are then computed. The communication scheduleis derived
from these matchings. Our second algorithmisagreedy ap-
proximation to this matching-based algorithm. Thethird -
gorithmis a heuristic that has been used for the open shop
scheduling problem. We eval uate the performance of our al-
gorithms by simulation, and compare it with a well-known
scheduling technique used in homogeneous scenarios. Our
results show excellent improvements in performance.

This paper represents one of theearly effortstoformalize
research problems related to network-based computing. In
Section 6, we discuss other fundamental research issuesthat
are motivated by the need for network-aware applications.
We consider enhancements to our communication model

and techniques to reduce the complexity of the scheduling
algorithm. We aso discuss communication scheduling in
the presence of QoS constraints.

The rest of the paper is organized as follows. Section 2
discusses related research projects in metacomputing. Sec-
tion 3introducesour approach for deriving efficient commu-
ni cation techniques, and describes each of the components
in detail. Section 4 formulates the all-to-all heterogeneous
data communication problem, and presents our schedul-
ing agorithms for this communication pattern. Section 5
presents simulation results of our algorithms. Section 6 dis-
cusses future research directions for network-aware com-
munication scheduling. Section 7 concludes the paper.

2. Related Work

Several research projects are devel oping softwareinfras-
tructure and defining API functionality for network-based
computing systems. We believe that our work will com-
plement these software development efforts. Our schedul-
ing techni quesfrom Section 4 can beincorporated into these
software systems and tool-kits. A few projects are dso in-
vestigating performance related i ssues.

The Globus project [9, 10] at ANL and USC-ISI is de-
veloping a set of low level core services, called the Globus
tool-kit. Thisincludesmodulesfor resourcelocationand al-
location, communi cations, authentication, process creation,
and data access. Higher level systems software and appli-
cations then build upon the functionality provided by the
tool-kit. Nexusisthe communicationslibrary component of
the Globustool-kit. Globusincorporatesadirectory service,
called the Metacomputing Directory Service (MDS). Appli-
cations can query MDS for information on current |oads on
the processing nodes, as well as end-to-end network perfor-
mance between node pairs.

The Legion project at the University of Virginia uses
an object oriented approach to metacomputing system de-
sign [12, 18]. The philosophy is to hide the complexity of
resource scheduling, load balancing, etc. from the applica-
tion developer. The object oriented propertiesof encapsul a
tionand inheritance, aswell as softwarereuse, fault contain-
ment, and reduction in complexity are used to achieve this
goal.

The Virtual Distributed Computing Environment
(VDCE) at Syracuse University [25, 26] aims to develop a
complete framework for application development, configu-
ration, and execution. A GUI alowslibrary routinesor user
devel oped routines to be combined into an application task
graph. The task graph is then interpreted and configured to
execute on currently available resources.

At Carnegie Mélon, the ReMoS (Resource Monitoring
System) project [7] is developing a portable and system-
independent API that allows applicationsto obtain informa-

tion about network status and capabilities. Most architec-
tures generate information about the network hardware and
software in a system-specific format. ReMoS provides a
standard interfaceformat that isindependent of the details of
any particular type of network. ReMoS explicitly accounts
for resource sharing between applications.

The Management System for Heterogeneous Networks
(MSHN) [21] project at Naval Postgraduate School, USC,
and Purdue University isdesigning and implementing aRe-
source Management System (RMS) for distributed hetero-
geneous and shared environments. MSHN assumes hetero-
geneity inresources, processes, and QoS requirements. Pro-
cesses may have different priorities, deadlines, and compute
characteristics. The god isto assign resources to individ-
ual applications so that their QoS requirements are satis-
fied. MSHN al so addresses uncertai nty dueto unpredictable
loads in the operating environment. Various task mapping
and scheduling a gorithmsare being developed [1, 20]. Our
research is apart of the MSHN effort.

Communication performance in the presence of multi-
ple heterogeneous networks has been investigated in [14,
15]. Experiments are performed on aloca cluster of work-
gtations, interconnected with ATM, Ethernet, and Fibre-
Channel networks. The performance characteristics of each
of the networks are first evaluated by measuring the time
for sending messages of various sizes over the particular
network. These characteristics are used to choose a suit-
able technique for data communication. The Performance
Based Path Sdlection (PBPS) technique selects one of the
networks to be used for a communication event, depending
on the size of the message. The Aggregation technique uses
multiple networksat the same time, by breaking up the mes-
sage into multiple parts and sending these parts over differ-
ent networks. However, thisresearch only considered point-
to-point communication between apair of nodesin the sys-
tem. Collectivecommunication patterns such asal-to-all or
all-to-some were not studied. Such collective communica-
tion patternstypically occur in most parallel applications.

