Lecture Note 1 for “Programming Languages”

Instructor: Pangfeng Liu

Chapter 1 Preliminaries

1.1 Reasons for Studying Programming Languages

· To be able to express more.

· The extent of what we can express is limited by what we can communicate.

· The programming constructs, like control structures, data structure, and the level of abstraction we can use affect how we transform our thoughts into actual programs.

· Although we are not able to find all the features we know in one language, we can emulate those that we do not have with the language that we are using. Nevertheless, we still need to use the best tool for a particular job, which may not be the one that we are most familiar with.

· To be able to choose the most appropriate language for the job.

· If you do not have knowledge about various programming languages, your choice is limited.

· To use the language one is most familiar may not be the best choice.

· To be able to learn new languages much more easier.

· Most of the languages have many aspects in common.

· New languages are developed continuously. To be able to learn new languages is essential.

· New concepts are likely to be adopted by many new languages simultaneously, e.g., object-oriented methodology.

· To be able to write better programs by understanding the implementation details.

· It is evitable to “peek under the hood” in order to understand the relationship between programming language and their implementations.

· Knowing more about the implementation details enable you to understand the computer architecture, compiler technology, and software engineering, all are essential to writing better programs.

· To be able to design new languages

· To deign startup file, configuration file, various scripts, and GUI.

· To be able to have a better tomorrow

· The mistakes we made today will come back to haunt us in the future.

· The ALGOL 60 example.

1.2 Programming Domains

What can we compute?

· Scientific applications

· Digital computers were invented for science and engineering where a large number of floating numbers are “crunched”.

· Simple selection and loop structure are sufficient.

· E.g., Fortran, ALGOL 60.

· Business application

· When the cost of computers became affordable, business application became possible.

· Business application produces reports from large data base systems or to a smaller scale, from spreadsheets.

· The data representation and output format control are essential.

· E.g., ANSI COBOL.

· Artificial intelligence applications

· Use symbols, not numerical values.

· Linked list, not arrays.

· A.I. applications requires dynamic execution, therefore they are usually interpreted, not compiled.

· E.g., LISP, PROLOG.

· System programming

· To write system software, which is used by other users to build their own applications.

· System programming requires close interaction with computer hardware, and must be efficient to run.

· E.g., C, PL/1.

· Scripting languages

· A batch of command that are executed in sequence to complete a job.

· For maximum flexibility, scripting language is usually interpreted.

· Examples include shells like sh, csh, and bash, and general-purpose tools like sed, awk, tcl/tk, and perl.

· Special-purpose languages

· Anything that performs a specific function.

1.3 Language Evaluation Criteria

What is a ‘good’ programming language?

1.3.1 Readability

It is the ability to understand the program, and then modify it.

Readability has strong relation with the language of choice and the application domains.

1.3.1.1 Simplicity

· If it is simple, it is easy to learn.

· Programmers usually only use the features they are familiar with, which are not necessarily the ones that the readers of the program are familiar with.

· Most often a large number of features will do the same thing, causing unnecessary confusion.

· Operator overloading gives an operator multiple meanings, which may be confusing when done incorrectly.

· Assembly languages are simple, but are too low-level (or not “sophisticated” enough) to express our ideas.

1.3.1.2 Orthogonality

· Features can be combined in s systematic way to form new features.

· Orthogonality means independent, i.e., if you can do one thing with a feature, there is no reason that you cannot do the same to the other. In a sense the features are symmetric.

· VAX and IBM addition example.

· If a language is more orthogonal, it has fewer exceptions, and many become simpler, but may have unnecessary complexity since the number of legal constructs would be very large.

· Simplicity is the result of a combination of a small number of features through Orthogonality.

1.3.1.3 Control Statements

· Structured programming proclaims that blocked control structures with single entry and exit, and discourages the use of goto statements.

· Goto statements should be used with caution. They should precede their destination, and never jump to distant labels.

· Limited use of goto statements is still unavoidable in certain languages, like FORTRAN or BASIC.

1.3.1.4 Data Types and Structures

· Sufficient data type and data structure support not only improve readability, but also expressibility.

