Lecture Note 4 for “Programming Languages”

Instructor: Pangfeng Liu

Chapter 6 Data Types

6.1 Introduction

· The more versatile the data type in a language is, the more closely the variables can match the real world.

· COBOL is the first language to allow users to define variable attributes, i.e., the number digits in a number.

· User-defined data provides better readability since data types now carry meanings in their names, and modifiability since modification can be made in user-defined data type to reflect changes in design.

· The idea of abstract data type is to separate the use of the type from its implementation.

· A descriptor is a collection of attributes of a variable. It could be needed during compile time or runtime, depending on the time the attributes are bound.

6.2 Primitive Data Types

Those types that are not defined in terms of other data types. Compare this with derived data types.

6.2.1 Numeric Types

6.2.1.1 Integer

· The most fundamental data type for counting.

· It could be short, “regular”, or long as in ADA. It could also be signed or unsigned as in C/C++.

· There are three ways to represent negative numbers, one’s complement, two’s complement, and signed-magnitude.

6.2.1.2 Floating-point

· Derived from scientific notation. It has fraction that determines the precision, and exponent that determines the range.

· Not precise in terms decimal arithmetic is concerned.

· It could be double or single precision.

· The IEEE standard make it possible to exchange floating numbers among machines.

6.2.1.3 Decimal

· Or so-called “fixed point” number. The number of digits after the decimal point is fixed.

· Precise for decimal arithmetic, but costly if not done by hardware.

· It could be implemented as two digits per byte, or binary coded decimal (BCD), a waste of storage.

6.2.1.4 Boolean Types

It is either true or false. It improves readability by assign Boolean values to flags and switches.

6.2.1.5 Character Type

To store character text. ASCII is good for English but 16 bit UNICODE is good for internationalization.

6.3 Character String Types

6.3.1 Design Issues

Two design issues: should character string be a special type or just a collection of characters, and should the length be fixed at compile time?

6.3.2 String and Their Operations

· ADA

· To extract characters from a string.

· To concatenate strings.

· C/C++

· Support string as a character array, while most of the other language support string as a special type.

· Use a null char to terminate a string.

· ANSI C has string handling functions built into the standard, e.g., strcpy, strcmp, strlen.

· CHARCATER in Fortran and String in Java.

· Assignment among string of different length causes implementation difficulties.

· SNOBOL has an extensive capability in string handling.

· Perl has regular expression capability for handling string.

6.3.3 String Length Options

· Static length – length is fixed at compile-time.

· Limited dynamic length – the maximum length is fixed at compile time.

· Dynamic length – no limitation on string length.

6.3.4 Evaluation

String manipulation enhances writability.

6.3.5 Implementation

· A descriptor is required at compile time to store the length and address of a string variable.

· A run-time descriptor is needed for those strings that have addresses or length that can only be determined at run-time.

· The maximum amount of storage of static length and limited dynamic length strings are bound at compile time, hence it is not necessary to grow or shrink storage requirement. (Compare this with dynamic length strings)

· The dynamic strings can be implemented as linked lists, which have simpler allocation/deallocation procedure, but less efficiency, or by adjacent storage allocation scheme.

6.4 User-defined Ordinal Types

6.4.1 Enumeration Types

· Mainly used to improve readability. It is often implemented as integers.

· The design issue is whether a literal can appear in more than one enumeration type.

6.4.1.1 Designs

· Most languages, except ADA, do not allow a literal to appear in more than one enumeration type.

· Enumeration type can be used in loops (to enumerate all possibilities), or in comparison.

· ADA uses a cast to determine the type of a literal that appears in more than one enumeration type.

· Predecessor, successor, and position in the enumeration type are all possible.

6.4.2 Subrange Types

A contiguous subsequence of an ordinal type.

6.4.3 Implementation of User-defined Ordinal Types

Usually implemented as consecutive integers starting from 0.