Distributed heterogeneous computing has important mil-
itary applications as well. The BADD (Battlefield Aware-
ness and Data Dissemination) [6] program at DARPA aims
to develop an operationa distributed data communication
system. The god is to deliver to warfighters an accurate,
timely, and consistent picture of the battlefield, aswell asto
provide access to key transmission mechanisms and world-
wide data repositories. [24] considers an important data
staging problem that arises in such heterogeneous network-
ing environments, where data items must be moved from
their initial locations to requester nodes. Each data re-
quest also has a time-deadline and priority associated with
it. In[24], aheuristic based on the multiple-source shortest-
path agorithmisused to find acommunication schedulefor
this data staging problem. In Section 6, we mention some

Network
Characteristics
from Directory
Service

Communication
Model
(Timing biagrams >

|
(Scheduling Techniques >

Collective
Communication
Pattern

(Communication Schedules >

Figure 2. Our communication scheduling ap-
proach.

related problems.

3. Our Approach: A Uniform Framework for
Communication Scheduling

Figure 2 shows our approach for developing adaptive
communi cation techniques, which are essential for network-
aware applications. We use a communication scheduling
framework consisting of four key components: (i) A di-
rectory service, (ii) An anaytical communication model,
(iii) Timing diagrams, and (iv) Scheduling algorithms. The
directory service provides information on current network
performance. Based on this information and the applica-
tion’s communication pattern, the communication mode! is
used to compute the time for each node-to-node commu-
nication event. Thisis then represented using a timing di-
agram. A scheduling algorithm uses a timing diagram as
input, and appropriately schedules the events to reduce the
overall communication time. We discuss each of these com-
ponentsin further detail.

3.1. Directory Service

Since network load in shared environments varies with
time, adirectory servicewhich providesinformation on cur-
rent network performance is essential. A suitable directory
infrastructure is therefore a key component of our frame-
work for developing adaptive communication techniques.

AMES ANL |IND USC-ISI NCSA
AMES 345 895 12 42
ANL | 345 20 26.5 45
IND | 895 20 425 21.5
USC-ISI 12 265 425 295
NCSA 42 45 215 29.5

Table 1. Latency (ms) between 5 GUSTO sites.

AMES ANL IND USC-IS NCSA
AMES 512 246 2044 391
ANL 512 491 693 2402
IND 246 491 311 448
USC-ISI | 2044 693 311 4976
NCSA 391 2402 448 4976

Table 2. Bandwidth (kbits/s) between 5
GUSTO sites.

The information provided by the directory makes it possi-
bleto devel op communi cation schedul eswhich are adaptive
to changes in network performance. At run-time, applica
tionscan query thedirectory service throughan Application
Programming Interface. For example, the Metacomputing
Directory Service (MDS) in Globus[8] providescurrent in-
formation on start-up costs and end-to-end bandwidths be-
tween every pair of processors. TheReMoS API, developed
at CMU [7], isan example of an APl that isindependent of
the details of network hardware.

Table 1 and 2 are examples of information provided
by the directory service in GUSTO, which is a testbed of
Globus. Thedirectory providescurrent val ues of end-to-end
network latency and bandwidth between any pair of comput-
ing sites. The tables show five of the GUSTO sites: NASA
AMES, ArgonneNationa Lab, University of Indiana, USC-
ISI, and NCSA.

The directory service takesinto account the current net-
work load, including the load imposed by the application. If
the paths between two distinct node pairs share a common
link, the bandwidth of the common link is divided among
these communicating pairs.

3.2. Communication Model

We use a communication model to analytically represent
the network performance. Using information about the ap-
plication’s communication pattern and the performance pa-
rameters provided by the directory service, the communica-

tionmodel can estimate thetimefor individua node-to-node
communi cation events.

Consider atypical metacomputing system, such asshown
in Figure 1. A path between compute nodes typically
includes links from multiple networks of different band-
widths. For example, in Figure 1, amessage from anodein
Site 1 to anode in Site 2 would pass through the local net-
work at both sitesand thelong haul link whichinterconnects
these geographically distributed sites.

Our communication model represents the network per-
formance between any processor pair (P;, P;) using two pa-
rameters. a start-up cost 7;; and a data transmission rate
B;;. Thetimefor sending am byte message between these
nodes isthen given by T;; + Bﬂ] The two parameters ab-
stractly represent thetota timefor traversing al thelinkson
the path between P; and P;. The mode! ignoresthe negligi-
ble delays incurred by contention at intermediate links and
nodes on the path between P; and P;.

Our mode! focuses on the effective network performance
at the application layer. We assume the availability of end-
to-end send and receive communi cation routines, which can
be invoked between any pair of processor nodes. Since the
details of network topology, routing, and flow control poli-
ciesare not visibleto the application, our model doesnot in-
corporate these parameters.

A similar communication model hasbeen widely used for
tightly-coupled distributed memory systems with good re-
sults[27]. In metacomputing systems, typical valuesfor the
start-up cost could bein the range of 10 to 50 ms, whiletyp-
ical values for the bandwidth could be in the range of kb/s
to hundreds of Mb/s.

The model assumes that a nodeis allowed to simultane-
ously participate in at most one send and one receive oper-
ation. When a node has multiple messages to send, it per-
formsthese send operationsone after another. Current hard-
ware and software do not easily enable multiple messages
to be transmitted simultaneously. Software support for non-
blocking and multithreaded communication sometimes al-
low applications to initiate multiple send and receive oper-
ations. However, dl these operations are eventually serial-
ized by the single hardware port to the network. Our model
accurately represents this phenomenon.