1.3.1.5 Syntax Considerations

· Identifier form

· The length and valid combination of characters.

· Special words

· How to express compound statement?

· Can special words be used as identifiers?

· Form and meaning

· How a statement appears should clear indicate what it actually means.

1.3.2 Writability

Does the language make it easy to write what you have in mind?

Readability first, then writability.

1.3.2.1 Simplicity and Orthogonality

The combination of a small number of features (simplicity) and the consistent way to combine them to form new features (orthogonality) is crucial.

1.3.2.2 Support for Abstraction

· Abstraction hides the details (in implementation) of a construct and only provides a clear interface of how this construct should be used. It specifies what a construct works, not how it works.

· Process abstraction isolation what a process does from how the process does it.

· Data abstraction separate what an object should behave given certain events from how it implements the actions.

1.3.2.3 Expressivity

The language should have convenient way to express computation, e.g., goto may be sufficient, but while loop is better.

1.3.3 Reliability

Will the program crash easily?

1.3.3.1 Type Checking

· Compile-time type checking is cheaper, but for many dynamic execution languages run-time checking is necessary.

· Type checking includes arguments in function calls, assignment, index range in certain languages (e.g., PASCAL).

1.3.3.2 Exception Handling

To detect run-time errors.

1.3.3.3 Aliasing

To have more than one method in access he same memory.

1.3.3.4 Readability and Writability

A reliable program is written with the best method, the best method is implemented only when we understand what exactly we want to do.

1.3.4 Cost

· Cost to train the programmers

· Simplicity and orthogonality.

· Cost to write programs

· Writability

· Cost to compile the program

· Quick-and-dirty or highly optimized.

· Cost to execute the program

· Most likely determined by what language you use.

· Cost to build the compiler and runtime support system

· The complexity to build compiler should be considered.

· Cost to recover from problems

· Cost to maintain the program

· Readability.

· Most to the software costs are in maintenance, not developments.

1.3.5 Other Criteria

· Portability

· To move from one platform to another.

· If a standard is established, portability is usually not a problem.

· Generality

· Well-Definedness

1.4 Influences on Languages

1.4.1 Computer Architecture

· The modern computers are based upon von Neumann architecture, in which both data and program are stored in memory. Program is fetched and executed, and modifying data in the process.

· Most of the programming languages based on von Neumann architecture are called imperative languages, in which machine state is kept in variables, and the operation modify the variables to perform desired computation.

· On the other hand, functional (or applicative) languages perform computation by applying a series of function on the given parameters.

1.4.2 Programming Methodology

Software development cost has become much higher than hardware costs. Software productivity becomes an important issue.

· Structured programming, top-down design, and stepwise refinement.

· Data abstraction

· Object-oriented methodology, inheritance, dynamic data type binding.

1.5 Language Categories

· Imperative

· Functional

· Logic

· Object-oriented

1.6 Language Design Tradeoffs

· Reliability and efficiency

· Readability and writability

· Flexibility and Safety

1.7 Implementation Methods

· A programming language requires various system supports. Operating system provides runtime process management, file system for storing programs, I/O operations. Compiler provide source to object code translation, and runtime system provide runtime library.

· A layer approach provides an abstract machine for the user.

1.7.1 Compilation

· Source code is translated (by a compiler) into machine language and run directly by hardware.

· A compiler has a preprocessor, a lexical analyzer, a parser, optionally an optimizer, and a code generator.

· A linker links the different user and system object files into the final executable.

· The von Neumann bottle between CPU and memory limits the execution speed.

1.7.2 Pure Interpretation

· Source code is not translated but run directly by a software interpreter.

· Pure interpretation allows easy source level debugging implementation, provides maximum flexibility, but suffers slow execution speed and large memory requirement.

· It is also difficult to build a interpreter because of high level constructs.

1.7.3 Hybrid Implementation Systems

· Source code is translated into an intermediate form and run by a software virtual machine.

· E.g., Java compiler produces byte code that can be run on any Java virtual machine (JVM).

1.8 Programming Environment

Programming Environment is a set of tools that help programmer to develop applications.