6.5 Array Types

6.5.1 Design Issues

· Subscript types

· Range check for subscripts

· Subscript range binding time

· Storage allocation time

· The number of subscripts

· Array initialization

· Array slices

6.5.2 Arrays an Indexes

· An array element is reference by the staring address of the array, plus a subscript (index) into the array.

· Parentheses or bracket is used to delimit the expression for array indexes. The use of parentheses could cause confusion since it is similar to a function call.

6.5.3 Subscript Bindings and Array Categories

· The type of index is usually bounded statically, but the range could be dynamic.

· The starting index could be 0 or 1.

1. A static array has both storage and index ranges bound at compile time, e.g., Fortran.

2. A fixed static-dynamic array has index range bound at compile time, but the storage is bound at run-time, e.g., PASCAL’s array with variable range limit.

3. A static-dynamic array has both storage and index ranges bound at run-time, e.g., dynamic array in Fortran 90 and C/C++.

4. A heap-dynamic array has both storage and index ranges bound at run-time, and could change afterwards, e.g., dynamic array in Perl and Java Script.

· In PASCAL the index range is a part of the array type. A conformant array is a formal parameter that has variables as its index range. This allows different sized arrays to be the actual parameters.

6.5.4 The Number of Subscripts in Arrays

This is usually not limited, except in Fortran.

6.5.5 Array Initialization

See the textbook for syntax rules.

6.5.6 Array Operations

· In some languages an entire array (or part of it called slice), could be referred as an operand in so-called array operations. This could be an assignment or a very high-level operation, e.g., matrix transpose.

· Fortran 90 provides elemental array operations, including array addition/subtraction, assignment, comparison, and libraries that do matrix multiplication and transpose.

· APL has an extensive collection of array operations.

6.5.7 Slices

· A slice is part of an array. It could have certain structure, or be very irregular.

· Usually a slice is indicated as an array with part of its index range missing (to indicate the entire domain of that index).

6.5.8 Evaluation

Array is a simple and effective representation of homogeneous collections of data.

6.5.9 Implementation

· Address calculation is determined by the starting address of the array, the indexes, and the size of each element, and the memory layout (row or column major).

· The binding time of element type and the array starting address also affect the address calculation. If the address is determined at compile/run time, then the descriptor must also be maintained at compile/run time.

· Sequential access to array is much more efficient, so the pattern of memory layout and program access will affect the performance.

· Address calculation could be complicated, and slices could make it even more difficult.

6.6 Associate Arrays

· An associative array is a collection of keys and values. A key has a corresponding value.

· Mathematically, an associate array is as same as a function, where the keys are from the domain and the values are from the co-domain.

6.6.1 Structure and Operations

One can query the value by keys, query the existence of a key, and add or delete key-value pairs.

6.6.2 Implementation

Usually by a hash table.

6.7 Record Types

A record is a collection of related data that could have different data types. Compare this with arrays.

6.7.1 Definition

· The syntactical form could have level numbers (e.g. COBOL) to indicate the hierarchy when one record is contained within another, or use explicit nested record definition (e.g., ADA, PASCAL, C/C++).

· Fortran requires that the record must be defined before used in another record definition.

6.7.2 Reference to Record Fields.

· The reference is by identifier, not by index.

· A fully qualified reference includes all identifier names along the path in the hierarchy the field name is defined. A elliptical reference allows some of the identifiers along the path not to be explicitly stated.

· The with clause in PASCAL provides a good balancing between simplicity and easy of implementation

6.7.3 Operations

Assignment, comparison and MOVE CORRESPONDING (in COBOL).

6.7.4 Evaluation

Record provides a good representation form for related data, and increased readability since all fields are accessed by names.

6.7.5 Implementation

Straightforward implementation since the fields are addressable by the offset from the starting address of the record.

6.8 Union Types

A union is a data type where different components of a structure can share storage, either to reduce memory requirement or for convenient (but dangerous) programming flexibility.

6.8.1 Design Issue

· Type checking
· Embedded in records.

6.8.2 Free Union

C/C++ provides free union that has no restriction, and the programmer must ensure the data type consistency.