If multi plenodessimultaneously send to any node P;, we
say that node contention occurs at P;. The model assumes
that these messages are received one after the other at P;.
Thevalidity of thisassumption can be seen by examining the
eventsinvolvedinamessage transmissionfrom P; to P;. A
control message is first transmitted by P;. The actua data
is sent only after this control message is acknowledged by
P;. It P; isbusy receiving fromadifferent node, it sendsthe
acknowledgement to P; only after completing the previous
receive operation.

3.3. Timing Diagrams

We use timing diagrams to represent communication
schedules for given network characteristics and a commu-
nication pattern. Examples of timing diagrams for all-to-all
personalized communication with 5 processorsare shownin
Figures4and 7. Thediagram consistsof P columns, one per
processor. The vertical axisrepresentstime. The communi-
cation events in column i represent the messages sent from
processor P;. Therectanglelabeled j in columni represents
the message sent from P; to P; !. The height of the rectan-
gle denotes the time for the communication event 2. Once
the message sizes and the values of 7;; and B;; between dl
processor pairs are known, the heights of all the rectangles
can be determined. Thus, the timing diagram inherently ab-
sorbsthe heterogeneity in network parameters and message
lengths.

3.4. Scheduling Algorithms

Our communi cation scheduling algorithmsdeterminethe
positions of the individua events in the timing diagram so
that the completion timeisminimized. A valid communica
tion schedule must satisfy the following conditions— since
a node cannot send multiple message simultaneously, none
of therectanglesin acolumn can overlapintime. Similarly,
since multiplesimultaneousreceive eventsare not permitted
at aprocessor, dl the rectangles with the same label j must
have mutually digointtime intervals.

We do not consider “indirect” schedules where messages
from different sources are combined at intermediate nodes
and then forwarded to common destinations. Thisisbecause
such combine-and-forward schemes increase the volume of
traffic to be communicated. Since data in metacomputing
applicationsis often extremey voluminous, this can lead to
large communi cation costs.

We also do not alow messages to be partitioned. Since
thestart-up overhead isincurred for each message transmis-
sion, such a partitioning would increase the start-up over-
heads.

The next section presents our scheduling algorithms for
the all-to-all personalized communication pattern.

4. Scheduling Algorithmsfor Total Exchange

Inthissection, we devel op communi cation scheduling al-
gorithmsfor total exchange, or all-to-all personalized com-
munication. We briefly describe awell known communica-
tion agorithmfor thisproblem. Section 5 showsthe perfor-

L A receive schedule can be similarly constructed, where the communi-
cation eventsin column ¢ represent messages received by processor P; .
2The width of the rectangle does not have any significance.

mance improvements achieved by our new algorithms over
thisagorithm.

4.1. Communication Pattern and Scheduling Com-
plexity

All-to-all personalized communication occurs very fre-
quently in HPC applications. For example, consider atwo-
dimensiona matrix which is initially distributed by rows
among the processors. If the matrix must be transposed
so that the final distribution has columns on each proces-
sor, the resulting communi cation pattern is an all-to-all per-
sonalized communication. Here, each compute node has a
distinct message for every other node in the system. For
a P processor system, this communication pattern consists
of O(P?) communication events. The message sizes be-
tween all pairs of nodes are not necessarily the same. When
the network is heterogeneous, the individual communica
tion eventsinthetiming diagram will have different lengths.
These communication eventsin the timing diagram must be
efficiently scheduled. The goal isto reduce the completion
time ¢4, Of the communication schedule, i.e. the time at
which the last communication event is completed. Observe
that the compl etion time of the schedul e cannot be less than
the summation of send times or receive times at any proces-
sor, whichever is larger. Thisistherefore alower bound
on the completion time. To analyze the complexity of this
communication scheduling problem, wefirst stateit asade-
cision problem.

TOT_EXCH: Given a distributed heterogeneous system
with P processors(Pq, ..., Pp—1),adeadliner,anda P x P
communication matrix C, where C; ; is the time for the
communication event from P; to P;, 0 < ¢, j < P istherea
communication schedule with compl etion time less than or
equd to r?

Theorem 1: TOT_EXCH is NP-Completefor P > 2.

Proof: The theorem can be proved by transformation from
the open shop scheduling problem. The problem[5, 11] con-
sists of m machines and n jobs. Each machine i performs
task ¢; ; of job j. Theexecutiontimeof all tasksare givenin
ann x m matrix. Thereare no dependences among thetasks
of ajob. Hence there are no restrictions on the sequence in
whichthesetasksareto be executed. However, any machine
can work on only onejob a atime and any job can be pro-
cessed by only one machine at atime. The goal is to sched-
ule the tasks on the machines so as to minimize the finish
time. The problemisknown to be NP-Completefor m > 2
[11]. Details of our proof can befoundin [3]. O

4.2. Baseline Algorithm

Since the total exchange communication scheduling
problemisNP-Complete, we have devel oped heuristicalgo-

Py Py P, Py Py
_0 o o - - -
0 0 0
4 1 L L
3 1 B 0 1 1
L2 L L
[2
L 3 L L L
2 3 1 2
L 4 L L
4
3 3
L5 L L
7 [] 4 3
3 . L L L
L7

Figure 3. Example problem.

rithms. As abasdine algorithmfor performance compari-
sonwithour heuristicalgorithms, we shall usethe caterpillar
algorithm, which iswidely used in tightly coupled homoge-
neous systems. This generates a schedule with P steps. In
step j, (0 < j < P), each compute node P;(0 < i < P)
sends amessage to P(; 4 jymoap [13]. Such a schedule does
not incur any node contention in a homogeneous system,
when the message sizes and network bandwidths are uni-
form. This is because all the communication events have
the same duration, i.e. al the rectangles in the timing di-
agram have the same height. An important disadvantage
of the baseline algorithmisthat it derives afixed schedule,
whichisnot adaptiveto variationsin message lengthsor net-
work performance.

We illustrate our scheduling techniques with a running
example. Figure 3 shows an example communication prob-
lem, represented in the timing diagram formalism. The un-
schedul ed communi cati on events originating from each pro-
cessor are shown in increasing order of destination proces-
sor number.

In our examples, we assume that thediagonal entriesinC
are zeroes. Thisisvalid, since the time for alocal memory
copy operation is negligiblein comparison with thetimefor
sending messages over the heterogeneous network.

Using the baseline algorithm, the schedule shownin Fig-
ure 4 is derived. Observe that the longer communication
events in the earlier steps cause the later communication
steps to be delayed.

Theorem 2: Performance Bound for the Baseline Algo-
rithm.

1. The completion time ¢,,,,, Of the basdline scheduleis
alwayswithin % times the lower bound ;3.

2. The above bound is tight, i.e. there exist instances
where the baseline schedule takes £ times the lower
bound.

awnl
=
N

Figure 4. Schedule generated by baseline al-
gorithm.

Proof: We first introduce the notion of a dependence
graph DG for agivenschedule. Thisisadirected graphwith
P? nodes, one for each communication event. A directed
edgeispresent fromnodei tonode if there existsasequen-
tial dependency between the corresponding communication
eventsin the schedule.

Figure 5 shows the dependence graph for the basdline
schedule with 5 processors. Column i containsall the com-
munication events sent from Processor P;, in the order that
they appear in the schedule. Observe that the edgesin DG
are of two kinds: (i) vertical edges between adjacent nodes
in the same column, and (ii) diagonal edges between nodes
in adjacent columns. A correspondence exists between the
graph DG and the communication matrix C. Each nodein
DG corresponds to an entry in C. If a vertica edge exists
between two nodes, then these correspond to entries in the
same column of C. If a diagonal edge is present, then the
nodes correspond to entriesin the same row of C.

Each pathin the DG for the baseline schedul e contains P
nodesand P — 1 edges. The completion timeisequal to the

weight of thelongest pathinthegraph. Lett,,¢,,...,tp be
the nodes in the longest path. Then,
tmaz =t1 +1a+ ... +1ip (1)

Since adjacent nodesin any path belong to the same row
or column of C, and from the definition of #;;,

tiy > maz{(t1 +1t2),(ts+ta),...,(tp—1 +tp)} (2

We can now rewrite Eq (1) as

Figure 5. Dependence graph for the baseline
schedule.

1+ta)+ (ta+ts) + ...+ (tp—1 +tp)
P
2

tma:v

tmas S X mam{(tl —|—t2),...,(tp_1 +tp)} (3)
From Eq (2) and Eq (3)

tmaz‘ S o X tlb (4)

| Ny

To provethetightness of the bound, consider the follow-
ing communication matrix:

L
N o= =
LS s N N
(LS N N N

Each dependence path consists of 4 elements. The first
element isalwaysonthediagona . Adjacent elementsinthe
path are either in the same row or the same column. In the
former case, the i*” element in the path isto the immediate
left of thei — 1! element. Inthelatter case, the it element
isimmediately below thei — 1 element. For thisexample,
thecritical path containsall the unit-timeentries, and takes
4 units of time. The lower boundis2 + 2¢ 3.

Therefore,

tma:v _ 4
tip T2 + 2¢

~ 2 (5)

O

3¢ isan arbitrarily small numer.

4.3. Matching-Based Scheduling Techniques

We present two matching-based scheduling techniques
for the total exchange problem. The first technique finds a
series of maximum weight matchings in a bipartite graph.
We also consider the variation wherein minimum matchings
arefound.

Our agorithm partitions the P x P communication
events into P independent steps using graph matching al-
gorithms. For a P node system, we construct a bipartite
graph with P vertices on each side. The edge from v; on
the left side to v; on the right side is assigned a weight
equa to the time for the communication event from P; to
P;. Thus, there are O(P?) edges in the bipartite graph.
A complete matching in such a graph consists of P edges,
and corresponds to a permutation of (Pg, ..., Pp_1). Such
a matching can therefore represent a valid communication
step, without contention at any processor. Well known algo-
rithmsexist for finding amaximum weight complete match-
ing [17]. Thisis identical to the linear assignment prob-
lem. The complexity of thisagorithmis O(P3). Our ago-
rithm therefore consists of finding a maximum weight com-
plete matching in the graph, del eting the edges of the match-
ing from the graph, and then repesting the process until P
such matchings have been found. Thus, the total complex-
ity isO(P*). Although the schedule finds the communica-
tion events step by step, the communication phase does not
impose a synchronization among the processors after each
step. A communication event will begin whenever the send-
ing and receiving processors are both ready.