6.8.3 PASCAL:

· A discriminated union has a tag (or record variant) to indicate the current data type in a union.

· PASCAL does not enforce that every union should have a tag, nor the tag should be changed along with the data when different data type is assigned into the union, but ADA does.

6.8.4 ADA

· ADA enforces the tag rule.

· A constrained variant variable is a tag that cannot change values (must be static).

· An unconstrained variant variable has a tag that can change value, but it can change only along with the union contents.

6.8.5 Implementation

6.8.5.1 Similar to record but all fields has the same offset. The memory for tag is also maintained at run-time if dynamic type checking is required.

6.9 Set Types

· A set type is derived from a base type whose elements can be put into a set.

· Useful operations include union, intersection, membership queries.

· Usually implemented as bit string, but whose length will be limited by the size of machine words.

6.10 Pointer Types

Pointers are used to address memory indirectly or manage storage dynamically. Typically they are used to build dynamic data structure, or allocate storage when the amount of memory requirement is not know a priori.

6.10.1 Design Issues

· Scope and lifetime of pointers

· Lifetime of the data pointed by a pointer

· Point to different data type

· Possible usage

· Pointer, reference, or both

6.10.2 Operations

· A pointer can have its value assigned to other places, and on the other hand a pointer is dereferenced when the data it points to is retrieved.

· Different syntax forms are use to indicate dereferencing.

6.10.3 Pointer Problems

6.10.3.1 Dangling Pointers

Pointers point to memory that has been de-allocated. Only happens when storage is explicitly de-allocated.

6.10.3.2 Lost Heap Dynamic Variables

Storage that cannot be accessed since the pointers to it have been lost.

6.10.4 PASCAL

· Can only access dynamically allocated memory.

· No PASCAL compiler does the right thing when dealing with “dispose”
6.10.5 ADA

· All heap dynamic variables of a data type are deallocated when exiting the scope of that data type; hence no pointer can exist after this happens.

· Memory leaking is still possible since no garbage collection is performed.

6.10.6 C/C++

· Just like integer and everything goes.

· Pointer arithmetic is convenient yet dangerous.

· Generic pointer *void is a general-purpose adaptor for accepting different pointers as actual arguments.

6.10.7 Fortran 90

All pointers are implicit dereferenced and special assignment statement is needed to get the pointer values.

6.10.8 Reference Types

6.10.8.1 Introduced by C++, reference type is closely related to pointers.

6.10.8.2 Reference can be view as constant pointer so it can be initialized but not assigned. Reference can refer to a data or used as formal parameters during function calls, in which it provides a convenient two-way window between the caller and the subroutine being called.

6.10.8.3 Java uses references intensively to address the objects.

6.10.9 Evaluation

6.10.9.1 A step backward from which we may never recover – Hoare.

6.10.10 Implementation

6.10.10.1 Representations

Hardware supported data types.

6.10.10.2 Solution to Dangling Pointers

· Use a tombstone as the connector to the actual allocated storage. A deallocated storage has a special mark on its tombstone that other pointers can detect.

· A lock is kept in the storage allocated and a key is stored in every pointer pointing to it. The key is compared to the lock to verify whether the storage can be accessed or not.

6.10.10.3 Heap Management

· Two approaches are available – reference count and garbage. The former keeps a reference count for every data block that is pointed by pointers. The later marks the storage in use and reclaim those that are not.

· Reference count is eager, and the garbage collection is lazy.

· Reference count approach wastes storage for the counts, has overhead in handling the counts, and could not handle cycles of nodes that should be reclaimed.

· Garbage collection first clear all memory flag as not in use, then marks the blocks that are referenced by pointers, which requires some traversing mechanism, then reclaim those blocks that are not marked.

· Garbage collection works worst when you need it most.

· Variable-sized cells complicate heap management.

· Difficult to mark the beginning and the end of data blocks.

· Impossible to locate the pointers and traverse the data structure during marking phase.

· Introduces fragmentation.