In theory, the completion time of the matching based
techniques can be £ times the lower bound. We can prove
aresult similar to part (i) of Theorem 2. In practice, the per-
formance is significantly better, and the bound is therefore
not tight. Unlike the fixed schedul e derived by the basdline
algorithm, our matching based schedule is adaptive. When
the lengths of the communication events change with vari-
ationsin network performance, the algorithmfinds a differ-
ent schedulewith alow completiontime. Section 5 presents
simulation results.

For the example of Figure 3, our adaptive maximum
matching a gorithm derives the schedule shown in Figure 6.
The matching technique groups together communication
events with similar length, thereby reducing theidle cycles.
Figure6isan optimal schedulefor thisexample, sincethere
existsaprocessor (P, or P;) whichisbusy duringtheentire
schedule.

4.4. Greedy Technique

The greedy technique is an approximation to the match-
ing technique, with alower computational complexity. Ini-
tially, the communication events within each processor are

awi]
=

w

o

5

N

T

w
w]
o |

(e[eo]l~]
[l el =]

T

o

[~ ~]
S
[e][=T =]

Figure 6. Schedule generated by a series of
maximum matchings.

rank ordered in decreasing order of communication time. A
series of communication steps is then composed. In com-
posing each step, we traverse the rank ordered list of every
processor, with the goal of finding a destination processor.
If adestination processor isfound, it will bethefirst proces-
sorinitslist that has not been selected by thisprocessor in a
previous step, and that is not the destination of another pro-
cessor inthesame step. |f theend of thelist isreached with-
out finding adestination, the processor idlesduring thisstep,
and we proceed to the next processor. Due to such incom-
plete steps, the total number of steps could belarger than P.
To ensure fairness, a processor which was idle in any step
will bethefirst to pick the destination processor in the next
step. If therewas noidle processor in a step, thelast proces-
sor in any step will be thefirst in the next step. The greedy
agorithm has acomputational complexity of O(P?). From
the description above, it isclear that the greedy algorithmis
adaptiveto thelengthsof the communication events. For the
previous example, the communication schedule derived by
the greedy algorithmisshown in Figure 7.

4.5. Open Shop Technique

Since our communication problem has similarities to
the open shop scheduling problem, we have developed a
scheduling algorithm based on a heuristic derived for the
open shop problem [22]. Other approximate algorithms for
the open shop problem are givenin [4].

Each processor is considered astwo independent entities,
a sender and a receiver. The following data structures are
maintained by the algorithm:

e For each sender 7,0 < i < P, aset R; of receivers
ismaintained. Initialy, this consists of al receiversto
which ¢ must send a message. When a communication

Wil
=
w
o
N
N

[=Te]l=]
[e][e =]

[v[e] o]

Figure 7. Schedule generated by the greedy
algorithm.

event is scheduled, the appropriate receiver is deleted
from the receiver set.

e The P-élement arrays sendavail and recvavail contain
information about the availability of the corresponding
senders and receivers. For example, theit” dement of
sendavail specifies the earliest time at which sender i
can participate in future send operations. All elements
of both these arrays areinitialized to 0.

The agorithm proceeds as follows:

e Whenever a sender ¢ becomes available at time sen-
davail[i], its receiver set R; is scanned, and the ear-
liest available receiver j is sdected. The communi-
cation event from ¢ to j is scheduled to begin at time
t=max(sendavail[i], recvavail[j]). sendavail[i] and
recvavail[j] are assigned thevauet + C[j, i, sincethe
sender ¢ and receiver j will bebusy until thistime. Fur-
ther, j isdeleted from R;.

o If multiple senders become available at the same time
(for example, at time 0), they are processed in an arbi-
trary order. However, all sendersthat becomeavailable
at timet are processed before any senders that become
availableat alater time. The algorithmmaintainsalist
of sendersinincreasing order of their time of availabil-
ity.

¢ Whenever asender isfinished with al itsoperations, it
isdeleted fromthislist. The algorithmterminateswhen
all the senders are thus del eted.

The total number of communication events to be sched-
uled is O(P?). The scheduling of each event takes O(P)

Py P, P, Py Py
] f - o o o
2 3 0
4 1 - L L
3 1 o 4
L2
[[2
L3 L L
4 1
. 1 3 0 N |
2 1
L5 L o
[[[] 2
|6 3 o 1 L |
L *] 0 7
L7 4 L 3
)

Figure 8. Schedule generated by the open
shop algorithm.

time, since the elements of the corresponding receiver set
must be scanned. The agorithm therefore runs in time
O(P3).

Observethat the algorithmisagreedy one. Atany timea
sender isfree, the heuristic assigns a communication event
to any of the elementsinitsreceiver set. ldlecycles arein-
serted in asender’s schedule only if none of its potential re-
ceiversareavailable. For our runningexample, theschedule
derived by thisheuristicis shown in Figure 8.

Theorem 3: The open shop heuristic algorithmis guaran-
teed to find a communication schedule whose completion
time is within twice the lower bound.

Proof: Assume, without loss of generality, that the last
sender tofinishdl itstransmissionsisi. Let j bethereceiver
that ¢ sendsitslast message to. It can be deduced that during
theidle cycles in sender ¢'s schedule, receiver j must have
been always busy. If thiswere not the case, the algorithm
would have scheduled the communi cation event from ¢ to j
at thistime. Thus, we can conclude that the sum of theidle
cyclesin sender ' sscheduleisbounded by thetota timefor
communication eventshaving j asthereceiver, i.e,, thesum
of elementsin row j of C. The completion time is the sum
of thetotal time for send events from sender i, i.e., thesum
of elementsin column of C, and theidlecyclesin sender :.
Thus, the completion timeis at most the sum of arow and a
column in the communication matrix C, and ishencewithin
twice the lower bound. O

5. Experimental Results

We have developed a software simulator that executes
the scheduling agorithms discussed in Section 4, and cal-
cul ates the compl etion time for each of them. The simulator

accepts processor count and communication times as input,
and generates the schedules based on these techniques. We
have used thissimulation tool to eval uate the baseline, max-
imum matching, minimum matching, greedy, and open shop
scheduling techniques.

The simulator generates random performance character-
istics for pairwise network performance, using information
fromthe GUSTO directory service asaguideline. The com-
munication matrix C can then be generated for any fixed
message size. Wehave sdl ected message sizesof 1kB, 1IMB,
and a random mix of these two sizes. In our experiments,
we assume that the diagonal entriesin C are zeroes. This
isvalid, sincethetimefor aloca memory copy operationis
negligiblein comparison with thetimefor sending messages
over the heterogeneous network. The scheduling techniques
are then applied to this communication matrix. Resultsfor
the different message sizes are shown in Figures 9, 10, and
11. Systems with up to 50 processors were considered.

Figure 12 considers a scenario when some of the proces-
sors are designated as servers. The message sizes from the
servers to the other (client) processors are assumed to be
large. The message sizes between the servers themselves
and also between the client processors are smal. Thisis
typical in multimediaapplications, where images and video
clips reside on servers, and are accessed by other proces-
sors. In our experiment, 20% of the processors are assumed
to be servers. Datais aso assumed to be partitioned over
theservers, sothat theload on the serversisbalanced. It can
be seen that the basdline algorithm performs very poorly in
such scenarios. Our agorithms perform 2 to 5 times faster
than the baseline in these exampl es.

The graphs clearly show the performance improvements
that can be achieved by our communi cation scheduling tech-
niques. The open shop algorithm finds schedules that are
very close to the lower bound, often within 2%, and al-
ways within 10 %. The maximum and minimum matching
based techniques find schedules with comparable comple-
tion times. These are within 15% of the lower bound. The
schedules generated by the greedy a gorithm are within 25%
of the lower bound. The schedules generated by the base-
line a gorithm sometimes take upto 6 times longer than the
lower bound. Based on our results, the open shop algorithm
achieves the best performance.

6. Enhancements and Future Research

In the previous sections, we presented our approach for
devel oping communication scheduling techniques that are
adaptive to network performance variations. To the best of
our knowledge, thisisone of the early effortsin formalizing
communication problems relevant to network-based com-
puting. Several exciting research issues remain to be ex-
plored. In this section, we discuss some future research di-

Time in milliseconds

Time in milliseconds

4000

Communication Times for Small Message Sizes (1kB)

3500

3000

N
a
Q
=]
T

2000

1500 -

1000 -

500

Figure 9. Simulator results for all-to-all per-
sonalized communication with small

Left to Right:

Lowerbound, Openshop Heuristic,
Maximum Matching, Minimum Matching,
Greedy Algorithm, Baseline

10 15 25 35
Number of Processors

sage sizes.

Communication Times for Large Message Sizes(1MB)

x 10
12 T T
10+ Left to Right:
Lowerbound, Openshop Heuristic,
Maximum Matching, Minimum Matching,
Greedy Algorithm, Baseline
sk
6L
4
2L
0

Figure 10. Simulator results for all-to-all per-
sonalized communication with large mes-

10 15 25 35
Number of Processors

sage sizes.

Time in milliseconds

Time in milliseconds

x 10° Communication Times for Mixed Message Sizes (1kB and 1MB)
9 T T T

sk Left to Right:

Lowerbound, Openshop Heuristic,
Maximum Matching, Minimum Matching,
Greedy Algorithm, Baseline

10 15 25 35
Number of Processors

Figure 11. Simulator results for all-to-all per-
sonalized communication with mixed mes-
sage sizes.

x 10° Communication Times for Client-Server Scenario
7 T T
6F Left to Right: 4
Lowerbound, Openshop Heuristic,
Maximum Matching, Minimum Matching,
Greedy Algorithm, Baseline
sk 4
4 4
3L 4
2L 4
1k 4
0

10 15 25 35 50
Number of Processors

Figure 12. Simulator results for all-to-all per-
sonalized communication when 20% of the
processors are servers. Servers send large
messages to their clients.

rections that are motivated by the need for network-aware
communication scheduling.

6.1. Enhancing the M odéel

Our scheduling agorithms were developed using asim-
ple yet effective communication model. In Section 3, we
mentioned the assumptions made by our moddl, and theva-
lidity of these assumptions. Enhanced versions of themodel
can be formulated by relaxing some of these assumptions.
For example, onerestrictionisthat a processor can send and
receive only one message at atime. Thisrestriction can be
relaxed in two ways.

When multiplemessages arrive at anode, we can assume
that the messages arereceived in an interleaved fashion. For
example, the use of multithreading allows multiplesimulta-
neous communication events in Nexus. An additional pa-
rameter o can be introduced for the overhead incurred in
context switching between the multiple receiving threads.
Thus, if ¢, andt- arethetimesfor individually receiving two
messages, the total time for receiving them simultaneously
wouldbe (1 + a)(t1 +t2).

It could a so be assumed that afinite buffer spaceisavail-
able at nodesto receive messages. When multiplemessages
arriveat anode, one of the messagesisreceived by theappli-
cation, while the others are queued in the buffer. The send-
ing nodesdo not wait until thereceive operationiscompl ete,
but only until the messageisstoredinthebuffer. If thebuffer
isfull, the sender must wait until adequate free spaceis cre-
ated in the buffer.

6.2. Incremental Dynamic Scheduling

The communi cation schedul es presented in Section 4 are
computed at run-time based on information obtained from
the directory service. In many sensor-based applications, a
series of continuoudly arriving data sets are processed in an
identical manner. In such cases, the overhead for repesat-
edly caculating the communication schedule at run-time
can be expensive, especidly when the number of processors
islarge. Itisthereforenecessary to devel op schedulingtech-
niques which have significantly lower computational costs.

Anincrementa approach would be oneway to reducethe
complexity of deriving dynamic communication schedules.
Here, a communication schedule is computed once, either
at compile time or during the first run-time occurrence. At
each subsequent invocation, theincrementa algorithmmust
refine this communication schedule to find a new commu-
nication schedule. The agorithm would query the directory
serviceregarding changesin thebandwidths. Inthiscontext,
the research problem is that of developing fast algorithms
for refining an existing communication schedule.

6.3. Enhancing Adaptivity of the Schedules

In some scenarios, the lengths of all communication
events may not be known even when the communication is
gtarted. This could happen because variations in network
performance are so rapid that significant changes could oc-
cur within the duration of the communication schedule. In
such cases, an initial communication schedule can be de-
rived using estimates of the communication times. The
schedul e can then be modified at intermediate checkpoints.
At these checkpoints, processors decide whether the differ-
ence between the estimated time and actual time is large
enough to require rescheduling. The checkpoints could be
defined in different ways: after each communication event
is complete (O(P) checkpoints), or after half the remain-
ing communication events are complete (O(log P) check-
points), and so on.

6.4. Scheduling with Critical Resources or QoS
Constraints

We have discussed communication schedules where the
goa is to minimize the completion time. In many scenar-
ios, other cost measures are aso important. For example,
one of the processorsin the heterogeneous system could be
acritical resource (e.g., an expensive supercomputer). The
schedule should compl ete the communi cation events of this
processor asearly aspossible, evenif it delaysthe other pro-
Cessors.

Quality of Service (Qo0S) requirementsin some applica
tions can introduce other variationsin the problem formula-
tion. For example, data forwarding and data staging prob-
lems arise in the BADD project [6]. The QoS parameters
associated with each message are deadlines and priorities.
The communication schedule must ensure that data items
reach their destinationsby the specified real-time deadlines.
When multiple communication events contend for a com-
munication link, the scheduling algorithm must sequence
them based on their respective deadlines and priorities.

7. Conclusion

In this paper, we have developed a uniform framework
for communication scheduling in heterogeneous network-
based systems. The framework consists of a directory
service, a communication model, timing diagrams, and
scheduling algorithms. We discussed our approach for the
design of adaptive communication techniques, and applied
it to the problem of dl-to-all personalized communication.
Although this problem has been thoroughly researched for
homogeneous systems, we showed that well known algo-
rithms perform poorly in the presence of network hetero-
geneity. We developed a gorithms based on bipartite graph

matching, and a heuristic agorithms based on Open shop
scheduling. We showed that our agorithms performed sig-
nificantly better than a well known homogeneous commu-
ni cation scheduling algorithm. Our algorithms are adaptive
and execute at run-time, based on network performance in-
formation obtained from the directory service. To the best
of our knowledge, thisisoneof theearly effortsinformaliz-
ing communication problemsin adistributed heterogeneous
computing environment. Our paper also discusses severa
new research problems related to communication schedul-
ing in network-based systems, that arise due to the unique
features of such environments. These include communica
tion scheduling with QoS constraints and techniques to re-
duce the complexity of the scheduling agorithm.

Acknowledgments

We thank Roy Jonker of MagicLogic Optimization, Inc.
for his public domain program to solvethe Linear Assign-
ment Problem. This routine was used to find the match-
ings in our agorithms. We also thank Craig Lee and Paul
Stelling of The Aerospace Corporation and the members of
the MSHN project for helpful technical suggestions.

References

[1] R. Armstrong, D. Hensgen, and T. Kidd. The relative per-
formance of various mapping algorithms is independent of
sizable variancesin runtime predictions. In Proc. Heteroge-
neous Computing Workshop, pages 79-87, March 1998.

[2] V.Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho,
S. Kipnis, and M. Snir. CCL: A portable and tunable collec-
tive communication library for scalable parallel computers.
IEEE Trans. Parallel and Distributed Systems, 6(2):154—
164, February 1995.

[3] P.B.Bhat, V. K. Prasanna, and C. S. Raghavendra. Adap-
tive communication algorithms for distributed heteroge-
neous systems. Manuscript, Dept. of EE-Systems, Univer-
sity of Southern California, May 1998.

[4] H. Brasel, T. Tautenhahn, and F. Werner. Constructive
heuristic algorithms for the open shop problem. Computing,
51:95-110, 1993.

[5] P Brucker. Scheduling Algorithms. Springer, 1995.

[6] DARPA 1SO Web Page for the BADD Program. https://
www.iso.dar pa.mil/ WD @27000.cgi?get+iso::
Office+Information_System +WDI _i_home_frames.

[7] T.DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste,
J. Subhlok, and D. Sutherland. ReMoS: A resource monitor-
ing systemfor network-awareapplications. Technical Report
CMU-CS-97-194, School of Computer Science, Carnegie
Mellon University, Dec 1997.

[8] S.Fitzgerald, I. Foster, C. Kesselman, G. von Laszewskiand,
W. Smith, and S. Tuecke. A directory service for configur-
ing high-performance distributed computations. In Proc. 6th
IEEE Intnl. Symp. on High Performance Distributed Com-
puting, pages 365—-375, 1997.

[9] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Intl. Journal of Supercomputer Applica-
tions, 11(2):115-128, 1997.

[10] GlobusWeb Page. http://www.globus.org.

[11] T.GonzalezandS. Sahni. Open shop schedulingto minimize
finish time. Journal of the ACM, 23(4):665-679, Oct. 1976.

[12] A. S. Grimshaw and W. A. Wulf. Legion — a view from
50,000 feet. In Proc. Fifth IEEE Intl. Symp. on High Per-
formance Distributed Computing, August 1996.

[13] L. H. Jamieson, P. T. Mueller, and H. J. Siegel. FFT al-
gorithms for SIMD parallel processing systems. Journal
of Parallel and Distributed Computing, 3(1):48-71, March
1986.

[14] J. Kim and D. J. Lilja. Exploiting multiple heterogeneous
networks to reduce communication costs in parallel pro-
grams. In Proc. HeterogeneousComputing Wor kshop, pages
83-95, April 1997.

[15] J. Kimand D. J. Lilja. Utilizing heterogeneousnetworks in
distributed parallel computing systems. In Proc. Sixth IEEE
Intl. Symp. High PerformanceDistributed Computing, 1997.

[16] H.Korab and M. D. Brown, Eds. Virtual Environmentsand
Distributed Computing at SC '95: GlIl Testbed and HPC
Challenge Applications on the I-WAY. ACM/IEEE Super-
computing ' 95, 1995.

[17] E. Lawler. Combinatorial Optimization: Networksand Ma-
troids. Holt, Rinehart and Winston, 1976.

[18] Legion Web Page. http://legion.virginia.edu.

[19] Y. W. Lim, P. B. Bhat, and V. K. Prasanna. Efficient algo-
rithms for block-cyclic redistribution of arrays. Algorith-
mica, to appear.

[20] M. Maheswaran and H. J. Siegel. A dynamic matching and
scheduling algorithm for heterogeneouscomputing systems.
In Proc. Heterogeneous Computing \Wor kshop, pages 5769,
March 1998.

[21] MSHN Web Page. http://www.cs.nps.navy.mil/mshn.

[22] D. B. Shmoys, C. Stein, and J. Wein. Improved approxima-
tion algorithmsfor shop scheduling problems. SAM J. Com-
put., 23(3):617-632, June 1994.

[23] L.Smarr and C. E. Catlett. Metacomputing. Commns. of the
ACM, 35(6):45-52, June 1992.

[24] M. Tan, M. D. Theys, H. J. Siegel, N. B. Beck, and M. Jur-
czyk. A mathematical model, heuristic, and simulation study
for abasic data staging problem in a heterogeneousnetwork-
ing environment. In Proc. Heterogeneous Computing Work-
shop, pages 115-129, March 1998.

[25] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, |. Ra,
D. Kim, Y. Kim, X. Bing, and B. Ye. The software ar-
chitecture of a virtual distributed computing environment.
In Proc. Sixth IEEE Intl. Symp. on High Performance Dis-
tributed Computing, 1997.

[26] VDCE Web Page.
http:/Amww.atm.syr.edu/projectsivirvindex.html.

[27] C.-L. Wang, P. B. Bhat, and V. K. Prasanna. High-
performance computingfor vision. Proceedingsof the |EEE,
84(7):931-946, July 1996.

